Datasets:
GEM
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
wiki_auto_asset_turk / wiki_auto_asset_turk.py
lewtun's picture
lewtun HF staff
Fix class name
340e117
raw
history blame
8.65 kB
import csv
import json
import os
import datasets
_CITATION = """\
@inproceedings{jiang-etal-2020-neural,
title = "Neural {CRF} Model for Sentence Alignment in Text Simplification",
author = "Jiang, Chao and
Maddela, Mounica and
Lan, Wuwei and
Zhong, Yang and
Xu, Wei",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.709",
doi = "10.18653/v1/2020.acl-main.709",
pages = "7943--7960",
}
"""
_DESCRIPTION = """\
WikiAuto provides a set of aligned sentences from English Wikipedia and Simple
English Wikipedia as a resource to train sentence simplification systems.
The authors first crowd-sourced a set of manual alignments between sentences in
a subset of the Simple English Wikipedia and their corresponding versions in
English Wikipedia (this corresponds to the manual config in this version of the
dataset), then trained a neural CRF system to predict these alignments.
The trained alignment prediction model was then applied to the other articles in
Simple English Wikipedia with an English counterpart to create a larger corpus
of aligned sentences (corresponding to the auto and auto_acl configs here).
"""
_URLs = {
"train": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.tsv",
"validation": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/valid.tsv",
"test_turk": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_turk_detokenized.json",
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/wiki_auto_asset_turk_train_valid.zip",
}
# Add Asset files.
_URLs[
"test_asset_orig"
] = "https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.orig"
for i in range(10):
_URLs[
f"test_asset_{i}"
] = f"https://raw.githubusercontent.com/facebookresearch/asset/main/dataset/asset.test.simp.{i}"
class WikiAuto(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DEFAULT_CONFIG_NAME = "wiki_auto_asset_turk"
def _info(self):
features = datasets.Features(
{
"gem_id": datasets.Value("string"),
"gem_parent_id": datasets.Value("string"),
"source": datasets.Value("string"),
"target": datasets.Value("string"),
"references": [datasets.Value("string")],
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=datasets.info.SupervisedKeysData(
input="source", output="target"
),
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLs)
challenge_sets = [
(
"challenge_train_sample",
"train_wiki_auto_asset_turk_RandomSample500.json",
),
(
"challenge_validation_sample",
"validation_wiki_auto_asset_turk_RandomSample500.json",
),
(
"challenge_test_asset_backtranslation",
"test_asset_wiki_auto_asset_turk_BackTranslation.json",
),
(
"challenge_test_asset_bfp02",
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
),
(
"challenge_test_asset_bfp05",
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
),
(
"challenge_test_asset_nopunc",
"test_asset_wiki_auto_asset_turk_WithoutPunctuation.json",
),
(
"challenge_test_turk_backtranslation",
"detok_test_turk_wiki_auto_asset_turk_BackTranslation.json",
),
(
"challenge_test_turk_bfp02",
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
),
(
"challenge_test_turk_bfp05",
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
),
(
"challenge_test_turk_nopunc",
"detok_test_turk_wiki_auto_asset_turk_WithoutPunctuation.json",
),
]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dl_dir["validation"],
"split": "validation",
},
),
datasets.SplitGenerator(
name="test_asset",
gen_kwargs={
"filepath": "",
"split": "test_asset",
"filepaths": [dl_dir["test_asset_orig"]]
+ [dl_dir[f"test_asset_{i}"] for i in range(10)],
},
),
datasets.SplitGenerator(
name="test_turk",
gen_kwargs={
"filepath": dl_dir["test_turk"],
"split": "test_turk",
},
),
] + [
datasets.SplitGenerator(
name=challenge_split,
gen_kwargs={
"filepath": os.path.join(
dl_dir["challenge_set"], "wiki_auto_asset_turk", filename
),
"split": challenge_split,
},
)
for challenge_split, filename in challenge_sets
]
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
"""Yields examples."""
if split in ["train", "validation"]:
keys = [
"source",
"target",
]
with open(filepath, encoding="utf-8") as f:
for id_, line in enumerate(f):
values = line.strip().split("\t")
assert (
len(values) == 2
), f"Not enough fields in ---- {line} --- {values}"
example = dict([(k, val) for k, val in zip(keys, values)])
example["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
example["gem_parent_id"] = example["gem_id"]
example["references"] = (
[] if split == "train" else [example["target"]]
)
yield id_, example
elif split == "test_turk":
examples = json.load(open(filepath, encoding="utf-8"))
for id_, example in enumerate(examples):
example["gem_parent_id"] = example["gem_id"]
for k in ["source_id", "target_id"]:
if k in example:
del example[k]
yield id_, example
elif split == "test_asset":
files = [open(f_name, encoding="utf-8") for f_name in filepaths]
for id_, lines in enumerate(zip(*files)):
yield id_, {
"gem_id": f"wiki_auto_asset_turk-{split}-{id_}",
"gem_parent_id": f"wiki_auto_asset_turk-{split}-{id_}",
"target": lines[1].strip(),
"source": lines[0].strip(),
"references": [line.strip() for line in lines[1:]],
}
else:
exples = json.load(open(filepath, encoding="utf-8"))
if isinstance(exples, dict):
assert len(exples) == 1, "multiple entries found"
exples = list(exples.values())[0]
for id_, exple in enumerate(exples):
exple["gem_parent_id"] = exple["gem_id"]
exple["gem_id"] = f"wiki_auto_asset_turk-{split}-{id_}"
for k in ["source_id", "target_id"]:
if k in exple:
del exple[k]
yield id_, exple