|
import os
|
|
import numpy as np
|
|
from PIL import Image
|
|
import concurrent.futures
|
|
from tqdm import tqdm
|
|
from collections import Counter
|
|
import unicodedata
|
|
import monai.transforms as mtf
|
|
from multiprocessing import Pool
|
|
from unidecode import unidecode
|
|
|
|
|
|
|
|
|
|
input_dir = 'PATH/M3D_Cap/ct_case/'
|
|
output_dir = 'PATH/M3D_Cap_npy/ct_case/'
|
|
|
|
|
|
subfolders = [folder for folder in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir, folder))]
|
|
|
|
|
|
transform = mtf.Compose([
|
|
mtf.CropForeground(),
|
|
mtf.Resize(spatial_size=[32, 256, 256], mode="bilinear")
|
|
])
|
|
|
|
|
|
def process_subfolder(subfolder):
|
|
output_id_folder = os.path.join(output_dir, subfolder)
|
|
input_id_folder = os.path.join(input_dir, subfolder)
|
|
|
|
os.makedirs(output_id_folder, exist_ok=True)
|
|
|
|
for subsubfolder in os.listdir(input_id_folder):
|
|
if subsubfolder.endswith('.txt'):
|
|
text_path = os.path.join(input_dir, subfolder, subsubfolder)
|
|
with open(text_path, 'r') as file:
|
|
text_content = file.read()
|
|
|
|
search_text = "study_findings:"
|
|
index = text_content.find(search_text)
|
|
|
|
if index != -1:
|
|
filtered_text = text_content[index + len(search_text):].replace("\n", " ").strip()
|
|
else:
|
|
print("Specified string not found")
|
|
filtered_text = text_content.replace("\n", " ").strip()
|
|
|
|
|
|
if len(filtered_text.replace("\n", "").replace(" ", "")) < 5:
|
|
search_text = "discussion:"
|
|
index = text_content.find(search_text)
|
|
if index != -1:
|
|
filtered_text = text_content[index + len(search_text):].replace("\n", " ").strip()
|
|
else:
|
|
print("Specified string not found")
|
|
filtered_text = text_content.replace("\n", " ").strip()
|
|
|
|
|
|
if len(filtered_text.replace("\n", "").replace(" ", "")) < 5:
|
|
filtered_text = text_content.replace("\n", " ").strip()
|
|
|
|
|
|
new_text_path = os.path.join(output_dir, subfolder, subsubfolder)
|
|
with open(new_text_path, 'w') as new_file:
|
|
new_file.write(filtered_text)
|
|
|
|
subsubfolder_path = os.path.join(input_dir, subfolder, subsubfolder)
|
|
|
|
if os.path.isdir(subsubfolder_path):
|
|
subsubfolder = unidecode(subsubfolder)
|
|
output_path = os.path.join(output_dir, subfolder, f'{subsubfolder}.npy')
|
|
|
|
image_files = [file for file in os.listdir(subsubfolder_path) if
|
|
file.endswith('.jpeg') or file.endswith('.png')]
|
|
|
|
if len(image_files) == 0:
|
|
continue
|
|
|
|
image_files.sort(key=lambda x: int(os.path.splitext(x)[0]))
|
|
|
|
images_3d = []
|
|
for image_file in image_files:
|
|
image_path = os.path.join(subsubfolder_path, image_file)
|
|
try:
|
|
img = Image.open(image_path)
|
|
img = img.convert("L")
|
|
img_array = np.array(img)
|
|
|
|
img_array = img_array.astype(np.float32) / 255.0
|
|
images_3d.append(img_array[None])
|
|
except:
|
|
print("This image is error: ", image_path)
|
|
|
|
images_3d_pure = []
|
|
try:
|
|
img_shapes = [img.shape for img in images_3d]
|
|
item_counts = Counter(img_shapes)
|
|
most_common_shape = item_counts.most_common(1)[0][0]
|
|
for img in images_3d:
|
|
if img.shape == most_common_shape:
|
|
images_3d_pure.append(img)
|
|
final_3d_image = np.vstack(images_3d_pure)
|
|
|
|
image = final_3d_image[np.newaxis, ...]
|
|
|
|
image = image - image.min()
|
|
image = image / np.clip(image.max(), a_min=1e-8, a_max=None)
|
|
|
|
img_trans = transform(image)
|
|
|
|
np.save(output_path, img_trans)
|
|
except:
|
|
print([img.shape for img in images_3d])
|
|
print("This folder is vstack error: ", output_path)
|
|
|
|
|
|
|
|
with Pool(processes=32) as pool:
|
|
with tqdm(total=len(subfolders), desc="Processing") as pbar:
|
|
for _ in pool.imap_unordered(process_subfolder, subfolders):
|
|
pbar.update(1)
|
|
|