parquet-converter commited on
Commit
637f94f
1 Parent(s): 24aa031

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,33 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- validation.json filter=lfs diff=lfs merge=lfs -text
29
- test.json filter=lfs diff=lfs merge=lfs -text
30
- train.json filter=lfs diff=lfs merge=lfs -text
31
- test.jsonl filter=lfs diff=lfs merge=lfs -text
32
- train.jsonl filter=lfs diff=lfs merge=lfs -text
33
- validation.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,1671 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - none
4
- language_creators:
5
- - unknown
6
- language:
7
- - en
8
- license:
9
- - mit
10
- multilinguality:
11
- - unknown
12
- size_categories:
13
- - unknown
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - table-to-text
18
- task_ids: []
19
- pretty_name: sportsett_basketball
20
- tags:
21
- - data-to-text
22
- ---
23
-
24
- # Dataset Card for GEM/sportsett_basketball
25
-
26
- ## Dataset Description
27
-
28
- - **Homepage:** https://github.com/nlgcat/sport_sett_basketball
29
- - **Repository:** https://github.com/nlgcat/sport_sett_basketball
30
- - **Paper:** https://aclanthology.org/2020.intellang-1.4/
31
- - **Leaderboard:** N/A
32
- - **Point of Contact:** Craig Thomson
33
-
34
- ### Link to Main Data Card
35
-
36
- You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/sportsett_basketball).
37
-
38
- ### Dataset Summary
39
-
40
- The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language.
41
-
42
- You can load the dataset via:
43
- ```
44
- import datasets
45
- data = datasets.load_dataset('GEM/sportsett_basketball')
46
- ```
47
- The data loader can be found [here](https://huggingface.co/datasets/GEM/sportsett_basketball).
48
-
49
- #### website
50
- [Github](https://github.com/nlgcat/sport_sett_basketball)
51
-
52
- #### paper
53
- [ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)
54
-
55
- #### authors
56
- Craig Thomson, Ashish Upadhyay
57
-
58
- ## Dataset Overview
59
-
60
- ### Where to find the Data and its Documentation
61
-
62
- #### Webpage
63
-
64
- <!-- info: What is the webpage for the dataset (if it exists)? -->
65
- <!-- scope: telescope -->
66
- [Github](https://github.com/nlgcat/sport_sett_basketball)
67
-
68
- #### Download
69
-
70
- <!-- info: What is the link to where the original dataset is hosted? -->
71
- <!-- scope: telescope -->
72
- [Github](https://github.com/nlgcat/sport_sett_basketball)
73
-
74
- #### Paper
75
-
76
- <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
77
- <!-- scope: telescope -->
78
- [ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)
79
-
80
- #### BibTex
81
-
82
- <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
83
- <!-- scope: microscope -->
84
- ```
85
- @inproceedings{thomson-etal-2020-sportsett,
86
- title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
87
- author = "Thomson, Craig and
88
- Reiter, Ehud and
89
- Sripada, Somayajulu",
90
- booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
91
- month = sep,
92
- year = "2020",
93
- address = "Santiago de Compostela, Spain",
94
- publisher = "Association for Computational Lingustics",
95
- url = "https://aclanthology.org/2020.intellang-1.4",
96
- pages = "32--40",
97
- }
98
- ```
99
-
100
- #### Contact Name
101
-
102
- <!-- quick -->
103
- <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
104
- <!-- scope: periscope -->
105
- Craig Thomson
106
-
107
- #### Contact Email
108
-
109
- <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
110
- <!-- scope: periscope -->
111
112
-
113
- #### Has a Leaderboard?
114
-
115
- <!-- info: Does the dataset have an active leaderboard? -->
116
- <!-- scope: telescope -->
117
- no
118
-
119
-
120
- ### Languages and Intended Use
121
-
122
- #### Multilingual?
123
-
124
- <!-- quick -->
125
- <!-- info: Is the dataset multilingual? -->
126
- <!-- scope: telescope -->
127
- no
128
-
129
- #### Covered Dialects
130
-
131
- <!-- info: What dialects are covered? Are there multiple dialects per language? -->
132
- <!-- scope: periscope -->
133
- American English
134
-
135
- One dialect, one language.
136
-
137
- #### Covered Languages
138
-
139
- <!-- quick -->
140
- <!-- info: What languages/dialects are covered in the dataset? -->
141
- <!-- scope: telescope -->
142
- `English`
143
-
144
- #### Whose Language?
145
-
146
- <!-- info: Whose language is in the dataset? -->
147
- <!-- scope: periscope -->
148
- American sports writers
149
-
150
- #### License
151
-
152
- <!-- quick -->
153
- <!-- info: What is the license of the dataset? -->
154
- <!-- scope: telescope -->
155
- mit: MIT License
156
-
157
- #### Intended Use
158
-
159
- <!-- info: What is the intended use of the dataset? -->
160
- <!-- scope: microscope -->
161
- Maintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries
162
-
163
- #### Primary Task
164
-
165
- <!-- info: What primary task does the dataset support? -->
166
- <!-- scope: telescope -->
167
- Data-to-Text
168
-
169
- #### Communicative Goal
170
-
171
- <!-- quick -->
172
- <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
173
- <!-- scope: periscope -->
174
- A model trained on this dataset should summarise the statistical and other information from a basketball game. This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate. There no single common narrative, although summaries usually start with who player, when, where, and the score. They then provide high level commentary on what the difference in the game was (why the winner won). breakdowns of statistics for prominent players follow, winning team first. Finally, the upcoming schedule for both teams is usually included. There are, however, other types of fact that can be included, and other narrative structures.
175
-
176
-
177
- ### Credit
178
-
179
- #### Curation Organization Type(s)
180
-
181
- <!-- info: In what kind of organization did the dataset curation happen? -->
182
- <!-- scope: telescope -->
183
- `academic`
184
-
185
- #### Curation Organization(s)
186
-
187
- <!-- info: Name the organization(s). -->
188
- <!-- scope: periscope -->
189
- University of Aberdeen, Robert Gordon University
190
-
191
- #### Dataset Creators
192
-
193
- <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
194
- <!-- scope: microscope -->
195
- Craig Thomson, Ashish Upadhyay
196
-
197
- #### Funding
198
-
199
- <!-- info: Who funded the data creation? -->
200
- <!-- scope: microscope -->
201
- EPSRC
202
-
203
- #### Who added the Dataset to GEM?
204
-
205
- <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
206
- <!-- scope: microscope -->
207
- Craig Thomson, Ashish Upadhyay
208
-
209
-
210
- ### Dataset Structure
211
-
212
- #### Data Fields
213
-
214
- <!-- info: List and describe the fields present in the dataset. -->
215
- <!-- scope: telescope -->
216
- Each instance in the dataset has five fields.
217
-
218
- 1. "sportsett_id": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.
219
-
220
- 2. "gem_id": This is a unique id created as per GEM's requirement which follows the `GEM-${DATASET_NAME}-${SPLIT-NAME}-${id}` pattern.
221
-
222
- 3. "game": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state where it was played.
223
-
224
- 4. "teams": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.
225
-
226
- 5. "summaries": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)).
227
-
228
- #### Reason for Structure
229
-
230
- <!-- info: How was the dataset structure determined? -->
231
- <!-- scope: microscope -->
232
- The structure mostly follows the original structure defined in RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/)) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data ([Thomson et. al. 2020](https://aclanthology.org/2020.inlg-1.6/)).
233
-
234
- #### How were labels chosen?
235
-
236
- <!-- info: How were the labels chosen? -->
237
- <!-- scope: microscope -->
238
- Similar to RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/))
239
-
240
- #### Example Instance
241
-
242
- <!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
243
- <!-- scope: periscope -->
244
- ```
245
- {
246
- "sportsett_id": "1",
247
- "gem_id": "GEM-sportsett_basketball-train-0",
248
- "game": {
249
- "day": "1",
250
- "month": "November",
251
- "year": "2014",
252
- "dayname": "Saturday",
253
- "season": "2014",
254
- "stadium": "Wells Fargo Center",
255
- "city": "Philadelphia",
256
- "state": "Pennsylvania",
257
- "attendance": "19753",
258
- "capacity": "20478",
259
- "game_id": "1"
260
- },
261
- "teams": {
262
- "home": {
263
- "name": "76ers",
264
- "place": "Philadelphia",
265
- "conference": "Eastern Conference",
266
- "division": "Atlantic",
267
- "wins": "0",
268
- "losses": "3",
269
- "conference_standing": 15,
270
- "game_number": "3",
271
- "previous_game_id": "42",
272
- "next_game_id": "2",
273
- "line_score": {
274
- "game": {
275
- "FG3A": "23",
276
- "FG3M": "7",
277
- "FG3_PCT": "30",
278
- "FGA": "67",
279
- "FGM": "35",
280
- "FG_PCT": "52",
281
- "FTA": "26",
282
- "FTM": "19",
283
- "FT_PCT": "73",
284
- "DREB": "33",
285
- "OREB": "4",
286
- "TREB": "37",
287
- "BLK": "10",
288
- "AST": "28",
289
- "STL": "9",
290
- "TOV": "24",
291
- "PF": "21",
292
- "PTS": "96",
293
- "MIN": "4"
294
- },
295
- "H1": {
296
- "FG3A": "82",
297
- "FG3M": "30",
298
- "FG3_PCT": "37",
299
- "FGA": "2115",
300
- "FGM": "138",
301
- "FG_PCT": "7",
302
- "FTA": "212",
303
- "FTM": "18",
304
- "FT_PCT": "8",
305
- "DREB": "810",
306
- "OREB": "21",
307
- "TREB": "831",
308
- "BLK": "51",
309
- "AST": "107",
310
- "STL": "21",
311
- "TOV": "64",
312
- "PTS": "3024",
313
- "MIN": "6060"
314
- },
315
- "H2": {
316
- "FG3A": "85",
317
- "FG3M": "40",
318
- "FG3_PCT": "47",
319
- "FGA": "1615",
320
- "FGM": "104",
321
- "FG_PCT": "6",
322
- "FTA": "66",
323
- "FTM": "55",
324
- "FT_PCT": "83",
325
- "DREB": "96",
326
- "OREB": "10",
327
- "TREB": "106",
328
- "BLK": "22",
329
- "AST": "92",
330
- "STL": "24",
331
- "TOV": "68",
332
- "PTS": "2913",
333
- "MIN": "6060"
334
- },
335
- "Q1": {
336
- "FG3A": "8",
337
- "FG3M": "3",
338
- "FG3_PCT": "38",
339
- "FGA": "21",
340
- "FGM": "13",
341
- "FG_PCT": "62",
342
- "FTA": "2",
343
- "FTM": "1",
344
- "FT_PCT": "50",
345
- "DREB": "8",
346
- "OREB": "2",
347
- "TREB": "10",
348
- "BLK": "5",
349
- "AST": "10",
350
- "STL": "2",
351
- "TOV": "6",
352
- "PTS": "30",
353
- "MIN": "60"
354
- },
355
- "Q2": {
356
- "FG3A": "2",
357
- "FG3M": "0",
358
- "FG3_PCT": "0",
359
- "FGA": "15",
360
- "FGM": "8",
361
- "FG_PCT": "53",
362
- "FTA": "12",
363
- "FTM": "8",
364
- "FT_PCT": "67",
365
- "DREB": "10",
366
- "OREB": "1",
367
- "TREB": "11",
368
- "BLK": "1",
369
- "AST": "7",
370
- "STL": "1",
371
- "TOV": "4",
372
- "PTS": "24",
373
- "MIN": "60"
374
- },
375
- "Q3": {
376
- "FG3A": "8",
377
- "FG3M": "4",
378
- "FG3_PCT": "50",
379
- "FGA": "16",
380
- "FGM": "10",
381
- "FG_PCT": "62",
382
- "FTA": "6",
383
- "FTM": "5",
384
- "FT_PCT": "83",
385
- "DREB": "9",
386
- "OREB": "1",
387
- "TREB": "10",
388
- "BLK": "2",
389
- "AST": "9",
390
- "STL": "2",
391
- "TOV": "6",
392
- "PTS": "29",
393
- "MIN": "60"
394
- },
395
- "Q4": {
396
- "FG3A": "5",
397
- "FG3M": "0",
398
- "FG3_PCT": "0",
399
- "FGA": "15",
400
- "FGM": "4",
401
- "FG_PCT": "27",
402
- "FTA": "6",
403
- "FTM": "5",
404
- "FT_PCT": "83",
405
- "DREB": "6",
406
- "OREB": "0",
407
- "TREB": "6",
408
- "BLK": "2",
409
- "AST": "2",
410
- "STL": "4",
411
- "TOV": "8",
412
- "PTS": "13",
413
- "MIN": "60"
414
- },
415
- "OT": {
416
- "FG3A": "0",
417
- "FG3M": "0",
418
- "FG3_PCT": "0",
419
- "FGA": "0",
420
- "FGM": "0",
421
- "FG_PCT": "0",
422
- "FTA": "0",
423
- "FTM": "0",
424
- "FT_PCT": "0",
425
- "DREB": "0",
426
- "OREB": "0",
427
- "TREB": "0",
428
- "BLK": "0",
429
- "AST": "0",
430
- "STL": "0",
431
- "TOV": "0",
432
- "PTS": "0",
433
- "MIN": "0"
434
- }
435
- },
436
- "box_score": [
437
- {
438
- "first_name": "Tony",
439
- "last_name": "Wroten",
440
- "name": "Tony Wroten",
441
- "starter": "True",
442
- "MIN": "33",
443
- "FGM": "6",
444
- "FGA": "11",
445
- "FG_PCT": "55",
446
- "FG3M": "1",
447
- "FG3A": "4",
448
- "FG3_PCT": "25",
449
- "FTM": "8",
450
- "FTA": "11",
451
- "FT_PCT": "73",
452
- "OREB": "0",
453
- "DREB": "3",
454
- "TREB": "3",
455
- "AST": "10",
456
- "STL": "1",
457
- "BLK": "1",
458
- "TOV": "4",
459
- "PF": "1",
460
- "PTS": "21",
461
- "+/-": "-11",
462
- "DOUBLE": "double"
463
- },
464
- {
465
- "first_name": "Hollis",
466
- "last_name": "Thompson",
467
- "name": "Hollis Thompson",
468
- "starter": "True",
469
- "MIN": "32",
470
- "FGM": "4",
471
- "FGA": "8",
472
- "FG_PCT": "50",
473
- "FG3M": "2",
474
- "FG3A": "5",
475
- "FG3_PCT": "40",
476
- "FTM": "0",
477
- "FTA": "0",
478
- "FT_PCT": "0",
479
- "OREB": "0",
480
- "DREB": "1",
481
- "TREB": "1",
482
- "AST": "2",
483
- "STL": "0",
484
- "BLK": "3",
485
- "TOV": "2",
486
- "PF": "2",
487
- "PTS": "10",
488
- "+/-": "-17",
489
- "DOUBLE": "none"
490
- },
491
- {
492
- "first_name": "Henry",
493
- "last_name": "Sims",
494
- "name": "Henry Sims",
495
- "starter": "True",
496
- "MIN": "27",
497
- "FGM": "4",
498
- "FGA": "9",
499
- "FG_PCT": "44",
500
- "FG3M": "0",
501
- "FG3A": "0",
502
- "FG3_PCT": "0",
503
- "FTM": "1",
504
- "FTA": "2",
505
- "FT_PCT": "50",
506
- "OREB": "1",
507
- "DREB": "3",
508
- "TREB": "4",
509
- "AST": "2",
510
- "STL": "0",
511
- "BLK": "1",
512
- "TOV": "0",
513
- "PF": "1",
514
- "PTS": "9",
515
- "+/-": "-10",
516
- "DOUBLE": "none"
517
- },
518
- {
519
- "first_name": "Nerlens",
520
- "last_name": "Noel",
