sportsett_basketball / sportsett_basketball.py
ashishu007
added loader
015f28f
raw
history blame
14.8 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{thomson-etal-2020-sportsett,
title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
author = "Thomson, Craig and
Reiter, Ehud and
Sripada, Somayajulu",
booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
month = sep,
year = "2020",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2020.intellang-1.4",
pages = "32--40",
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
SportSett:Basketball dataset for Data-to-Text Generation contains NBA games stats aligned with their human written summaries.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/nlgcat/sport_sett_basketball"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"train": "train.json",
"validation": "validation.json",
"test": "test.json"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class SportSettBasketball(datasets.GeneratorBasedBuilder):
"""SportSett:Basketball datatset for Data-to-Text Generation."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"sportsett_id": datasets.Value("string"),
"gem_id": datasets.Value("string"),
"game": {
"day": datasets.Value("string"),
"month": datasets.Value("string"),
"year": datasets.Value("string"),
"dayname": datasets.Value("string"),
"season": datasets.Value("string"),
"stadium": datasets.Value("string"),
"city": datasets.Value("string"),
"state": datasets.Value("string"),
"attendance": datasets.Value("string"),
"capacity": datasets.Value("string")
},
"teams": {
"home": {
"name": datasets.Value("string"),
"place": datasets.Value("string"),
"conference": datasets.Value("string"),
"division": datasets.Value("string"),
"wins": datasets.Value("string"),
"losses": datasets.Value("string"),
"conference_standing": datasets.Value("string"),
"division_standing": datasets.Value("string"),
"streak_num": datasets.Value("string"),
"game_number": datasets.Value("string"),
"previous_game_id": datasets.Value("string"),
"next_game_id": datasets.Value("string"),
"line_score": {
"game": {
"FG3A": datasets.Value("string"),
"FG3M": datasets.Value("string"),
"FGA": datasets.Value("string"),
"FGM": datasets.Value("string"),
"FTA": datasets.Value("string"),
"FTM": datasets.Value("string"),
"PF": datasets.Value("string"),
"DREB": datasets.Value("string"),
"OREB": datasets.Value("string"),
"BLK": datasets.Value("string"),
"AST": datasets.Value("string"),
"STL": datasets.Value("string"),
"TOV": datasets.Value("string"),
"PTS": datasets.Value("string"),
"SEC": datasets.Value("string")
},
"H1": {},
"H2": {},
"Q1": {},
"Q2": {},
"Q3": {},
"Q4": {},
"OT": {}
},
"box_score": [ {
"first_name": datasets.Value("string"),
"last_name": datasets.Value("string"),
"name": datasets.Value("string"),
"starter": datasets.Value("string"),
"MIN": datasets.Value("string"),
"FGM": datasets.Value("string"),
"FGA": datasets.Value("string"),
"FG3M": datasets.Value("string"),
"FG3A": datasets.Value("string"),
"FTM": datasets.Value("string"),
"FTA": datasets.Value("string"),
"OREB": datasets.Value("string"),
"DREB": datasets.Value("string"),
"AST": datasets.Value("string"),
"STL": datasets.Value("string"),
"BLK": datasets.Value("string"),
"TOV": datasets.Value("string"),
"PF": datasets.Value("string"),
"PTS": datasets.Value("string"),
"+/-": datasets.Value("string"),
}
],
"next_game": {
"day": datasets.Value("string"),
"month": datasets.Value("string"),
"year": datasets.Value("string"),
"dayname": datasets.Value("string"),
"stadium": datasets.Value("string"),
"city": datasets.Value("string"),
"opponent_name": datasets.Value("string"),
"opponent_place": datasets.Value("string"),
"is_home": datasets.Value("string"),
}
},
"vis": {
"name": datasets.Value("string"),
"place": datasets.Value("string"),
"conference": datasets.Value("string"),
"division": datasets.Value("string"),
"wins": datasets.Value("string"),
"losses": datasets.Value("string"),
"conference_standing": datasets.Value("string"),
"division_standing": datasets.Value("string"),
"streak_num": datasets.Value("string"),
"game_number": datasets.Value("string"),
"previous_game_id": datasets.Value("string"),
"next_game_id": datasets.Value("string"),
"line_score": {
"game": {
"FG3A": datasets.Value("string"),
"FG3M": datasets.Value("string"),
"FGA": datasets.Value("string"),
"FGM": datasets.Value("string"),
"FTA": datasets.Value("string"),
"FTM": datasets.Value("string"),
"PF": datasets.Value("string"),
"DREB": datasets.Value("string"),
"OREB": datasets.Value("string"),
"BLK": datasets.Value("string"),
"AST": datasets.Value("string"),
"STL": datasets.Value("string"),
"TOV": datasets.Value("string"),
"PTS": datasets.Value("string"),
"SEC": datasets.Value("string")
},
"H1": {},
"H2": {},
"Q1": {},
"Q2": {},
"Q3": {},
"Q4": {},
"OT": {}
},
"box_score": [
{
"first_name": datasets.Value("string"),
"last_name": datasets.Value("string"),
"name": datasets.Value("string"),
"starter": datasets.Value("string"),
"MIN": datasets.Value("string"),
"FGM": datasets.Value("string"),
"FGA": datasets.Value("string"),
"FG3M": datasets.Value("string"),
"FG3A": datasets.Value("string"),
"FTM": datasets.Value("string"),
"FTA": datasets.Value("string"),
"OREB": datasets.Value("string"),
"DREB": datasets.Value("string"),
"AST": datasets.Value("string"),
"STL": datasets.Value("string"),
"BLK": datasets.Value("string"),
"TOV": datasets.Value("string"),
"PF": datasets.Value("string"),
"PTS": datasets.Value("string"),
"+/-": datasets.Value("string"),
}
],
"next_game": {
"day": datasets.Value("string"),
"month": datasets.Value("string"),
"year": datasets.Value("string"),
"dayname": datasets.Value("string"),
"stadium": datasets.Value("string"),
"city": datasets.Value("string"),
"opponent_name": datasets.Value("string"),
"opponent_place": datasets.Value("string"),
"is_home": datasets.Value("string"),
}
}
},
"summaries": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["test"],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["validation"],
"split": "validation",
},
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
js = json.load(open(filepath, encoding="utf-8"))
for id_, data in enumerate(js):
yield id_, {
"sportsett_id": data["sportsett_id"],
"gem_id": data["gem_id"],
"game": data["game"],
"teams": data["teams"],
"summaries": data["summaries"],
}