HichTala commited on
Commit
4b3f01b
Β·
verified Β·
1 Parent(s): bff45c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md CHANGED
@@ -60,3 +60,93 @@ configs:
60
  - split: test
61
  path: data/test-*
62
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  - split: test
61
  path: data/test-*
62
  ---
63
+
64
+ #Β DOTA-COCO: Resized and Hugging Face-Ready Vision Dataset
65
+
66
+ DOTA-COCO is a restructured version of the DOTA (Dataset for Object Detection in Aerial Images), specifically designed to simplify object detection workflows. By resizing the original images and converting them to the COCO format, this project provides an easier way to use DOTA with popular computer vision frameworks. Additionally, the dataset is formatted for seamless integration with Hugging Face datasets, unlocking new possibilities for training and experimentation.
67
+
68
+ ## 🌟 Key Features
69
+ Resized Images: Reduced image dimensions for faster training and inference while maintaining key details.
70
+ COCO Format: Compatible with major deep learning libraries like PyTorch, TensorFlow, and MMDetection.
71
+ Hugging Face Integration: Ready-to-use with the Hugging Face datasets library for efficient data loading and preprocessing.
72
+
73
+ ## πŸ“‚ Dataset Structure
74
+ ### COCO Format
75
+ The dataset follows the COCO dataset structure, making it straightforward to work with:
76
+
77
+ ```plaintext
78
+ dota/
79
+ β”œβ”€β”€ annotations/
80
+ β”‚ β”œβ”€β”€ instances_train.json
81
+ β”‚ β”œβ”€β”€ instances_val.json
82
+ β”‚ └── instances_test.json
83
+ β”œβ”€β”€ train/
84
+ β”œβ”€β”€ val/
85
+ β”œβ”€β”€ test/
86
+ ```
87
+ ### Hugging Face Format
88
+ The dataset is compatible with the datasets library. You can load it directly using:
89
+
90
+ ```python
91
+ from datasets import load_dataset
92
+
93
+ dataset = load_dataset("HichTala/dota")
94
+ ```
95
+
96
+ ## πŸ–ΌοΈ Sample Visualizations
97
+
98
+ Above: An example of resized images with bounding boxes in COCO format.
99
+
100
+ ## πŸš€ Getting Started
101
+ ### Install Required Libraries
102
+
103
+ - Install datasets for Hugging Face compatibility:
104
+
105
+ ```bash
106
+ pip install datasets
107
+ ```
108
+ - Use any object detection framework supporting COCO format for training.
109
+
110
+ ### Load the Dataset
111
+ #### Hugging Face:
112
+
113
+ ```python
114
+ from datasets import load_dataset
115
+
116
+ dataset = load_dataset("HichTala/dota")
117
+ train_data = dataset["train"]
118
+ ```
119
+
120
+ #### Custom Script for COCO-Compatible Frameworks:
121
+ ```python
122
+ import json
123
+ from pycocotools.coco import COCO
124
+
125
+ coco = COCO("annotations/train.json")
126
+ ```
127
+
128
+ see demo notebook [here](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb) for more details.
129
+
130
+ ## βš™οΈ Preprocessing Details
131
+ - Resizing: The original large images were split into smaller patches, each resized to *512x512 pixels*.
132
+ - Annotations: Converted to COCO format for better compatibility and flexibility.
133
+
134
+ ## πŸ“ How to Cite
135
+ If you use this dataset, please consider citing the original DOTA dataset:
136
+
137
+ ```plaintext
138
+ Copy code
139
+ @inproceedings{Xia_2018_CVPR,
140
+ author = {Gui-Song Xia and Xiang Bai and Jieqing Zheng and others},
141
+ title = {DOTA: A Large-Scale Dataset for Object Detection in Aerial Images},
142
+ booktitle = {CVPR},
143
+ year = {2018}
144
+ }
145
+ ```
146
+
147
+ Additionally, you can mention this repository for the resized COCO and Hugging Face formats.
148
+
149
+
150
+ Enjoy using DOTA in coco format for your object detection experiments! πŸš€
151
+
152
+