521
- "name": "Nerlens Noel",
522
- "starter": "True",
523
- "MIN": "25",
524
- "FGM": "1",
525
- "FGA": "4",
526
- "FG_PCT": "25",
527
- "FG3M": "0",
528
- "FG3A": "0",
529
- "FG3_PCT": "0",
530
- "FTM": "0",
531
- "FTA": "0",
532
- "FT_PCT": "0",
533
- "OREB": "0",
534
- "DREB": "5",
535
- "TREB": "5",
536
- "AST": "3",
537
- "STL": "1",
538
- "BLK": "1",
539
- "TOV": "3",
540
- "PF": "1",
541
- "PTS": "2",
542
- "+/-": "-19",
543
- "DOUBLE": "none"
544
- },
545
- {
546
- "first_name": "Luc",
547
- "last_name": "Mbah a Moute",
548
- "name": "Luc Mbah a Moute",
549
- "starter": "True",
550
- "MIN": "19",
551
- "FGM": "4",
552
- "FGA": "10",
553
- "FG_PCT": "40",
554
- "FG3M": "0",
555
- "FG3A": "2",
556
- "FG3_PCT": "0",
557
- "FTM": "1",
558
- "FTA": "2",
559
- "FT_PCT": "50",
560
- "OREB": "3",
561
- "DREB": "4",
562
- "TREB": "7",
563
- "AST": "3",
564
- "STL": "1",
565
- "BLK": "0",
566
- "TOV": "6",
567
- "PF": "3",
568
- "PTS": "9",
569
- "+/-": "-12",
570
- "DOUBLE": "none"
571
- },
572
- {
573
- "first_name": "Brandon",
574
- "last_name": "Davies",
575
- "name": "Brandon Davies",
576
- "starter": "False",
577
- "MIN": "23",
578
- "FGM": "7",
579
- "FGA": "9",
580
- "FG_PCT": "78",
581
- "FG3M": "1",
582
- "FG3A": "2",
583
- "FG3_PCT": "50",
584
- "FTM": "3",
585
- "FTA": "4",
586
- "FT_PCT": "75",
587
- "OREB": "0",
588
- "DREB": "3",
589
- "TREB": "3",
590
- "AST": "0",
591
- "STL": "3",
592
- "BLK": "0",
593
- "TOV": "3",
594
- "PF": "3",
595
- "PTS": "18",
596
- "+/-": "-1",
597
- "DOUBLE": "none"
598
- },
599
- {
600
- "first_name": "Chris",
601
- "last_name": "Johnson",
602
- "name": "Chris Johnson",
603
- "starter": "False",
604
- "MIN": "21",
605
- "FGM": "2",
606
- "FGA": "4",
607
- "FG_PCT": "50",
608
- "FG3M": "1",
609
- "FG3A": "3",
610
- "FG3_PCT": "33",
611
- "FTM": "0",
612
- "FTA": "0",
613
- "FT_PCT": "0",
614
- "OREB": "0",
615
- "DREB": "2",
616
- "TREB": "2",
617
- "AST": "0",
618
- "STL": "3",
619
- "BLK": "0",
620
- "TOV": "2",
621
- "PF": "5",
622
- "PTS": "5",
623
- "+/-": "3",
624
- "DOUBLE": "none"
625
- },
626
- {
627
- "first_name": "K.J.",
628
- "last_name": "McDaniels",
629
- "name": "K.J. McDaniels",
630
- "starter": "False",
631
- "MIN": "20",
632
- "FGM": "2",
633
- "FGA": "4",
634
- "FG_PCT": "50",
635
- "FG3M": "1",
636
- "FG3A": "3",
637
- "FG3_PCT": "33",
638
- "FTM": "3",
639
- "FTA": "4",
640
- "FT_PCT": "75",
641
- "OREB": "0",
642
- "DREB": "1",
643
- "TREB": "1",
644
- "AST": "2",
645
- "STL": "0",
646
- "BLK": "3",
647
- "TOV": "2",
648
- "PF": "3",
649
- "PTS": "8",
650
- "+/-": "-10",
651
- "DOUBLE": "none"
652
- },
653
- {
654
- "first_name": "Malcolm",
655
- "last_name": "Thomas",
656
- "name": "Malcolm Thomas",
657
- "starter": "False",
658
- "MIN": "19",
659
- "FGM": "4",
660
- "FGA": "4",
661
- "FG_PCT": "100",
662
- "FG3M": "0",
663
- "FG3A": "0",
664
- "FG3_PCT": "0",
665
- "FTM": "0",
666
- "FTA": "0",
667
- "FT_PCT": "0",
668
- "OREB": "0",
669
- "DREB": "9",
670
- "TREB": "9",
671
- "AST": "0",
672
- "STL": "0",
673
- "BLK": "0",
674
- "TOV": "0",
675
- "PF": "2",
676
- "PTS": "8",
677
- "+/-": "-6",
678
- "DOUBLE": "none"
679
- },
680
- {
681
- "first_name": "Alexey",
682
- "last_name": "Shved",
683
- "name": "Alexey Shved",
684
- "starter": "False",
685
- "MIN": "14",
686
- "FGM": "1",
687
- "FGA": "4",
688
- "FG_PCT": "25",
689
- "FG3M": "1",
690
- "FG3A": "4",
691
- "FG3_PCT": "25",
692
- "FTM": "3",
693
- "FTA": "3",
694
- "FT_PCT": "100",
695
- "OREB": "0",
696
- "DREB": "1",
697
- "TREB": "1",
698
- "AST": "6",
699
- "STL": "0",
700
- "BLK": "0",
701
- "TOV": "2",
702
- "PF": "0",
703
- "PTS": "6",
704
- "+/-": "-7",
705
- "DOUBLE": "none"
706
- },
707
- {
708
- "first_name": "JaKarr",
709
- "last_name": "Sampson",
710
- "name": "JaKarr Sampson",
711
- "starter": "False",
712
- "MIN": "2",
713
- "FGM": "0",
714
- "FGA": "0",
715
- "FG_PCT": "0",
716
- "FG3M": "0",
717
- "FG3A": "0",
718
- "FG3_PCT": "0",
719
- "FTM": "0",
720
- "FTA": "0",
721
- "FT_PCT": "0",
722
- "OREB": "0",
723
- "DREB": "1",
724
- "TREB": "1",
725
- "AST": "0",
726
- "STL": "0",
727
- "BLK": "1",
728
- "TOV": "0",
729
- "PF": "0",
730
- "PTS": "0",
731
- "+/-": "0",
732
- "DOUBLE": "none"
733
- },
734
- {
735
- "first_name": "Michael",
736
- "last_name": "Carter-Williams",
737
- "name": "Michael Carter-Williams",
738
- "starter": "False",
739
- "MIN": "0",
740
- "FGM": "0",
741
- "FGA": "0",
742
- "FG_PCT": "0",
743
- "FG3M": "0",
744
- "FG3A": "0",
745
- "FG3_PCT": "0",
746
- "FTM": "0",
747
- "FTA": "0",
748
- "FT_PCT": "0",
749
- "OREB": "0",
750
- "DREB": "0",
751
- "TREB": "0",
752
- "AST": "0",
753
- "STL": "0",
754
- "BLK": "0",
755
- "TOV": "0",
756
- "PF": "0",
757
- "PTS": "0",
758
- "+/-": "0",
759
- "DOUBLE": "none"
760
- }
761
- ],
762
- "next_game": {
763
- "day": "3",
764
- "month": "November",
765
- "year": "2014",
766
- "dayname": "Monday",
767
- "stadium": "Wells Fargo Center",
768
- "city": "Philadelphia",
769
- "opponent_name": "Rockets",
770
- "opponent_place": "Houston",
771
- "is_home": "True"
772
- }
773
- },
774
- "vis": {
775
- "name": "Heat",
776
- "place": "Miami",
777
- "conference": "Eastern Conference",
778
- "division": "Southeast",
779
- "wins": "2",
780
- "losses": "0",
781
- "conference_standing": 1,
782
- "game_number": "2",
783
- "previous_game_id": "329",
784
- "next_game_id": "330",
785
- "line_score": {
786
- "game": {
787
- "FG3A": "24",
788
- "FG3M": "12",
789
- "FG3_PCT": "50",
790
- "FGA": "83",
791
- "FGM": "41",
792
- "FG_PCT": "49",
793
- "FTA": "29",
794
- "FTM": "20",
795
- "FT_PCT": "69",
796
- "DREB": "26",
797
- "OREB": "9",
798
- "TREB": "35",
799
- "BLK": "0",
800
- "AST": "33",
801
- "STL": "16",
802
- "TOV": "16",
803
- "PF": "20",
804
- "PTS": "114",
805
- "MIN": "4"
806
- },
807
- "H1": {
808
- "FG3A": "69",
809
- "FG3M": "44",
810
- "FG3_PCT": "64",
811
- "FGA": "2321",
812
- "FGM": "1110",
813
- "FG_PCT": "48",
814
- "FTA": "106",
815
- "FTM": "64",
816
- "FT_PCT": "60",
817
- "DREB": "35",
818
- "OREB": "23",
819
- "TREB": "58",
820
- "BLK": "00",
821
- "AST": "88",
822
- "STL": "53",
823
- "TOV": "34",
824
- "PTS": "3228",
825
- "MIN": "6060"
826
- },
827
- "H2": {
828
- "FG3A": "45",
829
- "FG3M": "22",
830
- "FG3_PCT": "49",
831
- "FGA": "1920",
832
- "FGM": "1010",
833
- "FG_PCT": "53",
834
- "FTA": "85",
835
- "FTM": "55",
836
- "FT_PCT": "65",
837
- "DREB": "612",
838
- "OREB": "22",
839
- "TREB": "634",
840
- "BLK": "00",
841
- "AST": "98",
842
- "STL": "35",
843
- "TOV": "36",
844
- "PTS": "2727",
845
- "MIN": "6060"
846
- },
847
- "Q1": {
848
- "FG3A": "6",
849
- "FG3M": "4",
850
- "FG3_PCT": "67",
851
- "FGA": "23",
852
- "FGM": "11",
853
- "FG_PCT": "48",
854
- "FTA": "10",
855
- "FTM": "6",
856
- "FT_PCT": "60",
857
- "DREB": "3",
858
- "OREB": "2",
859
- "TREB": "5",
860
- "BLK": "0",
861
- "AST": "8",
862
- "STL": "5",
863
- "TOV": "3",
864
- "PTS": "32",
865
- "MIN": "60"
866
- },
867
- "Q2": {
868
- "FG3A": "9",
869
- "FG3M": "4",
870
- "FG3_PCT": "44",
871
- "FGA": "21",
872
- "FGM": "10",
873
- "FG_PCT": "48",
874
- "FTA": "6",
875
- "FTM": "4",
876
- "FT_PCT": "67",
877
- "DREB": "5",
878
- "OREB": "3",
879
- "TREB": "8",
880
- "BLK": "0",
881
- "AST": "8",
882
- "STL": "3",
883
- "TOV": "4",
884
- "PTS": "28",
885
- "MIN": "60"
886
- },
887
- "Q3": {
888
- "FG3A": "4",
889
- "FG3M": "2",
890
- "FG3_PCT": "50",
891
- "FGA": "19",
892
- "FGM": "10",
893
- "FG_PCT": "53",
894
- "FTA": "8",
895
- "FTM": "5",
896
- "FT_PCT": "62",
897
- "DREB": "6",
898
- "OREB": "2",
899
- "TREB": "8",
900
- "BLK": "0",
901
- "AST": "9",
902
- "STL": "3",
903
- "TOV": "3",
904
- "PTS": "27",
905
- "MIN": "60"
906
- },
907
- "Q4": {
908
- "FG3A": "5",
909
- "FG3M": "2",
910
- "FG3_PCT": "40",
911
- "FGA": "20",
912
- "FGM": "10",
913
- "FG_PCT": "50",
914
- "FTA": "5",
915
- "FTM": "5",
916
- "FT_PCT": "100",
917
- "DREB": "12",
918
- "OREB": "2",
919
- "TREB": "14",
920
- "BLK": "0",
921
- "AST": "8",
922
- "STL": "5",
923
- "TOV": "6",
924
- "PTS": "27",
925
- "MIN": "60"
926
- },
927
- "OT": {
928
- "FG3A": "0",
929
- "FG3M": "0",
930
- "FG3_PCT": "0",
931
- "FGA": "0",
932
- "FGM": "0",
933
- "FG_PCT": "0",
934
- "FTA": "0",
935
- "FTM": "0",
936
- "FT_PCT": "0",
937
- "DREB": "0",
938
- "OREB": "0",
939
- "TREB": "0",
940
- "BLK": "0",
941
- "AST": "0",
942
- "STL": "0",
943
- "TOV": "0",
944
- "PTS": "0",
945
- "MIN": "0"
946
- }
947
- },
948
- "box_score": [
949
- {
950
- "first_name": "Chris",
951
- "last_name": "Bosh",
952
- "name": "Chris Bosh",
953
- "starter": "True",
954
- "MIN": "33",
955
- "FGM": "9",
956
- "FGA": "17",
957
- "FG_PCT": "53",
958
- "FG3M": "2",
959
- "FG3A": "5",
960
- "FG3_PCT": "40",
961
- "FTM": "10",
962
- "FTA": "11",
963
- "FT_PCT": "91",
964
- "OREB": "3",
965
- "DREB": "5",
966
- "TREB": "8",
967
- "AST": "4",
968
- "STL": "2",
969
- "BLK": "0",
970
- "TOV": "3",
971
- "PF": "2",
972
- "PTS": "30",
973
- "+/-": "10",
974
- "DOUBLE": "none"
975
- },
976
- {
977
- "first_name": "Dwyane",
978
- "last_name": "Wade",
979
- "name": "Dwyane Wade",
980
- "starter": "True",
981
- "MIN": "32",
982
- "FGM": "4",
983
- "FGA": "18",
984
- "FG_PCT": "22",
985
- "FG3M": "0",
986
- "FG3A": "1",
987
- "FG3_PCT": "0",
988
- "FTM": "1",
989
- "FTA": "3",
990
- "FT_PCT": "33",
991
- "OREB": "1",
992
- "DREB": "2",
993
- "TREB": "3",
994
- "AST": "10",
995
- "STL": "3",
996
- "BLK": "0",
997
- "TOV": "6",
998
- "PF": "1",
999
- "PTS": "9",
1000
- "+/-": "13",
1001
- "DOUBLE": "none"
1002
- },
1003
- {
1004
- "first_name": "Luol",
1005
- "last_name": "Deng",
1006
- "name": "Luol Deng",
1007
- "starter": "True",
1008
- "MIN": "29",
1009
- "FGM": "7",
1010
- "FGA": "11",
1011
- "FG_PCT": "64",
1012
- "FG3M": "1",
1013
- "FG3A": "3",
1014
- "FG3_PCT": "33",
1015
- "FTM": "0",
1016
- "FTA": "1",
1017
- "FT_PCT": "0",
1018
- "OREB": "2",
1019
- "DREB": "2",
1020
- "TREB": "4",
1021
- "AST": "2",
1022
- "STL": "2",
1023
- "BLK": "0",
1024
- "TOV": "1",
1025
- "PF": "0",
1026
- "PTS": "15",
1027
- "+/-": "4",
1028
- "DOUBLE": "none"
1029
- },
1030
- {
1031
- "first_name": "Shawne",
1032
- "last_name": "Williams",
1033
- "name": "Shawne Williams",
1034
- "starter": "True",
1035
- "MIN": "29",
1036
- "FGM": "5",
1037
- "FGA": "9",
1038
- "FG_PCT": "56",
1039
- "FG3M": "3",
1040
- "FG3A": "5",
1041
- "FG3_PCT": "60",
1042
- "FTM": "2",
1043
- "FTA": "2",
1044
- "FT_PCT": "100",
1045
- "OREB": "0",
1046
- "DREB": "4",
1047
- "TREB": "4",
1048
- "AST": "4",
1049
- "STL": "1",
1050
- "BLK": "0",
1051
- "TOV": "1",
1052
- "PF": "4",
1053
- "PTS": "15",
1054
- "+/-": "16",
1055
- "DOUBLE": "none"
1056
- },
1057
- {
1058
- "first_name": "Norris",
1059
- "last_name": "Cole",
1060
- "name": "Norris Cole",
1061
- "starter": "True",
1062
- "MIN": "27",
1063
- "FGM": "4",
1064
- "FGA": "7",
1065
- "FG_PCT": "57",
1066
- "FG3M": "2",
1067
- "FG3A": "4",
1068
- "FG3_PCT": "50",
1069
- "FTM": "0",
1070
- "FTA": "0",
1071
- "FT_PCT": "0",
1072
- "OREB": "0",
1073
- "DREB": "1",
1074
- "TREB": "1",
1075
- "AST": "4",
1076
- "STL": "2",
1077
- "BLK": "0",
1078
- "TOV": "0",
1079
- "PF": "1",
1080
- "PTS": "10",
1081
- "+/-": "6",
1082
- "DOUBLE": "none"
1083
- },
1084
- {
1085
- "first_name": "Mario",
1086
- "last_name": "Chalmers",
1087
- "name": "Mario Chalmers",
1088
- "starter": "False",
1089
- "MIN": "25",
1090
- "FGM": "6",
1091
- "FGA": "9",
1092
- "FG_PCT": "67",
1093
- "FG3M": "2",
1094
- "FG3A": "2",
1095
- "FG3_PCT": "100",
1096
- "FTM": "6",
1097
- "FTA": "10",
1098
- "FT_PCT": "60",
1099
- "OREB": "0",
1100
- "DREB": "2",
1101
- "TREB": "2",
1102
- "AST": "4",
1103
- "STL": "4",
1104
- "BLK": "0",
1105
- "TOV": "0",
1106
- "PF": "1",
1107
- "PTS": "20",
1108
- "+/-": "18",
1109
- "DOUBLE": "none"
1110
- },
1111
- {
1112
- "first_name": "Shabazz",
1113
- "last_name": "Napier",
1114
- "name": "Shabazz Napier",
1115
- "starter": "False",
1116
- "MIN": "20",
1117
- "FGM": "2",
1118
- "FGA": "3",
1119
- "FG_PCT": "67",
1120
- "FG3M": "1",
1121
- "FG3A": "2",
1122
- "FG3_PCT": "50",
1123
- "FTM": "0",
1124
- "FTA": "0",
1125
- "FT_PCT": "0",
1126
- "OREB": "0",
1127
- "DREB": "3",
1128
- "TREB": "3",
1129
- "AST": "4",
1130
- "STL": "2",
1131
- "BLK": "0",
1132
- "TOV": "1",
1133
- "PF": "4",
1134
- "PTS": "5",
1135
- "+/-": "11",
1136
- "DOUBLE": "none"
1137
- },
1138
- {
1139
- "first_name": "Chris",
1140
- "last_name": "Andersen",
1141
- "name": "Chris Andersen",
1142
- "starter": "False",
1143
- "MIN": "17",
1144
- "FGM": "0",
1145
- "FGA": "2",
1146
- "FG_PCT": "0",
1147
- "FG3M": "0",
1148
- "FG3A": "0",
1149
- "FG3_PCT": "0",
1150
- "FTM": "0",
1151
- "FTA": "0",
1152
- "FT_PCT": "0",
1153
- "OREB": "1",
1154
- "DREB": "2",
1155
- "TREB": "3",
1156
- "AST": "0",
1157
- "STL": "0",
1158
- "BLK": "0",
1159
- "TOV": "0",
1160
- "PF": "2",
1161
- "PTS": "0",
1162
- "+/-": "6",
1163
- "DOUBLE": "none"
1164
- },
1165
- {
1166
- "first_name": "Josh",
1167
- "last_name": "McRoberts",
1168
- "name": "Josh McRoberts",
1169
- "starter": "False",
1170
- "MIN": "11",
1171
- "FGM": "1",
1172
- "FGA": "3",
1173
- "FG_PCT": "33",
1174
- "FG3M": "0",
1175
- "FG3A": "1",
1176
- "FG3_PCT": "0",
1177
- "FTM": "1",
1178
- "FTA": "2",
1179
- "FT_PCT": "50",
1180
- "OREB": "0",
1181
- "DREB": "3",
1182
- "TREB": "3",
1183
- "AST": "0",
1184
- "STL": "0",
1185
- "BLK": "0",
1186
- "TOV": "2",
1187
- "PF": "3",
1188
- "PTS": "3",
1189
- "+/-": "1",
1190
- "DOUBLE": "none"
1191
- },
1192
- {
1193
- "first_name": "James",
1194
- "last_name": "Ennis",
1195
- "name": "James Ennis",
1196
- "starter": "False",
