Datasets:
GEM
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Sebastian Gehrmann commited on
Commit
8c9a923
·
1 Parent(s): eb34467

data card.

Browse files
Files changed (2) hide show
  1. README.md +1 -2
  2. wiki_auto_asset_turk.json +1 -1
README.md CHANGED
@@ -187,12 +187,11 @@ The authors first crowd-sourced a set of manual alignments between sentences in
187
 
188
  The trained alignment prediction model was then applied to the other articles in Simple English Wikipedia with an English counterpart to create a larger corpus of aligned sentences (corresponding to the `auto` and `auto_acl` configs here).
189
 
190
- [ASSET](https://github.com/facebookresearch/asset) [(Alva-Manchego et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.424.pdf) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from [TurkCorpus]( https://github.com/cocoxu/simplification/) [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence
191
  splitting in [HSplit](https://www.aclweb.org/anthology/D18-1081.pdf)), the simplifications in ASSET encompass a variety of rewriting transformations.
192
 
193
  TURKCorpus is a high quality simplification dataset where each source (not simple) sentence is associated with 8 human-written simplifications that focus on lexical paraphrasing. It is one of the two evaluation datasets for the text simplification task in GEM. It acts as the validation and test set for paraphrasing-based simplification that does not involve sentence splitting and deletion.
194
 
195
-
196
  #### Add. License Info
197
 
198
  <!-- info: What is the 'other' license of the dataset? -->
 
187
 
188
  The trained alignment prediction model was then applied to the other articles in Simple English Wikipedia with an English counterpart to create a larger corpus of aligned sentences (corresponding to the `auto` and `auto_acl` configs here).
189
 
190
+ [ASSET](https://github.com/facebookresearch/asset) [(Alva-Manchego et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.424.pdf) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from [TurkCorpus](https://github.com/cocoxu/simplification/) [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence
191
  splitting in [HSplit](https://www.aclweb.org/anthology/D18-1081.pdf)), the simplifications in ASSET encompass a variety of rewriting transformations.
192
 
193
  TURKCorpus is a high quality simplification dataset where each source (not simple) sentence is associated with 8 human-written simplifications that focus on lexical paraphrasing. It is one of the two evaluation datasets for the text simplification task in GEM. It acts as the validation and test set for paraphrasing-based simplification that does not involve sentence splitting and deletion.
194
 
 
195
  #### Add. License Info
196
 
197
  <!-- info: What is the 'other' license of the dataset? -->
wiki_auto_asset_turk.json CHANGED
@@ -20,7 +20,7 @@
20
  ],
21
  "language-dialects": "n/a",
22
  "language-speakers": "Wiki-Auto contains English text only (BCP-47: `en`). It is presented as a translation task where Wikipedia Simple English is treated as its own idiom. For a statement of what is intended (but not always observed) to constitute Simple English on this platform, see [Simple English in Wikipedia](https://simple.wikipedia.org/wiki/Wikipedia:About#Simple_English).\nBoth ASSET and TURK use crowdsourcing to change references, and their language is thus a combination of the WikiAuto data and the language of the demographic on mechanical Turk",
23
- "intended-use": "WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia as a resource to train sentence simplification systems.\n\nThe authors first crowd-sourced a set of manual alignments between sentences in a subset of the Simple English Wikipedia and their corresponding versions in English Wikipedia (this corresponds to the `manual` config in this version of the dataset), then trained a neural CRF system to predict these alignments.\n\nThe trained alignment prediction model was then applied to the other articles in Simple English Wikipedia with an English counterpart to create a larger corpus of aligned sentences (corresponding to the `auto` and `auto_acl` configs here).\n\n[ASSET](https://github.com/facebookresearch/asset) [(Alva-Manchego et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.424.pdf) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from [TurkCorpus]( https://github.com/cocoxu/simplification/) [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence\nsplitting in [HSplit](https://www.aclweb.org/anthology/D18-1081.pdf)), the simplifications in ASSET encompass a variety of rewriting transformations.\n\nTURKCorpus is a high quality simplification dataset where each source (not simple) sentence is associated with 8 human-written simplifications that focus on lexical paraphrasing. It is one of the two evaluation datasets for the text simplification task in GEM. It acts as the validation and test set for paraphrasing-based simplification that does not involve sentence splitting and deletion.\n",
24
  "license-other": "WikiAuto: `CC BY-NC 3.0`, ASSET: `CC BY-NC 4.0`, TURK: `GNU General Public License v3.0`",
25
  "task": "Simplification",
26
  "communicative": "The goal is to communicate the main ideas of source sentence in a way that is easier to understand by non-native speakers of English.\n"
 
20
  ],
21
  "language-dialects": "n/a",
22
  "language-speakers": "Wiki-Auto contains English text only (BCP-47: `en`). It is presented as a translation task where Wikipedia Simple English is treated as its own idiom. For a statement of what is intended (but not always observed) to constitute Simple English on this platform, see [Simple English in Wikipedia](https://simple.wikipedia.org/wiki/Wikipedia:About#Simple_English).\nBoth ASSET and TURK use crowdsourcing to change references, and their language is thus a combination of the WikiAuto data and the language of the demographic on mechanical Turk",
23
+ "intended-use": "WikiAuto provides a set of aligned sentences from English Wikipedia and Simple English Wikipedia as a resource to train sentence simplification systems.\n\nThe authors first crowd-sourced a set of manual alignments between sentences in a subset of the Simple English Wikipedia and their corresponding versions in English Wikipedia (this corresponds to the `manual` config in this version of the dataset), then trained a neural CRF system to predict these alignments.\n\nThe trained alignment prediction model was then applied to the other articles in Simple English Wikipedia with an English counterpart to create a larger corpus of aligned sentences (corresponding to the `auto` and `auto_acl` configs here).\n\n[ASSET](https://github.com/facebookresearch/asset) [(Alva-Manchego et al., 2020)](https://www.aclweb.org/anthology/2020.acl-main.424.pdf) is multi-reference dataset for the evaluation of sentence simplification in English. The dataset uses the same 2,359 sentences from [TurkCorpus](https://github.com/cocoxu/simplification/) [(Xu et al., 2016)](https://www.aclweb.org/anthology/Q16-1029.pdf) and each sentence is associated with 10 crowdsourced simplifications. Unlike previous simplification datasets, which contain a single transformation (e.g., lexical paraphrasing in TurkCorpus or sentence\nsplitting in [HSplit](https://www.aclweb.org/anthology/D18-1081.pdf)), the simplifications in ASSET encompass a variety of rewriting transformations.\n\nTURKCorpus is a high quality simplification dataset where each source (not simple) sentence is associated with 8 human-written simplifications that focus on lexical paraphrasing. It is one of the two evaluation datasets for the text simplification task in GEM. It acts as the validation and test set for paraphrasing-based simplification that does not involve sentence splitting and deletion.",
24
  "license-other": "WikiAuto: `CC BY-NC 3.0`, ASSET: `CC BY-NC 4.0`, TURK: `GNU General Public License v3.0`",
25
  "task": "Simplification",
26
  "communicative": "The goal is to communicate the main ideas of source sentence in a way that is easier to understand by non-native speakers of English.\n"