1197
- "MIN": "7",
1198
- "FGM": "2",
1199
- "FGA": "3",
1200
- "FG_PCT": "67",
1201
- "FG3M": "1",
1202
- "FG3A": "1",
1203
- "FG3_PCT": "100",
1204
- "FTM": "0",
1205
- "FTA": "0",
1206
- "FT_PCT": "0",
1207
- "OREB": "1",
1208
- "DREB": "1",
1209
- "TREB": "2",
1210
- "AST": "1",
1211
- "STL": "0",
1212
- "BLK": "0",
1213
- "TOV": "0",
1214
- "PF": "1",
1215
- "PTS": "5",
1216
- "+/-": "2",
1217
- "DOUBLE": "none"
1218
- },
1219
- {
1220
- "first_name": "Justin",
1221
- "last_name": "Hamilton",
1222
- "name": "Justin Hamilton",
1223
- "starter": "False",
1224
- "MIN": "5",
1225
- "FGM": "1",
1226
- "FGA": "1",
1227
- "FG_PCT": "100",
1228
- "FG3M": "0",
1229
- "FG3A": "0",
1230
- "FG3_PCT": "0",
1231
- "FTM": "0",
1232
- "FTA": "0",
1233
- "FT_PCT": "0",
1234
- "OREB": "1",
1235
- "DREB": "1",
1236
- "TREB": "2",
1237
- "AST": "0",
1238
- "STL": "0",
1239
- "BLK": "0",
1240
- "TOV": "1",
1241
- "PF": "0",
1242
- "PTS": "2",
1243
- "+/-": "3",
1244
- "DOUBLE": "none"
1245
- },
1246
- {
1247
- "first_name": "Andre",
1248
- "last_name": "Dawkins",
1249
- "name": "Andre Dawkins",
1250
- "starter": "False",
1251
- "MIN": "1",
1252
- "FGM": "0",
1253
- "FGA": "0",
1254
- "FG_PCT": "0",
1255
- "FG3M": "0",
1256
- "FG3A": "0",
1257
- "FG3_PCT": "0",
1258
- "FTM": "0",
1259
- "FTA": "0",
1260
- "FT_PCT": "0",
1261
- "OREB": "0",
1262
- "DREB": "0",
1263
- "TREB": "0",
1264
- "AST": "0",
1265
- "STL": "0",
1266
- "BLK": "0",
1267
- "TOV": "1",
1268
- "PF": "1",
1269
- "PTS": "0",
1270
- "+/-": "0",
1271
- "DOUBLE": "none"
1272
- },
1273
- {
1274
- "first_name": "Shannon",
1275
- "last_name": "Brown",
1276
- "name": "Shannon Brown",
1277
- "starter": "False",
1278
- "MIN": "0",
1279
- "FGM": "0",
1280
- "FGA": "0",
1281
- "FG_PCT": "0",
1282
- "FG3M": "0",
1283
- "FG3A": "0",
1284
- "FG3_PCT": "0",
1285
- "FTM": "0",
1286
- "FTA": "0",
1287
- "FT_PCT": "0",
1288
- "OREB": "0",
1289
- "DREB": "0",
1290
- "TREB": "0",
1291
- "AST": "0",
1292
- "STL": "0",
1293
- "BLK": "0",
1294
- "TOV": "0",
1295
- "PF": "0",
1296
- "PTS": "0",
1297
- "+/-": "0",
1298
- "DOUBLE": "none"
1299
- }
1300
- ],
1301
- "next_game": {
1302
- "day": "2",
1303
- "month": "November",
1304
- "year": "2014",
1305
- "dayname": "Sunday",
1306
- "stadium": "American Airlines Arena",
1307
- "city": "Miami",
1308
- "opponent_name": "Raptors",
1309
- "opponent_place": "Toronto",
1310
- "is_home": "True"
1311
- }
1312
- }
1313
- },
1314
- "summaries": [
1315
- "The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets ."
1316
- ]
1317
- }
1318
- ```
1319
-
1320
- #### Data Splits
1321
-
1322
- <!-- info: Describe and name the splits in the dataset if there are more than one. -->
1323
- <!-- scope: periscope -->
1324
- - Train: NBA seasons - 2014, 2015, & 2016; total instances - 3690
1325
- - Validation: NBA seasons - 2017; total instances - 1230
1326
- - Test: NBA seasons - 2018; total instances - 1230
1327
-
1328
- #### Splitting Criteria
1329
-
1330
- <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
1331
- <!-- scope: microscope -->
1332
- The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset
1333
-
1334
-
1335
-
1336
- ## Dataset in GEM
1337
-
1338
- ### Rationale for Inclusion in GEM
1339
-
1340
- #### Why is the Dataset in GEM?
1341
-
1342
- <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
1343
- <!-- scope: microscope -->
1344
- This dataset contains a data analytics problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)). That is, there is a large amount of data from which insights need to be selected. Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time). There is far more on the data side than is required to be realised, and indeed, could be practically realised. This depth of data analytics problem does not exist in other datasets.
1345
-
1346
- #### Similar Datasets
1347
-
1348
- <!-- info: Do other datasets for the high level task exist? -->
1349
- <!-- scope: telescope -->
1350
- no
1351
-
1352
- #### Ability that the Dataset measures
1353
-
1354
- <!-- info: What aspect of model ability can be measured with this dataset? -->
1355
- <!-- scope: periscope -->
1356
- Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
1357
-
1358
-
1359
- ### GEM-Specific Curation
1360
-
1361
- #### Modificatied for GEM?
1362
-
1363
- <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
1364
- <!-- scope: telescope -->
1365
- no
1366
-
1367
- #### Additional Splits?
1368
-
1369
- <!-- info: Does GEM provide additional splits to the dataset? -->
1370
- <!-- scope: telescope -->
1371
- no
1372
-
1373
-
1374
- ### Getting Started with the Task
1375
-
1376
- #### Pointers to Resources
1377
-
1378
- <!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
1379
- <!-- scope: microscope -->
1380
- For dataset discussion see [Thomson et al, 2020](https://aclanthology.org/2020.intellang-1.4/)
1381
-
1382
- For evaluation see:
1383
- - [Thomson & Reiter 2020, Thomson & Reiter (2021)](https://aclanthology.org/2021.inlg-1.23)
1384
- - [Kasner et al (2021)](https://aclanthology.org/2021.inlg-1.25)
1385
-
1386
- For a system using the relational database form of SportSett, see:
1387
- - [Thomson et al (2020)](https://aclanthology.org/2020.inlg-1.6/)
1388
-
1389
- For recent systems using the Rotowire dataset, see:
1390
- - [Puduppully & Lapata (2021)](https://github.com/ratishsp/data2text-macro-plan-py)
1391
- - [Rebuffel et all (2020)](https://github.com/KaijuML/data-to-text-hierarchical)
1392
-
1393
-
1394
-
1395
- ## Previous Results
1396
-
1397
- ### Previous Results
1398
-
1399
- #### Measured Model Abilities
1400
-
1401
- <!-- info: What aspect of model ability can be measured with this dataset? -->
1402
- <!-- scope: telescope -->
1403
- Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
1404
-
1405
- #### Metrics
1406
-
1407
- <!-- info: What metrics are typically used for this task? -->
1408
- <!-- scope: periscope -->
1409
- `BLEU`
1410
-
1411
- #### Proposed Evaluation
1412
-
1413
- <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
1414
- <!-- scope: microscope -->
1415
- BLEU is the only off-the-shelf metric commonly used. Works have also used custom metrics like RG ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)), and a recent shared task explored other metrics and their corrolation with human evaluation ([Thomson & Reiter, 2021](https://aclanthology.org/2021.inlg-1.23)).
1416
-
1417
- #### Previous results available?
1418
-
1419
- <!-- info: Are previous results available? -->
1420
- <!-- scope: telescope -->
1421
- yes
1422
-
1423
- #### Other Evaluation Approaches
1424
-
1425
- <!-- info: What evaluation approaches have others used? -->
1426
- <!-- scope: periscope -->
1427
- Most results from prior works use the original Rotowire dataset, which has train/validation/test contamination. For results of BLEU and RG on the relational database format of SportSett, as a guide, see [Thomson et al, 2020](https://aclanthology.org/2020.inlg-1.6).
1428
-
1429
- #### Relevant Previous Results
1430
-
1431
- <!-- info: What are the most relevant previous results for this task/dataset? -->
1432
- <!-- scope: microscope -->
1433
- The results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment. See Thomson et al, 2021 (https://aclanthology.org/2021.inlg-1.23) for an overview, and Kasner et al (2021) for the best performing metric at the time of writing (https://aclanthology.org/2021.inlg-1.25).
1434
-
1435
-
1436
-
1437
- ## Dataset Curation
1438
-
1439
- ### Original Curation
1440
-
1441
- #### Original Curation Rationale
1442
-
1443
- <!-- info: Original curation rationale -->
1444
- <!-- scope: telescope -->
1445
- The references texts were taken from the existing dataset RotoWire-FG ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)), which is in turn based on Rotowire ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)). The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.
1446
-
1447
- #### Communicative Goal
1448
-
1449
- <!-- info: What was the communicative goal? -->
1450
- <!-- scope: periscope -->
1451
- Create a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate. This is a data-to-text problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts.
1452
-
1453
- #### Sourced from Different Sources
1454
-
1455
- <!-- info: Is the dataset aggregated from different data sources? -->
1456
- <!-- scope: telescope -->
1457
- yes
1458
-
1459
- #### Source Details
1460
-
1461
- <!-- info: List the sources (one per line) -->
1462
- <!-- scope: periscope -->
1463
- RotoWire-FG (https://www.rotowire.com).
1464
- Wikipedia (https://en.wikipedia.org/wiki/Main_Page)
1465
- Basketball Reference (https://www.basketball-reference.com)
1466
-
1467
-
1468
-
1469
- ### Language Data
1470
-
1471
- #### How was Language Data Obtained?
1472
-
1473
- <!-- info: How was the language data obtained? -->
1474
- <!-- scope: telescope -->
1475
- `Found`
1476
-
1477
- #### Where was it found?
1478
-
1479
- <!-- info: If found, where from? -->
1480
- <!-- scope: telescope -->
1481
- `Multiple websites`
1482
-
1483
- #### Language Producers
1484
-
1485
- <!-- info: What further information do we have on the language producers? -->
1486
- <!-- scope: microscope -->
1487
- None
1488
-
1489
- #### Topics Covered
1490
-
1491
- <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
1492
- <!-- scope: periscope -->
1493
- Summaries of basketball games (in the NBA).
1494
-
1495
- #### Data Validation
1496
-
1497
- <!-- info: Was the text validated by a different worker or a data curator? -->
1498
- <!-- scope: telescope -->
1499
- not validated
1500
-
1501
- #### Data Preprocessing
1502
-
1503
- <!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
1504
- <!-- scope: microscope -->
1505
- It retains the original tokenization scheme employed by Wang 2019
1506
-
1507
- #### Was Data Filtered?
1508
-
1509
- <!-- info: Were text instances selected or filtered? -->
1510
- <!-- scope: telescope -->
1511
- manually
1512
-
1513
- #### Filter Criteria
1514
-
1515
- <!-- info: What were the selection criteria? -->
1516
- <!-- scope: microscope -->
1517
- Games from the 2014 through 2018 seasons were selected. Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.
1518
-
1519
-
1520
- ### Structured Annotations
1521
-
1522
- #### Additional Annotations?
1523
-
1524
- <!-- quick -->
1525
- <!-- info: Does the dataset have additional annotations for each instance? -->
1526
- <!-- scope: telescope -->
1527
- none
1528
-
1529
- #### Annotation Service?
1530
-
1531
- <!-- info: Was an annotation service used? -->
1532
- <!-- scope: telescope -->
1533
- no
1534
-
1535
-
1536
- ### Consent
1537
-
1538
- #### Any Consent Policy?
1539
-
1540
- <!-- info: Was there a consent policy involved when gathering the data? -->
1541
- <!-- scope: telescope -->
1542
- no
1543
-
1544
- #### Justification for Using the Data
1545
-
1546
- <!-- info: If not, what is the justification for reusing the data? -->
1547
- <!-- scope: microscope -->
1548
- The dataset consits of a pre-existing dataset, as well as publically available facts.
1549
-
1550
-
1551
- ### Private Identifying Information (PII)
1552
-
1553
- #### Contains PII?
1554
-
1555
- <!-- quick -->
1556
- <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
1557
- <!-- scope: telescope -->
1558
- unlikely
1559
-
1560
- #### Categories of PII
1561
-
1562
- <!-- info: What categories of PII are present or suspected in the data? -->
1563
- <!-- scope: periscope -->
1564
- `generic PII`
1565
-
1566
- #### Any PII Identification?
1567
-
1568
- <!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
1569
- <!-- scope: periscope -->
1570
- no identification
1571
-
1572
-
1573
- ### Maintenance
1574
-
1575
- #### Any Maintenance Plan?
1576
-
1577
- <!-- info: Does the original dataset have a maintenance plan? -->
1578
- <!-- scope: telescope -->
1579
- no
1580
-
1581
-
1582
-
1583
- ## Broader Social Context
1584
-
1585
- ### Previous Work on the Social Impact of the Dataset
1586
-
1587
- #### Usage of Models based on the Data
1588
-
1589
- <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
1590
- <!-- scope: telescope -->
1591
- no
1592
-
1593
-
1594
- ### Impact on Under-Served Communities
1595
-
1596
- #### Addresses needs of underserved Communities?
1597
-
1598
- <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
1599
- <!-- scope: telescope -->
1600
- no
1601
-
1602
-
1603
- ### Discussion of Biases
1604
-
1605
- #### Any Documented Social Biases?
1606
-
1607
- <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
1608
- <!-- scope: telescope -->
1609
- yes
1610
-
1611
- #### Links and Summaries of Analysis Work
1612
-
1613
- <!-- info: Provide links to and summaries of works analyzing these biases. -->
1614
- <!-- scope: microscope -->
1615
- Unaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games. It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text. This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.
1616
-
1617
- #### Are the Language Producers Representative of the Language?
1618
-
1619
- <!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
1620
- <!-- scope: periscope -->
1621
- No, it is very specifically American English from the sports journalism domain.
1622
-
1623
-
1624
-
1625
- ## Considerations for Using the Data
1626
-
1627
- ### PII Risks and Liability
1628
-
1629
- #### Potential PII Risk
1630
-
1631
- <!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
1632
- <!-- scope: microscope -->
1633
- All information relating to persons is of public record.
1634
-
1635
-
1636
- ### Licenses
1637
-
1638
- #### Copyright Restrictions on the Dataset
1639
-
1640
- <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
1641
- <!-- scope: periscope -->
1642
- `public domain`
1643
-
1644
- #### Copyright Restrictions on the Language Data
1645
-
1646
- <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
1647
- <!-- scope: periscope -->
1648
- `public domain`
1649
-
1650
-
1651
- ### Known Technical Limitations
1652
-
1653
- #### Technical Limitations
1654
-
1655
- <!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
1656
- <!-- scope: microscope -->
1657
- SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable. For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players. It is unavoidable that some data which is aggregated, exists in its base form in previous partitions. The season-based partition scheme heavily constrains this however.
1658
-
1659
- #### Unsuited Applications
1660
-
1661
- <!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
1662
- <!-- scope: microscope -->
1663
- Factual accuray continues to be a problem, systems may incorrectly represent the facts of the game.
1664
-
1665
- #### Discouraged Use Cases
1666
-
1667
- <!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
1668
- <!-- scope: microscope -->
1669
- Using the RG metric to maximise the number of true facts in a generate summary is not nececeraly
1670
-
1671
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "SportSett:Basketball dataset for Data-to-Text Generation contains NBA games stats aligned with their human written summaries.\n", "citation": "@inproceedings{thomson-etal-2020-sportsett,\n title = \"{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation\",\n author = \"Thomson, Craig and\n Reiter, Ehud and\n Sripada, Somayajulu\",\n booktitle = \"Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation\",\n month = sep,\n year = \"2020\",\n address = \"Santiago de Compostela, Spain\",\n publisher = \"Association for Computational Lingustics\",\n url = \"https://aclanthology.org/2020.intellang-1.4\",\n pages = \"32--40\",\n}\n", "homepage": "https://github.com/nlgcat/sport_sett_basketball", "license": "", "features": {"sportsett_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "game": {"day": {"dtype": "string", "id": null, "_type": "Value"}, "month": {"dtype": "string", "id": null, "_type": "Value"}, "year": {"dtype": "string", "id": null, "_type": "Value"}, "dayname": {"dtype": "string", "id": null, "_type": "Value"}, "season": {"dtype": "string", "id": null, "_type": "Value"}, "stadium": {"dtype": "string", "id": null, "_type": "Value"}, "city": {"dtype": "string", "id": null, "_type": "Value"}, "state": {"dtype": "string", "id": null, "_type": "Value"}, "attendance": {"dtype": "string", "id": null, "_type": "Value"}, "capacity": {"dtype": "string", "id": null, "_type": "Value"}, "game_id": {"dtype": "string", "id": null, "_type": "Value"}}, "teams": {"home": {"name": {"dtype": "string", "id": null, "_type": "Value"}, "place": {"dtype": "string", "id": null, "_type": "Value"}, "conference": {"dtype": "string", "id": null, "_type": "Value"}, "division": {"dtype": "string", "id": null, "_type": "Value"}, "wins": {"dtype": "string", "id": null, "_type": "Value"}, "losses": {"dtype": "string", "id": null, "_type": "Value"}, "conference_standing": {"dtype": "int32", "id": null, "_type": "Value"}, "game_number": {"dtype": "string", "id": null, "_type": "Value"}, "previous_game_id": {"dtype": "string", "id": null, "_type": "Value"}, "next_game_id": {"dtype": "string", "id": null, "_type": "Value"}, "line_score": {"game": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PF": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "H1": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "H2": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q1": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q2": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q3": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q4": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "OT": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}}, "box_score": [{"first_name": {"dtype": "string", "id": null, "_type": "Value"}, "last_name": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "starter": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PF": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "+/-": {"dtype": "string", "id": null, "_type": "Value"}, "DOUBLE": {"dtype": "string", "id": null, "_type": "Value"}}], "next_game": {"day": {"dtype": "string", "id": null, "_type": "Value"}, "month": {"dtype": "string", "id": null, "_type": "Value"}, "year": {"dtype": "string", "id": null, "_type": "Value"}, "dayname": {"dtype": "string", "id": null, "_type": "Value"}, "stadium": {"dtype": "string", "id": null, "_type": "Value"}, "city": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_name": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_place": {"dtype": "string", "id": null, "_type": "Value"}, "is_home": {"dtype": "string", "id": null, "_type": "Value"}}}, "vis": {"name": {"dtype": "string", "id": null, "_type": "Value"}, "place": {"dtype": "string", "id": null, "_type": "Value"}, "conference": {"dtype": "string", "id": null, "_type": "Value"}, "division": {"dtype": "string", "id": null, "_type": "Value"}, "wins": {"dtype": "string", "id": null, "_type": "Value"}, "losses": {"dtype": "string", "id": null, "_type": "Value"}, "conference_standing": {"dtype": "int32", "id": null, "_type": "Value"}, "game_number": {"dtype": "string", "id": null, "_type": "Value"}, "previous_game_id": {"dtype": "string", "id": null, "_type": "Value"}, "next_game_id": {"dtype": "string", "id": null, "_type": "Value"}, "line_score": {"game": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PF": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "H1": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "H2": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q1": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q2": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q3": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "Q4": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}, "OT": {"FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}}}, "box_score": [{"first_name": {"dtype": "string", "id": null, "_type": "Value"}, "last_name": {"dtype": "string", "id": null, "_type": "Value"}, "name": {"dtype": "string", "id": null, "_type": "Value"}, "starter": {"dtype": "string", "id": null, "_type": "Value"}, "MIN": {"dtype": "string", "id": null, "_type": "Value"}, "FGM": {"dtype": "string", "id": null, "_type": "Value"}, "FGA": {"dtype": "string", "id": null, "_type": "Value"}, "FG_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FG3M": {"dtype": "string", "id": null, "_type": "Value"}, "FG3A": {"dtype": "string", "id": null, "_type": "Value"}, "FG3_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "FTM": {"dtype": "string", "id": null, "_type": "Value"}, "FTA": {"dtype": "string", "id": null, "_type": "Value"}, "FT_PCT": {"dtype": "string", "id": null, "_type": "Value"}, "OREB": {"dtype": "string", "id": null, "_type": "Value"}, "DREB": {"dtype": "string", "id": null, "_type": "Value"}, "TREB": {"dtype": "string", "id": null, "_type": "Value"}, "AST": {"dtype": "string", "id": null, "_type": "Value"}, "STL": {"dtype": "string", "id": null, "_type": "Value"}, "BLK": {"dtype": "string", "id": null, "_type": "Value"}, "TOV": {"dtype": "string", "id": null, "_type": "Value"}, "PF": {"dtype": "string", "id": null, "_type": "Value"}, "PTS": {"dtype": "string", "id": null, "_type": "Value"}, "+/-": {"dtype": "string", "id": null, "_type": "Value"}, "DOUBLE": {"dtype": "string", "id": null, "_type": "Value"}}], "next_game": {"day": {"dtype": "string", "id": null, "_type": "Value"}, "month": {"dtype": "string", "id": null, "_type": "Value"}, "year": {"dtype": "string", "id": null, "_type": "Value"}, "dayname": {"dtype": "string", "id": null, "_type": "Value"}, "stadium": {"dtype": "string", "id": null, "_type": "Value"}, "city": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_name": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_place": {"dtype": "string", "id": null, "_type": "Value"}, "is_home": {"dtype": "string", "id": null, "_type": "Value"}}}}, "summaries": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}], "linearized_input": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sportsett_basketball", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 67332482, "num_examples": 3690, "dataset_name": "sportsett_basketball"}, "test": {"name": "test", "num_bytes": 21058937, "num_examples": 1230, "dataset_name": "sportsett_basketball"}, "validation": {"name": "validation", "num_bytes": 21503139, "num_examples": 1230, "dataset_name": "sportsett_basketball"}}, "download_checksums": {"train.jsonl": {"num_bytes": 62442413, "checksum": "7f36933482f385000d5dedcf8f432349aa486eee1229c6aa28de2c000d2890ec"}, "validation.jsonl": {"num_bytes": 20228725, "checksum": "39e6401457f90e58e7237b2392b6f3fb1155f1b068d542cd112602200d539973"}, "test.jsonl": {"num_bytes": 20033885, "checksum": "79056913fc9e0e49b428384e64c2bbc90b450fd94316d451e17c3d3cd32dbe3a"}}, "download_size": 102705023, "post_processing_size": null, "dataset_size": 109894558, "size_in_bytes": 212599581}}
 
 
test.jsonl → default/sportsett_basketball-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79056913fc9e0e49b428384e64c2bbc90b450fd94316d451e17c3d3cd32dbe3a
3
- size 20033885
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82b788a8f0c9491255f46e7b317748c16b7b58f06729b8bd9f047ac03899c617
3
+ size 5882136
train.jsonl → default/sportsett_basketball-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f36933482f385000d5dedcf8f432349aa486eee1229c6aa28de2c000d2890ec
3
- size 62442413
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62de238474aa6a7e5641bad82122baae8128acbaf37e4a81f144745eaab420cf
3
+ size 19317573
validation.jsonl → default/sportsett_basketball-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:39e6401457f90e58e7237b2392b6f3fb1155f1b068d542cd112602200d539973
3
- size 20228725
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c6c1a170a0fffdda0f1a1805861376e12bbea5a82f60b6decbaf80cc36e1df0
3
+ size 6151620
sportsett_basketball.json DELETED
@@ -1,181 +0,0 @@
1
- {
2
- "results": {
3
- "results": {
4
- "other-metrics-definitions": "N/A",
5
- "has-previous-results": "yes",
6
- "current-evaluation": "Most results from prior works use the original Rotowire dataset, which has train/validation/test contamination. For results of BLEU and RG on the relational database format of SportSett, as a guide, see [Thomson et al, 2020](https://aclanthology.org/2020.inlg-1.6).",
7
- "previous-results": "The results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment. See Thomson et al, 2021 (https://aclanthology.org/2021.inlg-1.23) for an overview, and Kasner et al (2021) for the best performing metric at the time of writing (https://aclanthology.org/2021.inlg-1.25).",
8
- "metrics": [
9
- "BLEU"
10
- ],
11
- "original-evaluation": "BLEU is the only off-the-shelf metric commonly used. Works have also used custom metrics like RG ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)), and a recent shared task explored other metrics and their corrolation with human evaluation ([Thomson & Reiter, 2021](https://aclanthology.org/2021.inlg-1.23)).",
12
- "model-abilities": "Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question."
13
- }
14
- },
15
- "gem": {
16
- "rationale": {
17
- "sole-task-dataset": "no",
18
- "distinction-description": "N/A",
19
- "contribution": "This dataset contains a data analytics problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)). That is, there is a large amount of data from which insights need to be selected. Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time). There is far more on the data side than is required to be realised, and indeed, could be practically realised. This depth of data analytics problem does not exist in other datasets.",
20
- "model-ability": "Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question."
21
- },
22
- "curation": {
23
- "has-additional-curation": "no",
24
- "modification-types": [],
25
- "modification-description": "N/A",
26
- "has-additional-splits": "no",
27
- "additional-splits-description": "N/A",
28
- "additional-splits-capacicites": "N/A"
29
- },
30
- "starting": {
31
- "research-pointers": "For dataset discussion see [Thomson et al, 2020](https://aclanthology.org/2020.intellang-1.4/)\n\nFor evaluation see:\n- [Thomson & Reiter 2020, Thomson & Reiter (2021)](https://aclanthology.org/2021.inlg-1.23)\n- [Kasner et al (2021)](https://aclanthology.org/2021.inlg-1.25)\n\nFor a system using the relational database form of SportSett, see:\n- [Thomson et al (2020)](https://aclanthology.org/2020.inlg-1.6/)\n\nFor recent systems using the Rotowire dataset, see:\n- [Puduppully & Lapata (2021)](https://github.com/ratishsp/data2text-macro-plan-py)\n- [Rebuffel et all (2020)](https://github.com/KaijuML/data-to-text-hierarchical)",
32
- "technical-terms": "N/A"
33
- }
34
- },
35
- "overview": {
36
- "where": {
37
- "has-leaderboard": "no",
38
- "leaderboard-url": "N/A",
39
- "leaderboard-description": "N/A",
40
- "website": "[Github](https://github.com/nlgcat/sport_sett_basketball)",
41
- "data-url": "[Github](https://github.com/nlgcat/sport_sett_basketball)",
42
- "paper-url": "[ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)",
43
- "paper-bibtext": "```\n@inproceedings{thomson-etal-2020-sportsett,\n title = \"{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation\",\n author = \"Thomson, Craig and\n Reiter, Ehud and\n Sripada, Somayajulu\",\n booktitle = \"Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation\",\n month = sep,\n year = \"2020\",\n address = \"Santiago de Compostela, Spain\",\n publisher = \"Association for Computational Lingustics\",\n url = \"https://aclanthology.org/2020.intellang-1.4\",\n pages = \"32--40\",\n}\n```",
44
- "contact-name": "Craig Thomson",
45
- "contact-email": "[email protected]"
46
- },
47
- "languages": {
48
- "is-multilingual": "no",
49
- "license": "mit: MIT License",
50
- "task-other": "N/A",
51
- "language-names": [
52
- "English"
53
- ],
54
- "intended-use": "Maintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries",
55
- "license-other": "N/A",
56
- "task": "Data-to-Text",
57
- "language-dialects": "American English\n\nOne dialect, one language.",
58
- "language-speakers": "American sports writers",
59
- "communicative": "A model trained on this dataset should summarise the statistical and other information from a basketball game. This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate. There no single common narrative, although summaries usually start with who player, when, where, and the score. They then provide high level commentary on what the difference in the game was (why the winner won). breakdowns of statistics for prominent players follow, winning team first. Finally, the upcoming schedule for both teams is usually included. There are, however, other types of fact that can be included, and other narrative structures."
60
- },
61
- "credit": {
62
- "organization-type": [
63
- "academic"
64
- ],
65
- "organization-names": "University of Aberdeen, Robert Gordon University",
66
- "creators": "Craig Thomson, Ashish Upadhyay",
67
- "funding": "EPSRC",
68
- "gem-added-by": "Craig Thomson, Ashish Upadhyay"
69
- },
70
- "structure": {
71
- "structure-example": "```\n{\n\t\"sportsett_id\": \"1\",\n\t\"gem_id\": \"GEM-sportsett_basketball-train-0\",\n\t\"game\": {\n\t\t\"day\": \"1\",\n\t\t\"month\": \"November\",\n\t\t\"year\": \"2014\",\n\t\t\"dayname\": \"Saturday\",\n\t\t\"season\": \"2014\",\n\t\t\"stadium\": \"Wells Fargo Center\",\n\t\t\"city\": \"Philadelphia\",\n\t\t\"state\": \"Pennsylvania\",\n\t\t\"attendance\": \"19753\",\n\t\t\"capacity\": \"20478\",\n\t\t\"game_id\": \"1\"\n\t},\n\t\"teams\": {\n\t\t\"home\": {\n\t\t\t\"name\": \"76ers\",\n\t\t\t\"place\": \"Philadelphia\",\n\t\t\t\"conference\": \"Eastern Conference\",\n\t\t\t\"division\": \"Atlantic\",\n\t\t\t\"wins\": \"0\",\n\t\t\t\"losses\": \"3\",\n\t\t\t\"conference_standing\": 15,\n\t\t\t\"game_number\": \"3\",\n\t\t\t\"previous_game_id\": \"42\",\n\t\t\t\"next_game_id\": \"2\",\n\t\t\t\"line_score\": {\n\t\t\t\t\"game\": {\n\t\t\t\t\t\"FG3A\": \"23\",\n\t\t\t\t\t\"FG3M\": \"7\",\n\t\t\t\t\t\"FG3_PCT\": \"30\",\n\t\t\t\t\t\"FGA\": \"67\",\n\t\t\t\t\t\"FGM\": \"35\",\n\t\t\t\t\t\"FG_PCT\": \"52\",\n\t\t\t\t\t\"FTA\": \"26\",\n\t\t\t\t\t\"FTM\": \"19\",\n\t\t\t\t\t\"FT_PCT\": \"73\",\n\t\t\t\t\t\"DREB\": \"33\",\n\t\t\t\t\t\"OREB\": \"4\",\n\t\t\t\t\t\"TREB\": \"37\",\n\t\t\t\t\t\"BLK\": \"10\",\n\t\t\t\t\t\"AST\": \"28\",\n\t\t\t\t\t\"STL\": \"9\",\n\t\t\t\t\t\"TOV\": \"24\",\n\t\t\t\t\t\"PF\": \"21\",\n\t\t\t\t\t\"PTS\": \"96\",\n\t\t\t\t\t\"MIN\": \"4\"\n\t\t\t\t},\n\t\t\t\t\"H1\": {\n\t\t\t\t\t\"FG3A\": \"82\",\n\t\t\t\t\t\"FG3M\": \"30\",\n\t\t\t\t\t\"FG3_PCT\": \"37\",\n\t\t\t\t\t\"FGA\": \"2115\",\n\t\t\t\t\t\"FGM\": \"138\",\n\t\t\t\t\t\"FG_PCT\": \"7\",\n\t\t\t\t\t\"FTA\": \"212\",\n\t\t\t\t\t\"FTM\": \"18\",\n\t\t\t\t\t\"FT_PCT\": \"8\",\n\t\t\t\t\t\"DREB\": \"810\",\n\t\t\t\t\t\"OREB\": \"21\",\n\t\t\t\t\t\"TREB\": \"831\",\n\t\t\t\t\t\"BLK\": \"51\",\n\t\t\t\t\t\"AST\": \"107\",\n\t\t\t\t\t\"STL\": \"21\",\n\t\t\t\t\t\"TOV\": \"64\",\n\t\t\t\t\t\"PTS\": \"3024\",\n\t\t\t\t\t\"MIN\": \"6060\"\n\t\t\t\t},\n\t\t\t\t\"H2\": {\n\t\t\t\t\t\"FG3A\": \"85\",\n\t\t\t\t\t\"FG3M\": \"40\",\n\t\t\t\t\t\"FG3_PCT\": \"47\",\n\t\t\t\t\t\"FGA\": \"1615\",\n\t\t\t\t\t\"FGM\": \"104\",\n\t\t\t\t\t\"FG_PCT\": \"6\",\n\t\t\t\t\t\"FTA\": \"66\",\n\t\t\t\t\t\"FTM\": \"55\",\n\t\t\t\t\t\"FT_PCT\": \"83\",\n\t\t\t\t\t\"DREB\": \"96\",\n\t\t\t\t\t\"OREB\": \"10\",\n\t\t\t\t\t\"TREB\": \"106\",\n\t\t\t\t\t\"BLK\": \"22\",\n\t\t\t\t\t\"AST\": \"92\",\n\t\t\t\t\t\"STL\": \"24\",\n\t\t\t\t\t\"TOV\": \"68\",\n\t\t\t\t\t\"PTS\": \"2913\",\n\t\t\t\t\t\"MIN\": \"6060\"\n\t\t\t\t},\n\t\t\t\t\"Q1\": {\n\t\t\t\t\t\"FG3A\": \"8\",\n\t\t\t\t\t\"FG3M\": \"3\",\n\t\t\t\t\t\"FG3_PCT\": \"38\",\n\t\t\t\t\t\"FGA\": \"21\",\n\t\t\t\t\t\"FGM\": \"13\",\n\t\t\t\t\t\"FG_PCT\": \"62\",\n\t\t\t\t\t\"FTA\": \"2\",\n\t\t\t\t\t\"FTM\": \"1\",\n\t\t\t\t\t\"FT_PCT\": \"50\",\n\t\t\t\t\t\"DREB\": \"8\",\n\t\t\t\t\t\"OREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"10\",\n\t\t\t\t\t\"BLK\": \"5\",\n\t\t\t\t\t\"AST\": \"10\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"TOV\": \"6\",\n\t\t\t\t\t\"PTS\": \"30\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q2\": {\n\t\t\t\t\t\"FG3A\": \"2\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FGA\": \"15\",\n\t\t\t\t\t\"FGM\": \"8\",\n\t\t\t\t\t\"FG_PCT\": \"53\",\n\t\t\t\t\t\"FTA\": \"12\",\n\t\t\t\t\t\"FTM\": \"8\",\n\t\t\t\t\t\"FT_PCT\": \"67\",\n\t\t\t\t\t\"DREB\": \"10\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"11\",\n\t\t\t\t\t\"BLK\": \"1\",\n\t\t\t\t\t\"AST\": \"7\",\n\t\t\t\t\t\"STL\": \"1\",\n\t\t\t\t\t\"TOV\": \"4\",\n\t\t\t\t\t\"PTS\": \"24\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q3\": {\n\t\t\t\t\t\"FG3A\": \"8\",\n\t\t\t\t\t\"FG3M\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FGA\": \"16\",\n\t\t\t\t\t\"FGM\": \"10\",\n\t\t\t\t\t\"FG_PCT\": \"62\",\n\t\t\t\t\t\"FTA\": \"6\",\n\t\t\t\t\t\"FTM\": \"5\",\n\t\t\t\t\t\"FT_PCT\": \"83\",\n\t\t\t\t\t\"DREB\": \"9\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"10\",\n\t\t\t\t\t\"BLK\": \"2\",\n\t\t\t\t\t\"AST\": \"9\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"TOV\": \"6\",\n\t\t\t\t\t\"PTS\": \"29\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q4\": {\n\t\t\t\t\t\"FG3A\": \"5\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FGA\": \"15\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"27\",\n\t\t\t\t\t\"FTA\": \"6\",\n\t\t\t\t\t\"FTM\": \"5\",\n\t\t\t\t\t\"FT_PCT\": \"83\",\n\t\t\t\t\t\"DREB\": \"6\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"6\",\n\t\t\t\t\t\"BLK\": \"2\",\n\t\t\t\t\t\"AST\": \"2\",\n\t\t\t\t\t\"STL\": \"4\",\n\t\t\t\t\t\"TOV\": \"8\",\n\t\t\t\t\t\"PTS\": \"13\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"OT\": {\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"DREB\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"MIN\": \"0\"\n\t\t\t\t}\n\t\t\t},\n\t\t\t\"box_score\": [\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Tony\",\n\t\t\t\t\t\"last_name\": \"Wroten\",\n\t\t\t\t\t\"name\": \"Tony Wroten\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"33\",\n\t\t\t\t\t\"FGM\": \"6\",\n\t\t\t\t\t\"FGA\": \"11\",\n\t\t\t\t\t\"FG_PCT\": \"55\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"25\",\n\t\t\t\t\t\"FTM\": \"8\",\n\t\t\t\t\t\"FTA\": \"11\",\n\t\t\t\t\t\"FT_PCT\": \"73\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"10\",\n\t\t\t\t\t\"STL\": \"1\",\n\t\t\t\t\t\"BLK\": \"1\",\n\t\t\t\t\t\"TOV\": \"4\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"21\",\n\t\t\t\t\t\"+/-\": \"-11\",\n\t\t\t\t\t\"DOUBLE\": \"double\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Hollis\",\n\t\t\t\t\t\"last_name\": \"Thompson\",\n\t\t\t\t\t\"name\": \"Hollis Thompson\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"32\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"8\",\n\t\t\t\t\t\"FG_PCT\": \"50\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3A\": \"5\",\n\t\t\t\t\t\"FG3_PCT\": \"40\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"1\",\n\t\t\t\t\t\"AST\": \"2\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"3\",\n\t\t\t\t\t\"TOV\": \"2\",\n\t\t\t\t\t\"PF\": \"2\",\n\t\t\t\t\t\"PTS\": \"10\",\n\t\t\t\t\t\"+/-\": \"-17\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Henry\",\n\t\t\t\t\t\"last_name\": \"Sims\",\n\t\t\t\t\t\"name\": \"Henry Sims\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"27\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"9\",\n\t\t\t\t\t\"FG_PCT\": \"44\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"1\",\n\t\t\t\t\t\"FTA\": \"2\",\n\t\t\t\t\t\"FT_PCT\": \"50\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"4\",\n\t\t\t\t\t\"AST\": \"2\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"1\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"9\",\n\t\t\t\t\t\"+/-\": \"-10\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Nerlens\",\n\t\t\t\t\t\"last_name\": \"Noel\",\n\t\t\t\t\t\"name\": \"Nerlens Noel\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"25\",\n\t\t\t\t\t\"FGM\": \"1\",\n\t\t\t\t\t\"FGA\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"25\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"5\",\n\t\t\t\t\t\"TREB\": \"5\",\n\t\t\t\t\t\"AST\": \"3\",\n\t\t\t\t\t\"STL\": \"1\",\n\t\t\t\t\t\"BLK\": \"1\",\n\t\t\t\t\t\"TOV\": \"3\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"2\",\n\t\t\t\t\t\"+/-\": \"-19\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Luc\",\n\t\t\t\t\t\"last_name\": \"Mbah a Moute\",\n\t\t\t\t\t\"name\": \"Luc Mbah a Moute\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"19\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"10\",\n\t\t\t\t\t\"FG_PCT\": \"40\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"1\",\n\t\t\t\t\t\"FTA\": \"2\",\n\t\t\t\t\t\"FT_PCT\": \"50\",\n\t\t\t\t\t\"OREB\": \"3\",\n\t\t\t\t\t\"DREB\": \"4\",\n\t\t\t\t\t\"TREB\": \"7\",\n\t\t\t\t\t\"AST\": \"3\",\n\t\t\t\t\t\"STL\": \"1\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"6\",\n\t\t\t\t\t\"PF\": \"3\",\n\t\t\t\t\t\"PTS\": \"9\",\n\t\t\t\t\t\"+/-\": \"-12\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Brandon\",\n\t\t\t\t\t\"last_name\": \"Davies\",\n\t\t\t\t\t\"name\": \"Brandon Davies\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"23\",\n\t\t\t\t\t\"FGM\": \"7\",\n\t\t\t\t\t\"FGA\": \"9\",\n\t\t\t\t\t\"FG_PCT\": \"78\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FTM\": \"3\",\n\t\t\t\t\t\"FTA\": \"4\",\n\t\t\t\t\t\"FT_PCT\": \"75\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"3\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"3\",\n\t\t\t\t\t\"PF\": \"3\",\n\t\t\t\t\t\"PTS\": \"18\",\n\t\t\t\t\t\"+/-\": \"-1\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Chris\",\n\t\t\t\t\t\"last_name\": \"Johnson\",\n\t\t\t\t\t\"name\": \"Chris Johnson\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"21\",\n\t\t\t\t\t\"FGM\": \"2\",\n\t\t\t\t\t\"FGA\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"50\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"3\",\n\t\t\t\t\t\"FG3_PCT\": \"33\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"2\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"3\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"2\",\n\t\t\t\t\t\"PF\": \"5\",\n\t\t\t\t\t\"PTS\": \"5\",\n\t\t\t\t\t\"+/-\": \"3\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"K.J.\",\n\t\t\t\t\t\"last_name\": \"McDaniels\",\n\t\t\t\t\t\"name\": \"K.J. McDaniels\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"20\",\n\t\t\t\t\t\"FGM\": \"2\",\n\t\t\t\t\t\"FGA\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"50\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"3\",\n\t\t\t\t\t\"FG3_PCT\": \"33\",\n\t\t\t\t\t\"FTM\": \"3\",\n\t\t\t\t\t\"FTA\": \"4\",\n\t\t\t\t\t\"FT_PCT\": \"75\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"1\",\n\t\t\t\t\t\"AST\": \"2\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"3\",\n\t\t\t\t\t\"TOV\": \"2\",\n\t\t\t\t\t\"PF\": \"3\",\n\t\t\t\t\t\"PTS\": \"8\",\n\t\t\t\t\t\"+/-\": \"-10\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Malcolm\",\n\t\t\t\t\t\"last_name\": \"Thomas\",\n\t\t\t\t\t\"name\": \"Malcolm Thomas\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"19\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"100\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"9\",\n\t\t\t\t\t\"TREB\": \"9\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"2\",\n\t\t\t\t\t\"PTS\": \"8\",\n\t\t\t\t\t\"+/-\": \"-6\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Alexey\",\n\t\t\t\t\t\"last_name\": \"Shved\",\n\t\t\t\t\t\"name\": \"Alexey Shved\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"14\",\n\t\t\t\t\t\"FGM\": \"1\",\n\t\t\t\t\t\"FGA\": \"4\",\n\t\t\t\t\t\"FG_PCT\": \"25\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"25\",\n\t\t\t\t\t\"FTM\": \"3\",\n\t\t\t\t\t\"FTA\": \"3\",\n\t\t\t\t\t\"FT_PCT\": \"100\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"1\",\n\t\t\t\t\t\"AST\": \"6\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"2\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"6\",\n\t\t\t\t\t\"+/-\": \"-7\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"JaKarr\",\n\t\t\t\t\t\"last_name\": \"Sampson\",\n\t\t\t\t\t\"name\": \"JaKarr Sampson\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"2\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"1\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"1\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"+/-\": \"0\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Michael\",\n\t\t\t\t\t\"last_name\": \"Carter-Williams\",\n\t\t\t\t\t\"name\": \"Michael Carter-Williams\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"0\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"0\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"+/-\": \"0\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t}\n\t\t\t],\n\t\t\t\"next_game\": {\n\t\t\t\t\"day\": \"3\",\n\t\t\t\t\"month\": \"November\",\n\t\t\t\t\"year\": \"2014\",\n\t\t\t\t\"dayname\": \"Monday\",\n\t\t\t\t\"stadium\": \"Wells Fargo Center\",\n\t\t\t\t\"city\": \"Philadelphia\",\n\t\t\t\t\"opponent_name\": \"Rockets\",\n\t\t\t\t\"opponent_place\": \"Houston\",\n\t\t\t\t\"is_home\": \"True\"\n\t\t\t}\n\t\t},\n\t\t\"vis\": {\n\t\t\t\"name\": \"Heat\",\n\t\t\t\"place\": \"Miami\",\n\t\t\t\"conference\": \"Eastern Conference\",\n\t\t\t\"division\": \"Southeast\",\n\t\t\t\"wins\": \"2\",\n\t\t\t\"losses\": \"0\",\n\t\t\t\"conference_standing\": 1,\n\t\t\t\"game_number\": \"2\",\n\t\t\t\"previous_game_id\": \"329\",\n\t\t\t\"next_game_id\": \"330\",\n\t\t\t\"line_score\": {\n\t\t\t\t\"game\": {\n\t\t\t\t\t\"FG3A\": \"24\",\n\t\t\t\t\t\"FG3M\": \"12\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FGA\": \"83\",\n\t\t\t\t\t\"FGM\": \"41\",\n\t\t\t\t\t\"FG_PCT\": \"49\",\n\t\t\t\t\t\"FTA\": \"29\",\n\t\t\t\t\t\"FTM\": \"20\",\n\t\t\t\t\t\"FT_PCT\": \"69\",\n\t\t\t\t\t\"DREB\": \"26\",\n\t\t\t\t\t\"OREB\": \"9\",\n\t\t\t\t\t\"TREB\": \"35\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"33\",\n\t\t\t\t\t\"STL\": \"16\",\n\t\t\t\t\t\"TOV\": \"16\",\n\t\t\t\t\t\"PF\": \"20\",\n\t\t\t\t\t\"PTS\": \"114\",\n\t\t\t\t\t\"MIN\": \"4\"\n\t\t\t\t},\n\t\t\t\t\"H1\": {\n\t\t\t\t\t\"FG3A\": \"69\",\n\t\t\t\t\t\"FG3M\": \"44\",\n\t\t\t\t\t\"FG3_PCT\": \"64\",\n\t\t\t\t\t\"FGA\": \"2321\",\n\t\t\t\t\t\"FGM\": \"1110\",\n\t\t\t\t\t\"FG_PCT\": \"48\",\n\t\t\t\t\t\"FTA\": \"106\",\n\t\t\t\t\t\"FTM\": \"64\",\n\t\t\t\t\t\"FT_PCT\": \"60\",\n\t\t\t\t\t\"DREB\": \"35\",\n\t\t\t\t\t\"OREB\": \"23\",\n\t\t\t\t\t\"TREB\": \"58\",\n\t\t\t\t\t\"BLK\": \"00\",\n\t\t\t\t\t\"AST\": \"88\",\n\t\t\t\t\t\"STL\": \"53\",\n\t\t\t\t\t\"TOV\": \"34\",\n\t\t\t\t\t\"PTS\": \"3228\",\n\t\t\t\t\t\"MIN\": \"6060\"\n\t\t\t\t},\n\t\t\t\t\"H2\": {\n\t\t\t\t\t\"FG3A\": \"45\",\n\t\t\t\t\t\"FG3M\": \"22\",\n\t\t\t\t\t\"FG3_PCT\": \"49\",\n\t\t\t\t\t\"FGA\": \"1920\",\n\t\t\t\t\t\"FGM\": \"1010\",\n\t\t\t\t\t\"FG_PCT\": \"53\",\n\t\t\t\t\t\"FTA\": \"85\",\n\t\t\t\t\t\"FTM\": \"55\",\n\t\t\t\t\t\"FT_PCT\": \"65\",\n\t\t\t\t\t\"DREB\": \"612\",\n\t\t\t\t\t\"OREB\": \"22\",\n\t\t\t\t\t\"TREB\": \"634\",\n\t\t\t\t\t\"BLK\": \"00\",\n\t\t\t\t\t\"AST\": \"98\",\n\t\t\t\t\t\"STL\": \"35\",\n\t\t\t\t\t\"TOV\": \"36\",\n\t\t\t\t\t\"PTS\": \"2727\",\n\t\t\t\t\t\"MIN\": \"6060\"\n\t\t\t\t},\n\t\t\t\t\"Q1\": {\n\t\t\t\t\t\"FG3A\": \"6\",\n\t\t\t\t\t\"FG3M\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"67\",\n\t\t\t\t\t\"FGA\": \"23\",\n\t\t\t\t\t\"FGM\": \"11\",\n\t\t\t\t\t\"FG_PCT\": \"48\",\n\t\t\t\t\t\"FTA\": \"10\",\n\t\t\t\t\t\"FTM\": \"6\",\n\t\t\t\t\t\"FT_PCT\": \"60\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"OREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"5\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"8\",\n\t\t\t\t\t\"STL\": \"5\",\n\t\t\t\t\t\"TOV\": \"3\",\n\t\t\t\t\t\"PTS\": \"32\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q2\": {\n\t\t\t\t\t\"FG3A\": \"9\",\n\t\t\t\t\t\"FG3M\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"44\",\n\t\t\t\t\t\"FGA\": \"21\",\n\t\t\t\t\t\"FGM\": \"10\",\n\t\t\t\t\t\"FG_PCT\": \"48\",\n\t\t\t\t\t\"FTA\": \"6\",\n\t\t\t\t\t\"FTM\": \"4\",\n\t\t\t\t\t\"FT_PCT\": \"67\",\n\t\t\t\t\t\"DREB\": \"5\",\n\t\t\t\t\t\"OREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"8\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"8\",\n\t\t\t\t\t\"STL\": \"3\",\n\t\t\t\t\t\"TOV\": \"4\",\n\t\t\t\t\t\"PTS\": \"28\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q3\": {\n\t\t\t\t\t\"FG3A\": \"4\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FGA\": \"19\",\n\t\t\t\t\t\"FGM\": \"10\",\n\t\t\t\t\t\"FG_PCT\": \"53\",\n\t\t\t\t\t\"FTA\": \"8\",\n\t\t\t\t\t\"FTM\": \"5\",\n\t\t\t\t\t\"FT_PCT\": \"62\",\n\t\t\t\t\t\"DREB\": \"6\",\n\t\t\t\t\t\"OREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"8\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"9\",\n\t\t\t\t\t\"STL\": \"3\",\n\t\t\t\t\t\"TOV\": \"3\",\n\t\t\t\t\t\"PTS\": \"27\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"Q4\": {\n\t\t\t\t\t\"FG3A\": \"5\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"40\",\n\t\t\t\t\t\"FGA\": \"20\",\n\t\t\t\t\t\"FGM\": \"10\",\n\t\t\t\t\t\"FG_PCT\": \"50\",\n\t\t\t\t\t\"FTA\": \"5\",\n\t\t\t\t\t\"FTM\": \"5\",\n\t\t\t\t\t\"FT_PCT\": \"100\",\n\t\t\t\t\t\"DREB\": \"12\",\n\t\t\t\t\t\"OREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"14\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"8\",\n\t\t\t\t\t\"STL\": \"5\",\n\t\t\t\t\t\"TOV\": \"6\",\n\t\t\t\t\t\"PTS\": \"27\",\n\t\t\t\t\t\"MIN\": \"60\"\n\t\t\t\t},\n\t\t\t\t\"OT\": {\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"DREB\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"MIN\": \"0\"\n\t\t\t\t}\n\t\t\t},\n\t\t\t\"box_score\": [\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Chris\",\n\t\t\t\t\t\"last_name\": \"Bosh\",\n\t\t\t\t\t\"name\": \"Chris Bosh\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"33\",\n\t\t\t\t\t\"FGM\": \"9\",\n\t\t\t\t\t\"FGA\": \"17\",\n\t\t\t\t\t\"FG_PCT\": \"53\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3A\": \"5\",\n\t\t\t\t\t\"FG3_PCT\": \"40\",\n\t\t\t\t\t\"FTM\": \"10\",\n\t\t\t\t\t\"FTA\": \"11\",\n\t\t\t\t\t\"FT_PCT\": \"91\",\n\t\t\t\t\t\"OREB\": \"3\",\n\t\t\t\t\t\"DREB\": \"5\",\n\t\t\t\t\t\"TREB\": \"8\",\n\t\t\t\t\t\"AST\": \"4\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"3\",\n\t\t\t\t\t\"PF\": \"2\",\n\t\t\t\t\t\"PTS\": \"30\",\n\t\t\t\t\t\"+/-\": \"10\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Dwyane\",\n\t\t\t\t\t\"last_name\": \"Wade\",\n\t\t\t\t\t\"name\": \"Dwyane Wade\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"32\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"18\",\n\t\t\t\t\t\"FG_PCT\": \"22\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"1\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"1\",\n\t\t\t\t\t\"FTA\": \"3\",\n\t\t\t\t\t\"FT_PCT\": \"33\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"DREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"10\",\n\t\t\t\t\t\"STL\": \"3\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"6\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"9\",\n\t\t\t\t\t\"+/-\": \"13\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Luol\",\n\t\t\t\t\t\"last_name\": \"Deng\",\n\t\t\t\t\t\"name\": \"Luol Deng\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"29\",\n\t\t\t\t\t\"FGM\": \"7\",\n\t\t\t\t\t\"FGA\": \"11\",\n\t\t\t\t\t\"FG_PCT\": \"64\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"3\",\n\t\t\t\t\t\"FG3_PCT\": \"33\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"1\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"2\",\n\t\t\t\t\t\"DREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"4\",\n\t\t\t\t\t\"AST\": \"2\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"1\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"15\",\n\t\t\t\t\t\"+/-\": \"4\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Shawne\",\n\t\t\t\t\t\"last_name\": \"Williams\",\n\t\t\t\t\t\"name\": \"Shawne Williams\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"29\",\n\t\t\t\t\t\"FGM\": \"5\",\n\t\t\t\t\t\"FGA\": \"9\",\n\t\t\t\t\t\"FG_PCT\": \"56\",\n\t\t\t\t\t\"FG3M\": \"3\",\n\t\t\t\t\t\"FG3A\": \"5\",\n\t\t\t\t\t\"FG3_PCT\": \"60\",\n\t\t\t\t\t\"FTM\": \"2\",\n\t\t\t\t\t\"FTA\": \"2\",\n\t\t\t\t\t\"FT_PCT\": \"100\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"4\",\n\t\t\t\t\t\"TREB\": \"4\",\n\t\t\t\t\t\"AST\": \"4\",\n\t\t\t\t\t\"STL\": \"1\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"1\",\n\t\t\t\t\t\"PF\": \"4\",\n\t\t\t\t\t\"PTS\": \"15\",\n\t\t\t\t\t\"+/-\": \"16\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Norris\",\n\t\t\t\t\t\"last_name\": \"Cole\",\n\t\t\t\t\t\"name\": \"Norris Cole\",\n\t\t\t\t\t\"starter\": \"True\",\n\t\t\t\t\t\"MIN\": \"27\",\n\t\t\t\t\t\"FGM\": \"4\",\n\t\t\t\t\t\"FGA\": \"7\",\n\t\t\t\t\t\"FG_PCT\": \"57\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3A\": \"4\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"1\",\n\t\t\t\t\t\"AST\": \"4\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"10\",\n\t\t\t\t\t\"+/-\": \"6\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Mario\",\n\t\t\t\t\t\"last_name\": \"Chalmers\",\n\t\t\t\t\t\"name\": \"Mario Chalmers\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"25\",\n\t\t\t\t\t\"FGM\": \"6\",\n\t\t\t\t\t\"FGA\": \"9\",\n\t\t\t\t\t\"FG_PCT\": \"67\",\n\t\t\t\t\t\"FG3M\": \"2\",\n\t\t\t\t\t\"FG3A\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"100\",\n\t\t\t\t\t\"FTM\": \"6\",\n\t\t\t\t\t\"FTA\": \"10\",\n\t\t\t\t\t\"FT_PCT\": \"60\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"2\",\n\t\t\t\t\t\"AST\": \"4\",\n\t\t\t\t\t\"STL\": \"4\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"20\",\n\t\t\t\t\t\"+/-\": \"18\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Shabazz\",\n\t\t\t\t\t\"last_name\": \"Napier\",\n\t\t\t\t\t\"name\": \"Shabazz Napier\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"20\",\n\t\t\t\t\t\"FGM\": \"2\",\n\t\t\t\t\t\"FGA\": \"3\",\n\t\t\t\t\t\"FG_PCT\": \"67\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"2\",\n\t\t\t\t\t\"FG3_PCT\": \"50\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"4\",\n\t\t\t\t\t\"STL\": \"2\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"1\",\n\t\t\t\t\t\"PF\": \"4\",\n\t\t\t\t\t\"PTS\": \"5\",\n\t\t\t\t\t\"+/-\": \"11\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Chris\",\n\t\t\t\t\t\"last_name\": \"Andersen\",\n\t\t\t\t\t\"name\": \"Chris Andersen\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"17\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FGA\": \"2\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"DREB\": \"2\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"2\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"+/-\": \"6\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Josh\",\n\t\t\t\t\t\"last_name\": \"McRoberts\",\n\t\t\t\t\t\"name\": \"Josh McRoberts\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"11\",\n\t\t\t\t\t\"FGM\": \"1\",\n\t\t\t\t\t\"FGA\": \"3\",\n\t\t\t\t\t\"FG_PCT\": \"33\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"1\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"1\",\n\t\t\t\t\t\"FTA\": \"2\",\n\t\t\t\t\t\"FT_PCT\": \"50\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"3\",\n\t\t\t\t\t\"TREB\": \"3\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"2\",\n\t\t\t\t\t\"PF\": \"3\",\n\t\t\t\t\t\"PTS\": \"3\",\n\t\t\t\t\t\"+/-\": \"1\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"James\",\n\t\t\t\t\t\"last_name\": \"Ennis\",\n\t\t\t\t\t\"name\": \"James Ennis\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"7\",\n\t\t\t\t\t\"FGM\": \"2\",\n\t\t\t\t\t\"FGA\": \"3\",\n\t\t\t\t\t\"FG_PCT\": \"67\",\n\t\t\t\t\t\"FG3M\": \"1\",\n\t\t\t\t\t\"FG3A\": \"1\",\n\t\t\t\t\t\"FG3_PCT\": \"100\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"2\",\n\t\t\t\t\t\"AST\": \"1\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"5\",\n\t\t\t\t\t\"+/-\": \"2\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Justin\",\n\t\t\t\t\t\"last_name\": \"Hamilton\",\n\t\t\t\t\t\"name\": \"Justin Hamilton\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"5\",\n\t\t\t\t\t\"FGM\": \"1\",\n\t\t\t\t\t\"FGA\": \"1\",\n\t\t\t\t\t\"FG_PCT\": \"100\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"1\",\n\t\t\t\t\t\"DREB\": \"1\",\n\t\t\t\t\t\"TREB\": \"2\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"1\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"2\",\n\t\t\t\t\t\"+/-\": \"3\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Andre\",\n\t\t\t\t\t\"last_name\": \"Dawkins\",\n\t\t\t\t\t\"name\": \"Andre Dawkins\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"1\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"0\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"1\",\n\t\t\t\t\t\"PF\": \"1\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"+/-\": \"0\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t},\n\t\t\t\t{\n\t\t\t\t\t\"first_name\": \"Shannon\",\n\t\t\t\t\t\"last_name\": \"Brown\",\n\t\t\t\t\t\"name\": \"Shannon Brown\",\n\t\t\t\t\t\"starter\": \"False\",\n\t\t\t\t\t\"MIN\": \"0\",\n\t\t\t\t\t\"FGM\": \"0\",\n\t\t\t\t\t\"FGA\": \"0\",\n\t\t\t\t\t\"FG_PCT\": \"0\",\n\t\t\t\t\t\"FG3M\": \"0\",\n\t\t\t\t\t\"FG3A\": \"0\",\n\t\t\t\t\t\"FG3_PCT\": \"0\",\n\t\t\t\t\t\"FTM\": \"0\",\n\t\t\t\t\t\"FTA\": \"0\",\n\t\t\t\t\t\"FT_PCT\": \"0\",\n\t\t\t\t\t\"OREB\": \"0\",\n\t\t\t\t\t\"DREB\": \"0\",\n\t\t\t\t\t\"TREB\": \"0\",\n\t\t\t\t\t\"AST\": \"0\",\n\t\t\t\t\t\"STL\": \"0\",\n\t\t\t\t\t\"BLK\": \"0\",\n\t\t\t\t\t\"TOV\": \"0\",\n\t\t\t\t\t\"PF\": \"0\",\n\t\t\t\t\t\"PTS\": \"0\",\n\t\t\t\t\t\"+/-\": \"0\",\n\t\t\t\t\t\"DOUBLE\": \"none\"\n\t\t\t\t}\n\t\t\t],\n\t\t\t\"next_game\": {\n\t\t\t\t\"day\": \"2\",\n\t\t\t\t\"month\": \"November\",\n\t\t\t\t\"year\": \"2014\",\n\t\t\t\t\"dayname\": \"Sunday\",\n\t\t\t\t\"stadium\": \"American Airlines Arena\",\n\t\t\t\t\"city\": \"Miami\",\n\t\t\t\t\"opponent_name\": \"Raptors\",\n\t\t\t\t\"opponent_place\": \"Toronto\",\n\t\t\t\t\"is_home\": \"True\"\n\t\t\t}\n\t\t}\n\t},\n\t\"summaries\": [\n\t\t\"The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets .\"\n\t]\n}\n```",
72
- "structure-splits": "- Train: NBA seasons - 2014, 2015, & 2016; total instances - 3690\n- Validation: NBA seasons - 2017; total instances - 1230\n- Test: NBA seasons - 2018; total instances - 1230",
73
- "structure-splits-criteria": "The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset",
74
- "data-fields": "Each instance in the dataset has five fields. \n\n1. \"sportsett_id\": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.\n\n2. \"gem_id\": This is a unique id created as per GEM's requirement which follows the `GEM-${DATASET_NAME}-${SPLIT-NAME}-${id}` pattern.\n\n3. \"game\": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state where it was played.\n\n4. \"teams\": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.\n\n5. \"summaries\": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)).",
75
- "structure-description": "The structure mostly follows the original structure defined in RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/)) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data ([Thomson et. al. 2020](https://aclanthology.org/2020.inlg-1.6/)).",
76
- "structure-labels": "Similar to RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/))",
77
- "structure-outlier": "N/A"
78
- },
79
- "what": {
80
- "dataset": "The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language. "
81
- }
82
- },
83
- "curation": {
84
- "original": {
85
- "is-aggregated": "yes",
86
- "aggregated-sources": "RotoWire-FG (https://www.rotowire.com).\nWikipedia (https://en.wikipedia.org/wiki/Main_Page)\nBasketball Reference (https://www.basketball-reference.com)\n",
87
- "rationale": "The references texts were taken from the existing dataset RotoWire-FG ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)), which is in turn based on Rotowire ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)). The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.",
88
- "communicative": "Create a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate. This is a data-to-text problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts."
89
- },
90
- "language": {
91
- "found": [
92
- "Multiple websites"
93
- ],
94
- "crowdsourced": [],
95
- "created": "N/A",
96
- "machine-generated": "N/A",
97
- "validated": "not validated",
98
- "is-filtered": "manually",
99
- "filtered-criteria": "Games from the 2014 through 2018 seasons were selected. Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.",
100
- "obtained": [
101
- "Found"
102
- ],
103
- "producers-description": "None",
104
- "topics": "Summaries of basketball games (in the NBA).",
105
- "pre-processed": "It retains the original tokenization scheme employed by Wang 2019"
106
- },
107
- "annotations": {
108
- "origin": "none",
109
- "rater-number": "N/A",
110
- "rater-qualifications": "N/A",
111
- "rater-training-num": "N/A",
112
- "rater-test-num": "N/A",
113
- "rater-annotation-service-bool": "no",
114
- "rater-annotation-service": [],
115
- "values": "N/A",
116
- "quality-control": [],
117
- "quality-control-details": "N/A"
118
- },
119
- "consent": {
120
- "has-consent": "no",
121
- "consent-policy": "N/A",
122
- "consent-other": "N/A",
123
- "no-consent-justification": "The dataset consits of a pre-existing dataset, as well as publically available facts."
124
- },
125
- "pii": {
126
- "has-pii": "unlikely",
127
- "no-pii-justification": "N/A",
128
- "is-pii-identified": "no identification",
129
- "pii-identified-method": "N/A",
130
- "is-pii-replaced": "N/A",
131
- "pii-replaced-method": "N/A",
132
- "pii-categories": [
133
- "generic PII"
134
- ]
135
- },
136
- "maintenance": {
137
- "has-maintenance": "no",
138
- "description": "N/A",
139
- "contact": "N/A",
140
- "contestation-mechanism": "N/A",
141
- "contestation-link": "N/A",
142
- "contestation-description": "N/A"
143
- }
144
- },
145
- "considerations": {
146
- "pii": {
147
- "risks-description": "All information relating to persons is of public record."
148
- },
149
- "licenses": {
150
- "dataset-restrictions-other": "N/A",
151
- "data-copyright-other": "N/A",
152
- "dataset-restrictions": [
153
- "public domain"
154
- ],
155
- "data-copyright": [
156
- "public domain"
157
- ]
158
- },
159
- "limitations": {
160
- "data-technical-limitations": "SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable. For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players. It is unavoidable that some data which is aggregated, exists in its base form in previous partitions. The season-based partition scheme heavily constrains this however.",
161
- "data-unsuited-applications": "Factual accuray continues to be a problem, systems may incorrectly represent the facts of the game. ",
162
- "data-discouraged-use": "Using the RG metric to maximise the number of true facts in a generate summary is not nececeraly "
163
- }
164
- },
165
- "context": {
166
- "previous": {
167
- "is-deployed": "no",
168
- "described-risks": "N/A",
169
- "changes-from-observation": "N/A"
170
- },
171
- "underserved": {
172
- "helps-underserved": "no",
173
- "underserved-description": "N/A"
174
- },
175
- "biases": {
176
- "has-biases": "yes",
177
- "bias-analyses": "Unaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games. It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text. This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.",
178
- "speaker-distibution": "No, it is very specifically American English from the sports journalism domain."
179
- }
180
- }
181
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sportsett_basketball.py DELETED
@@ -1,722 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """TODO: Add a description here."""
16
-
17
-
18
- import csv
19
- import json
20
- import os
21
- import re
22
- from readline import parse_and_bind
23
-
24
- import datasets
25
-
26
-
27
- # TODO: Add BibTeX citation
28
- # Find for instance the citation on arxiv or on the dataset repo/website
29
- _CITATION = """\
30
- @inproceedings{thomson-etal-2020-sportsett,
31
- title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
32
- author = "Thomson, Craig and
33
- Reiter, Ehud and
34
- Sripada, Somayajulu",
35
- booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
36
- month = sep,
37
- year = "2020",
38
- address = "Santiago de Compostela, Spain",
39
- publisher = "Association for Computational Lingustics",
40
- url = "https://aclanthology.org/2020.intellang-1.4",
41
- pages = "32--40",
42
- }
43
- """
44
-
45
- # TODO: Add description of the dataset here
46
- # You can copy an official description
47
- _DESCRIPTION = """\
48
- SportSett:Basketball dataset for Data-to-Text Generation contains NBA games stats aligned with their human written summaries.
49
- """
50
-
51
- # TODO: Add a link to an official homepage for the dataset here
52
- _HOMEPAGE = "https://github.com/nlgcat/sport_sett_basketball"
53
-
54
- # TODO: Add the licence for the dataset here if you can find it
55
- _LICENSE = ""
56
-
57
- # TODO: Add link to the official dataset URLs here
58
- # The HuggingFace dataset library don't host the datasets but only point to the original files
59
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
60
- _URLs = {
61
- "train": "train.jsonl",
62
- "validation": "validation.jsonl",
63
- "test": "test.jsonl"
64
- }
65
-
66
-
67
- def detokenize(text):
68
- """
69
- Untokenizing a text undoes the tokenizing operation, restoring
70
- punctuation and spaces to the places that people expect them to be.
71
- Ideally, `untokenize(tokenize(text))` should be identical to `text`,
72
- except for line breaks.
73
- """
74
- step1 = text.replace("`` ", '"').replace(" ''", '"').replace('. . .', '...')
75
- step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
76
- step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
77
- step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3)
78
- step5 = step4.replace(" '", "'").replace(" n't", "n't").replace(
79
- "can not", "cannot").replace(" 've", "'ve")
80
- step6 = step5.replace(" ` ", " '")
81
- return step6.strip()
82
-
83
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
84
- class SportsettBasketball(datasets.GeneratorBasedBuilder):
85
- """SportSett:Basketball datatset for Data-to-Text Generation."""
86
-
87
- VERSION = datasets.Version("1.1.0")
88
-
89
- def _info(self):
90
- features = datasets.Features(
91
- {
92
- "sportsett_id": datasets.Value("string"),
93
- "gem_id": datasets.Value("string"),
94
- "game": {
95
- "day": datasets.Value("string"),
96
- "month": datasets.Value("string"),
97
- "year": datasets.Value("string"),
98
- "dayname": datasets.Value("string"),
99
- "season": datasets.Value("string"),
100
- "stadium": datasets.Value("string"),
101
- "city": datasets.Value("string"),
102
- "state": datasets.Value("string"),
103
- "attendance": datasets.Value("string"),
104
- "capacity": datasets.Value("string"),
105
- "game_id": datasets.Value("string")
106
- },
107
- "teams": {
108
- "home": {
109
- "name": datasets.Value("string"),
110
- "place": datasets.Value("string"),
111
- "conference": datasets.Value("string"),
112
- "division": datasets.Value("string"),
113
- "wins": datasets.Value("string"),
114
- "losses": datasets.Value("string"),
115
- "conference_standing": datasets.Value("int32"),
116
- "game_number": datasets.Value("string"),
117
- "previous_game_id": datasets.Value("string"),
118
- "next_game_id": datasets.Value("string"),
119
- "line_score": {
120
- "game": {
121
- "FG3A": datasets.Value("string"),
122
- "FG3M": datasets.Value("string"),
123
- "FG3_PCT": datasets.Value("string"),
124
- "FGA": datasets.Value("string"),
125
- "FGM": datasets.Value("string"),
126
- "FG_PCT": datasets.Value("string"),
127
- "FTA": datasets.Value("string"),
128
- "FTM": datasets.Value("string"),
129
- "FT_PCT": datasets.Value("string"),
130
- "DREB": datasets.Value("string"),
131
- "OREB": datasets.Value("string"),
132
- "TREB": datasets.Value("string"),
133
- "BLK": datasets.Value("string"),
134
- "AST": datasets.Value("string"),
135
- "STL": datasets.Value("string"),
136
- "TOV": datasets.Value("string"),
137
- "PF": datasets.Value("string"),
138
- "PTS": datasets.Value("string"),
139
- "MIN": datasets.Value("string")
140
- },
141
- "H1": {
142
- "FG3A": datasets.Value("string"),
143
- "FG3M": datasets.Value("string"),
144
- "FG3_PCT": datasets.Value("string"),
145
- "FGA": datasets.Value("string"),
146
- "FGM": datasets.Value("string"),
147
- "FG_PCT": datasets.Value("string"),
148
- "FTA": datasets.Value("string"),
149
- "FTM": datasets.Value("string"),
150
- "FT_PCT": datasets.Value("string"),
151
- "DREB": datasets.Value("string"),
152
- "OREB": datasets.Value("string"),
153
- "TREB": datasets.Value("string"),
154
- "BLK": datasets.Value("string"),
155
- "AST": datasets.Value("string"),
156
- "STL": datasets.Value("string"),
157
- "TOV": datasets.Value("string"),
158
- "PTS": datasets.Value("string"),
159
- "MIN": datasets.Value("string")
160
- },
161
- "H2": {
162
- "FG3A": datasets.Value("string"),
163
- "FG3M": datasets.Value("string"),
164
- "FG3_PCT": datasets.Value("string"),
165
- "FGA": datasets.Value("string"),
166
- "FGM": datasets.Value("string"),
167
- "FG_PCT": datasets.Value("string"),
168
- "FTA": datasets.Value("string"),
169
- "FTM": datasets.Value("string"),
170
- "FT_PCT": datasets.Value("string"),
171
- "DREB": datasets.Value("string"),
172
- "OREB": datasets.Value("string"),
173
- "TREB": datasets.Value("string"),
174
- "BLK": datasets.Value("string"),
175
- "AST": datasets.Value("string"),
176
- "STL": datasets.Value("string"),
177
- "TOV": datasets.Value("string"),
178
- "PTS": datasets.Value("string"),
179
- "MIN": datasets.Value("string")
180
- },
181
- "Q1": {
182
- "FG3A": datasets.Value("string"),
183
- "FG3M": datasets.Value("string"),
184
- "FG3_PCT": datasets.Value("string"),
185
- "FGA": datasets.Value("string"),
186
- "FGM": datasets.Value("string"),
187
- "FG_PCT": datasets.Value("string"),
188
- "FTA": datasets.Value("string"),
189
- "FTM": datasets.Value("string"),
190
- "FT_PCT": datasets.Value("string"),
191
- "DREB": datasets.Value("string"),
192
- "OREB": datasets.Value("string"),
193
- "TREB": datasets.Value("string"),
194
- "BLK": datasets.Value("string"),
195
- "AST": datasets.Value("string"),
196
- "STL": datasets.Value("string"),
197
- "TOV": datasets.Value("string"),
198
- "PTS": datasets.Value("string"),
199
- "MIN": datasets.Value("string")
200
- },
201
- "Q2": {
202
- "FG3A": datasets.Value("string"),
203
- "FG3M": datasets.Value("string"),
204
- "FG3_PCT": datasets.Value("string"),
205
- "FGA": datasets.Value("string"),
206
- "FGM": datasets.Value("string"),
207
- "FG_PCT": datasets.Value("string"),
208
- "FTA": datasets.Value("string"),
209
- "FTM": datasets.Value("string"),
210
- "FT_PCT": datasets.Value("string"),
211
- "DREB": datasets.Value("string"),
212
- "OREB": datasets.Value("string"),
213
- "TREB": datasets.Value("string"),
214
- "BLK": datasets.Value("string"),
215
- "AST": datasets.Value("string"),
216
- "STL": datasets.Value("string"),
217
- "TOV": datasets.Value("string"),
218
- "PTS": datasets.Value("string"),
219
- "MIN": datasets.Value("string")
220
- },
221
- "Q3": {
222
- "FG3A": datasets.Value("string"),
223
- "FG3M": datasets.Value("string"),
224
- "FG3_PCT": datasets.Value("string"),
225
- "FGA": datasets.Value("string"),
226
- "FGM": datasets.Value("string"),
227
- "FG_PCT": datasets.Value("string"),
228
- "FTA": datasets.Value("string"),
229
- "FTM": datasets.Value("string"),
230
- "FT_PCT": datasets.Value("string"),
231
- "DREB": datasets.Value("string"),
232
- "OREB": datasets.Value("string"),
233
- "TREB": datasets.Value("string"),
234
- "BLK": datasets.Value("string"),
235
- "AST": datasets.Value("string"),
236
- "STL": datasets.Value("string"),
237
- "TOV": datasets.Value("string"),
238
- "PTS": datasets.Value("string"),
239
- "MIN": datasets.Value("string")
240
- },
241
- "Q4": {
242
- "FG3A": datasets.Value("string"),
243
- "FG3M": datasets.Value("string"),
244
- "FG3_PCT": datasets.Value("string"),
245
- "FGA": datasets.Value("string"),
246
- "FGM": datasets.Value("string"),
247
- "FG_PCT": datasets.Value("string"),
248
- "FTA": datasets.Value("string"),
249
- "FTM": datasets.Value("string"),
250
- "FT_PCT": datasets.Value("string"),
251
- "DREB": datasets.Value("string"),
252
- "OREB": datasets.Value("string"),
253
- "TREB": datasets.Value("string"),
254
- "BLK": datasets.Value("string"),
255
- "AST": datasets.Value("string"),
256
- "STL": datasets.Value("string"),
257
- "TOV": datasets.Value("string"),
258
- "PTS": datasets.Value("string"),
259
- "MIN": datasets.Value("string")
260
- },
261
- "OT": {
262
- "FG3A": datasets.Value("string"),
263
- "FG3M": datasets.Value("string"),
264
- "FG3_PCT": datasets.Value("string"),
265
- "FGA": datasets.Value("string"),
266
- "FGM": datasets.Value("string"),
267
- "FG_PCT": datasets.Value("string"),
268
- "FTA": datasets.Value("string"),
269
- "FTM": datasets.Value("string"),
270
- "FT_PCT": datasets.Value("string"),
271
- "DREB": datasets.Value("string"),
272
- "OREB": datasets.Value("string"),
273
- "TREB": datasets.Value("string"),
274
- "BLK": datasets.Value("string"),
275
- "AST": datasets.Value("string"),
276
- "STL": datasets.Value("string"),
277
- "TOV": datasets.Value("string"),
278
- "PTS": datasets.Value("string"),
279
- "MIN": datasets.Value("string")
280
- }
281
- },
282
- "box_score": [
283
- {
284
- "first_name": datasets.Value("string"),
285
- "last_name": datasets.Value("string"),
286
- "name": datasets.Value("string"),
287
- "starter": datasets.Value("string"),
288
- "MIN": datasets.Value("string"),
289
- "FGM": datasets.Value("string"),
290
- "FGA": datasets.Value("string"),
291
- "FG_PCT": datasets.Value("string"),
292
- "FG3M": datasets.Value("string"),
293
- "FG3A": datasets.Value("string"),
294
- "FG3_PCT": datasets.Value("string"),
295
- "FTM": datasets.Value("string"),
296
- "FTA": datasets.Value("string"),
297
- "FT_PCT": datasets.Value("string"),
298
- "OREB": datasets.Value("string"),
299
- "DREB": datasets.Value("string"),
300
- "TREB": datasets.Value("string"),
301
- "AST": datasets.Value("string"),
302
- "STL": datasets.Value("string"),
303
- "BLK": datasets.Value("string"),
304
- "TOV": datasets.Value("string"),
305
- "PF": datasets.Value("string"),
306
- "PTS": datasets.Value("string"),
307
- "+/-": datasets.Value("string"),
308
- "DOUBLE": datasets.Value("string")
309
- }
310
- ],
311
- "next_game": {
312
- "day": datasets.Value("string"),
313
- "month": datasets.Value("string"),
314
- "year": datasets.Value("string"),
315
- "dayname": datasets.Value("string"),
316
- "stadium": datasets.Value("string"),
317
- "city": datasets.Value("string"),
318
- "opponent_name": datasets.Value("string"),
319
- "opponent_place": datasets.Value("string"),
320
- "is_home": datasets.Value("string"),
321
- }
322
- },
323
- "vis": {
324
- "name": datasets.Value("string"),
325
- "place": datasets.Value("string"),
326
- "conference": datasets.Value("string"),
327
- "division": datasets.Value("string"),
328
- "wins": datasets.Value("string"),
329
- "losses": datasets.Value("string"),
330
- "conference_standing": datasets.Value("int32"),
331
- "game_number": datasets.Value("string"),
332
- "previous_game_id": datasets.Value("string"),
333
- "next_game_id": datasets.Value("string"),
334
- "line_score": {
335
- "game": {
336
- "FG3A": datasets.Value("string"),
337
- "FG3M": datasets.Value("string"),
338
- "FG3_PCT": datasets.Value("string"),
339
- "FGA": datasets.Value("string"),
340
- "FGM": datasets.Value("string"),
341
- "FG_PCT": datasets.Value("string"),
342
- "FTA": datasets.Value("string"),
343
- "FTM": datasets.Value("string"),
344
- "FT_PCT": datasets.Value("string"),
345
- "DREB": datasets.Value("string"),
346
- "OREB": datasets.Value("string"),
347
- "TREB": datasets.Value("string"),
348
- "BLK": datasets.Value("string"),
349
- "AST": datasets.Value("string"),
350
- "STL": datasets.Value("string"),
351
- "TOV": datasets.Value("string"),
352
- "PF": datasets.Value("string"),
353
- "PTS": datasets.Value("string"),
354
- "MIN": datasets.Value("string")
355
- },
356
- "H1": {
357
- "FG3A": datasets.Value("string"),
358
- "FG3M": datasets.Value("string"),
359
- "FG3_PCT": datasets.Value("string"),
360
- "FGA": datasets.Value("string"),
361
- "FGM": datasets.Value("string"),
362
- "FG_PCT": datasets.Value("string"),
363
- "FTA": datasets.Value("string"),
364
- "FTM": datasets.Value("string"),
365
- "FT_PCT": datasets.Value("string"),
366
- "DREB": datasets.Value("string"),
367
- "OREB": datasets.Value("string"),
368
- "TREB": datasets.Value("string"),
369
- "BLK": datasets.Value("string"),
370
- "AST": datasets.Value("string"),
371
- "STL": datasets.Value("string"),
372
- "TOV": datasets.Value("string"),
373
- "PTS": datasets.Value("string"),
374
- "MIN": datasets.Value("string")
375
- },
376
- "H2": {
377
- "FG3A": datasets.Value("string"),
378
- "FG3M": datasets.Value("string"),
379
- "FG3_PCT": datasets.Value("string"),
380
- "FGA": datasets.Value("string"),
381
- "FGM": datasets.Value("string"),
382
- "FG_PCT": datasets.Value("string"),
383
- "FTA": datasets.Value("string"),
384
- "FTM": datasets.Value("string"),
385
- "FT_PCT": datasets.Value("string"),
386
- "DREB": datasets.Value("string"),
387
- "OREB": datasets.Value("string"),
388
- "TREB": datasets.Value("string"),
389
- "BLK": datasets.Value("string"),
390
- "AST": datasets.Value("string"),
391
- "STL": datasets.Value("string"),
392
- "TOV": datasets.Value("string"),
393
- "PTS": datasets.Value("string"),
394
- "MIN": datasets.Value("string")
395
- },
396
- "Q1": {
397
- "FG3A": datasets.Value("string"),
398
- "FG3M": datasets.Value("string"),
399
- "FG3_PCT": datasets.Value("string"),
400
- "FGA": datasets.Value("string"),
401
- "FGM": datasets.Value("string"),
402
- "FG_PCT": datasets.Value("string"),
403
- "FTA": datasets.Value("string"),
404
- "FTM": datasets.Value("string"),
405
- "FT_PCT": datasets.Value("string"),
406
- "DREB": datasets.Value("string"),
407
- "OREB": datasets.Value("string"),
408
- "TREB": datasets.Value("string"),
409
- "BLK": datasets.Value("string"),
410
- "AST": datasets.Value("string"),
411
- "STL": datasets.Value("string"),
412
- "TOV": datasets.Value("string"),
413
- "PTS": datasets.Value("string"),
414
- "MIN": datasets.Value("string")
415
- },
416
- "Q2": {
417
- "FG3A": datasets.Value("string"),
418
- "FG3M": datasets.Value("string"),
419
- "FG3_PCT": datasets.Value("string"),
420
- "FGA": datasets.Value("string"),
421
- "FGM": datasets.Value("string"),
422
- "FG_PCT": datasets.Value("string"),
423
- "FTA": datasets.Value("string"),
424
- "FTM": datasets.Value("string"),
425
- "FT_PCT": datasets.Value("string"),
426
- "DREB": datasets.Value("string"),
427
- "OREB": datasets.Value("string"),
428
- "TREB": datasets.Value("string"),
429
- "BLK": datasets.Value("string"),
430
- "AST": datasets.Value("string"),
431
- "STL": datasets.Value("string"),
432
- "TOV": datasets.Value("string"),
433
- "PTS": datasets.Value("string"),
434
- "MIN": datasets.Value("string")
435
- },
436
- "Q3": {
437
- "FG3A": datasets.Value("string"),
438
- "FG3M": datasets.Value("string"),
439
- "FG3_PCT": datasets.Value("string"),
440
- "FGA": datasets.Value("string"),
441
- "FGM": datasets.Value("string"),
442
- "FG_PCT": datasets.Value("string"),
443
- "FTA": datasets.Value("string"),
444
- "FTM": datasets.Value("string"),
445
- "FT_PCT": datasets.Value("string"),
446
- "DREB": datasets.Value("string"),
447
- "OREB": datasets.Value("string"),
448
- "TREB": datasets.Value("string"),
449
- "BLK": datasets.Value("string"),
450
- "AST": datasets.Value("string"),
451
- "STL": datasets.Value("string"),
452
- "TOV": datasets.Value("string"),
453
- "PTS": datasets.Value("string"),
454
- "MIN": datasets.Value("string")
455
- },
456
- "Q4": {
457
- "FG3A": datasets.Value("string"),
458
- "FG3M": datasets.Value("string"),
459
- "FG3_PCT": datasets.Value("string"),
460
- "FGA": datasets.Value("string"),
461
- "FGM": datasets.Value("string"),
462
- "FG_PCT": datasets.Value("string"),
463
- "FTA": datasets.Value("string"),
464
- "FTM": datasets.Value("string"),
465
- "FT_PCT": datasets.Value("string"),
466
- "DREB": datasets.Value("string"),
467
- "OREB": datasets.Value("string"),
468
- "TREB": datasets.Value("string"),
469
- "BLK": datasets.Value("string"),
470
- "AST": datasets.Value("string"),
471
- "STL": datasets.Value("string"),
472
- "TOV": datasets.Value("string"),
473
- "PTS": datasets.Value("string"),
474
- "MIN": datasets.Value("string")
475
- },
476
- "OT": {
477
- "FG3A": datasets.Value("string"),
478
- "FG3M": datasets.Value("string"),
479
- "FG3_PCT": datasets.Value("string"),
480
- "FGA": datasets.Value("string"),
481
- "FGM": datasets.Value("string"),
482
- "FG_PCT": datasets.Value("string"),
483
- "FTA": datasets.Value("string"),
484
- "FTM": datasets.Value("string"),
485
- "FT_PCT": datasets.Value("string"),
486
- "DREB": datasets.Value("string"),
487
- "OREB": datasets.Value("string"),
488
- "TREB": datasets.Value("string"),
489
- "BLK": datasets.Value("string"),
490
- "AST": datasets.Value("string"),
491
- "STL": datasets.Value("string"),
492
- "TOV": datasets.Value("string"),
493
- "PTS": datasets.Value("string"),
494
- "MIN": datasets.Value("string")
495
- }
496
- },
497
- "box_score": [
498
- {
499
- "first_name": datasets.Value("string"),
500
- "last_name": datasets.Value("string"),
501
- "name": datasets.Value("string"),
502
- "starter": datasets.Value("string"),
503
- "MIN": datasets.Value("string"),
504
- "FGM": datasets.Value("string"),
505
- "FGA": datasets.Value("string"),
506
- "FG_PCT": datasets.Value("string"),
507
- "FG3M": datasets.Value("string"),
508
- "FG3A": datasets.Value("string"),
509
- "FG3_PCT": datasets.Value("string"),
510
- "FTM": datasets.Value("string"),
511
- "FTA": datasets.Value("string"),
512
- "FT_PCT": datasets.Value("string"),
513
- "OREB": datasets.Value("string"),
514
- "DREB": datasets.Value("string"),
515
- "TREB": datasets.Value("string"),
516
- "AST": datasets.Value("string"),
517
- "STL": datasets.Value("string"),
518
- "BLK": datasets.Value("string"),
519
- "TOV": datasets.Value("string"),
520
- "PF": datasets.Value("string"),
521
- "PTS": datasets.Value("string"),
522
- "+/-": datasets.Value("string"),
523
- "DOUBLE": datasets.Value("string")
524
- }
525
- ],
526
- "next_game": {
527
- "day": datasets.Value("string"),
528
- "month": datasets.Value("string"),
529
- "year": datasets.Value("string"),
530
- "dayname": datasets.Value("string"),
531
- "stadium": datasets.Value("string"),
532
- "city": datasets.Value("string"),
533
- "opponent_name": datasets.Value("string"),
534
- "opponent_place": datasets.Value("string"),
535
- "is_home": datasets.Value("string"),
536
- }
537
- }
538
- },
539
- "summaries": datasets.Sequence(datasets.Value("string")),
540
- "target": datasets.Value("string"),
541
- "references": [datasets.Value("string")],
542
- "linearized_input": datasets.Value("string")
543
- }
544
- )
545
- return datasets.DatasetInfo(
546
- description=_DESCRIPTION,
547
- features=features,
548
- supervised_keys=None,
549
- homepage=_HOMEPAGE,
550
- license=_LICENSE,
551
- citation=_CITATION,
552
- )
553
-
554
- def _split_generators(self, dl_manager):
555
- """Returns SplitGenerators."""
556
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
557
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
558
-
559
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
560
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
561
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
562
- data_dir = dl_manager.download_and_extract(_URLs)
563
- return [
564
- datasets.SplitGenerator(
565
- name=datasets.Split.TRAIN,
566
- # These kwargs will be passed to _generate_examples
567
- gen_kwargs={
568
- "filepath": data_dir["train"],
569
- "split": "train",
570
- },
571
- ),
572
- datasets.SplitGenerator(
573
- name=datasets.Split.TEST,
574
- # These kwargs will be passed to _generate_examples
575
- gen_kwargs={
576
- "filepath": data_dir["test"],
577
- "split": "test"
578
- },
579
- ),
580
- datasets.SplitGenerator(
581
- name=datasets.Split.VALIDATION,
582
- # These kwargs will be passed to _generate_examples
583
- gen_kwargs={
584
- "filepath": data_dir["validation"],
585
- "split": "validation",
586
- },
587
- ),
588
- ]
589
-
590
- def tokenize_initials(self, value):
591
- attrib_value = re.sub(r"(\w)\.(\w)\.", r"\g<1>. \g<2>.", value)
592
- return attrib_value
593
-
594
- def sort_players_by_pts(self, entry, type='HOME'):
595
- """
596
- Sort players by points and return the indices sorted by points
597
- bs --> [{'pts': 10}, {'pts': 30}, {'pts': 35}, {'pts': 5}]
598
- return --> [2, 1, 0, 3]
599
- """
600
- all_pts = [int(item['PTS']) for item in entry['teams'][type.lower()]['box_score']]
601
- all_pts1 = [[item, idx] for idx, item in enumerate(all_pts)]
602
- all_pts1.sort()
603
- all_pts1.reverse()
604
- return [item[1] for item in all_pts1]
605
-
606
- def get_one_player_data(self, player_stats, team_name, rank):
607
- """
608
- player_line = "<PLAYER> %s <TEAM> %s <POS> %s <RANK> %s <MIN> %d <PTS> %d <FG> %d %d %d <FG3> %d %d %d \
609
- <FT> %d %d %d <REB> %d <AST> %d <STL> %s <BLK> %d <DREB> %d <OREB> %d <TO> %d"
610
- """
611
- pos = f'STARTER YES' if player_stats['starter'] == True else f'STARTER NO'
612
- player_min = int(player_stats['MIN'])
613
- rank = rank if player_min > 0 else f"{rank.split('-')[0]}-DIDNTPLAY"
614
- player_line = f"<PLAYER> {self.tokenize_initials(player_stats['name'])} <TEAM> {team_name} <POS> {pos} <RANK> {rank}"
615
- player_line = f"{player_line} <MIN> {player_stats['MIN']} <PTS> {player_stats['PTS']} <FG> {player_stats['FGM']} {player_stats['FGA']} {player_stats['FG_PCT']}"
616
- player_line = f"{player_line} <FG3> {player_stats['FG3M']} {player_stats['FG3A']} {player_stats['FG3_PCT']}"
617
- player_line = f"{player_line} <FT> {player_stats['FTM']} {player_stats['FTA']} {player_stats['FT_PCT']}"
618
- player_line = f"{player_line} <REB> {player_stats['TREB']} <AST> {player_stats['AST']} <STL> {player_stats['STL']}"
619
- player_line = f"{player_line} <BLK> {player_stats['BLK']} <DREB> {player_stats['DREB']} <OREB> {player_stats['OREB']} <TO> {player_stats['TOV']}"
620
- player_line = f"{player_line} <DOUBLE> {player_stats['DOUBLE']}"
621
- return player_line
622
-
623
- def get_box_score(self, entry, type='HOME'):
624
- bs = entry['teams'][type.lower()]['box_score']
625
- team_name = f"{entry['teams'][type.lower()]['place']} {entry['teams'][type.lower()]['name']}"
626
- sorted_idx = self.sort_players_by_pts(entry, type)
627
- player_lines = [self.get_one_player_data(bs[idx], team_name, f'{type}-{rank}') for rank, idx in enumerate(sorted_idx)]
628
- return ' '.join(player_lines)
629
-
630
- def get_team_line(self, entry, type='HOME', winner='HOME'):
631
- """
632
- team_line = "%s <TEAM> %s <CITY> %s <TEAM-RESULT> %s <TEAM-PTS> %d <WINS-LOSSES> %d %d <QTRS> %d %d %d %d \
633
- <TEAM-AST> %d <3PT> %d <TEAM-FG> %d <TEAM-FT> %d <TEAM-REB> %d <TEAM-TO> %d"
634
- """
635
- line_score = entry['teams'][type.lower()]['line_score']['game']
636
- team_line = f"<TEAM> {entry['teams'][type.lower()]['name']} <CITY> {entry['teams'][type.lower()]['place']}"
637
- if winner == type:
638
- team_line = f"{team_line} <TEAM-RESULT> won"
639
- else:
640
- team_line = f"{team_line} <TEAM-RESULT> lost"
641
- team_line = f"{team_line} <TEAM-PTS> {line_score['PTS']} <WINS-LOSSES> {entry['teams'][type.lower()]['wins']} {entry['teams'][type.lower()]['losses']}"
642
- team_line = f"{team_line} <QTRS> {entry['teams'][type.lower()]['line_score']['Q1']['PTS']} {entry['teams'][type.lower()]['line_score']['Q2']['PTS']}"
643
- team_line = f"{team_line} {entry['teams'][type.lower()]['line_score']['Q3']['PTS']} {entry['teams'][type.lower()]['line_score']['Q4']['PTS']}"
644
- team_line = f"{team_line} <TEAM-AST> {line_score['AST']} <3PT> {line_score['FG3M']} <TEAM-FG> {line_score['FGM']} <TEAM-FT> {line_score['FTM']}"
645
- team_line = f"{team_line} <TEAM-REB> {line_score['TREB']} <TEAM-TO> {line_score['TOV']}"
646
- return team_line
647
-
648
- def get_box_and_line_scores(self, entry):
649
- """Get line- & box- scores data for a single game"""
650
-
651
- home_team_pts = entry['teams']['home']['line_score']['game']['PTS']
652
- vis_team_pts = entry['teams']['home']['line_score']['game']['PTS']
653
- winner = 'HOME' if int(home_team_pts) > int(vis_team_pts) else 'VIS'
654
-
655
- home_team_line = self.get_team_line(entry, type='HOME', winner=winner)
656
- vis_team_line = self.get_team_line(entry, type='VIS', winner=winner)
657
-
658
- home_box_score = self.get_box_score(entry, type='HOME')
659
- vis_box_score = self.get_box_score(entry, type='VIS')
660
-
661
- return home_team_line, vis_team_line, home_box_score, vis_box_score
662
-
663
- def get_game_data(self, entry):
664
- """Get game data for a single game"""
665
- game_date = f"{entry['day']} {entry['month']} {entry['year']}"
666
- game_day = entry['dayname']
667
- game_stadium = entry['stadium']
668
- game_city = entry['city']
669
- return f"<DATE> {game_date} <DAY> {game_day} <STADIUM> {game_stadium} <CITY> {game_city}"
670
-
671
- def get_next_game_data_of_a_team(self, entry):
672
- """
673
- next_game_line = "<NEXT-GAME-DATE> %s <NEXT-GAME-DAY> %s <NEXT-GAME-STADIUM> %s <NEXT-GAME-CITY> %s"
674
- """
675
- next_game_date = f"{entry['day']} {entry['month']} {entry['year']}"
676
- next_game_is_home = 'yes' if entry['is_home'] == 'True' else 'no'
677
- next_game_line = f"<NEXT-DATE> {next_game_date} <NEXT-DAY> {entry['dayname']}"
678
- next_game_line = f"{next_game_line} <NEXT-STADIUM> {entry['stadium']} <NEXT-CITY> {entry['city']}"
679
- next_game_line = f"{next_game_line} <NEXT-OPPONENT-PLACE> {entry['opponent_place']} <NEXT-OPPONENT-NAME> {entry['opponent_name']}"
680
- next_game_line = f"{next_game_line} <NEXT-IS-HOME> {next_game_is_home}"
681
- return next_game_line
682
-
683
- def get_next_game_info(self, entry):
684
- """
685
- Get next game data for both teams in a game.
686
- In case of no next game, all values will be ''.
687
- """
688
- home_next_game = self.get_next_game_data_of_a_team(entry['teams']['home']['next_game'])
689
- vis_next_game = self.get_next_game_data_of_a_team(entry['teams']['vis']['next_game'])
690
- return home_next_game, vis_next_game
691
-
692
- def linearize_input(self, entry):
693
- """
694
- Linearizes the input to the model.
695
- """
696
- game_data = self.get_game_data(entry['game'])
697
- home_line, vis_line, home_box_score, vis_box_score = self.get_box_and_line_scores(entry)
698
- home_next, vis_next = self.get_next_game_info(entry)
699
- linearized_input = f"<GAME> {game_data} <HOME> {home_line} <NEXT-HOME> {home_next} <VIS> {vis_line} <VIS-NEXT> {vis_next} {home_box_score} {vis_box_score}"
700
- return linearized_input
701
-
702
- def _generate_examples(
703
- self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
704
- ):
705
- """ Yields examples as (key, example) tuples. """
706
- # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
707
- # The `key` is here for legacy reason (tfds) and is not important in itself.
708
-
709
- # js = json.load(open(filepath, encoding="utf-8"))
710
- with open(filepath, encoding="utf-8") as f:
711
- for id_, row in enumerate(f):
712
- data = json.loads(row)
713
- yield id_, {
714
- "sportsett_id": data["sportsett_id"],
715
- "gem_id": data["gem_id"],
716
- "game": data["game"],
717
- "teams": data["teams"],
718
- "summaries": data["summaries"],
719
- "target": detokenize(data["summaries"][0]),
720
- "references": [detokenize(s) for s in data["summaries"]],
721
- "linearized_input": self.linearize_input(data)
722
- }