Datasets:
File size: 44,948 Bytes
3e2ed53 53ba948 4dc3981 53ba948 3e2ed53 428d38b 3e2ed53 428d38b 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f 3e2ed53 c7f9c1f 3e2ed53 c7f9c1f 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 c7f9c1f e3f0963 c7f9c1f e3f0963 c7f9c1f 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 3e2ed53 e3f0963 3e2ed53 c7f9c1f e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 3e2ed53 e3f0963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 |
---
annotations_creators:
- none
language_creators:
- unknown
language:
- en
license:
- mit
multilinguality:
- unknown
size_categories:
- unknown
source_datasets:
- original
task_categories:
- table-to-text
task_ids:
- unknown
pretty_name: sportsett_basketball
tags:
- data-to-text
---
# Dataset Card for GEM/sportsett_basketball
## Dataset Description
- **Homepage:** https://github.com/nlgcat/sport_sett_basketball
- **Repository:** https://github.com/nlgcat/sport_sett_basketball
- **Paper:** https://aclanthology.org/2020.intellang-1.4/
- **Leaderboard:** N/A
- **Point of Contact:** Craig Thomson
### Link to Main Data Card
You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/sportsett_basketball).
### Dataset Summary
The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language.
You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/sportsett_basketball')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/sportsett_basketball).
#### website
[Github](https://github.com/nlgcat/sport_sett_basketball)
#### paper
[ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)
#### authors
Craig Thomson, Ashish Upadhyay
## Dataset Overview
### Where to find the Data and its Documentation
#### Webpage
<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Github](https://github.com/nlgcat/sport_sett_basketball)
#### Download
<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Github](https://github.com/nlgcat/sport_sett_basketball)
#### Paper
<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)
#### BibTex
<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{thomson-etal-2020-sportsett,
title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
author = "Thomson, Craig and
Reiter, Ehud and
Sripada, Somayajulu",
booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
month = sep,
year = "2020",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2020.intellang-1.4",
pages = "32--40",
}
```
#### Contact Name
<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Craig Thomson
#### Contact Email
<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]
#### Has a Leaderboard?
<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no
### Languages and Intended Use
#### Multilingual?
<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no
#### Covered Dialects
<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
American English
One dialect, one language.
#### Covered Languages
<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`English`
#### Whose Language?
<!-- info: Whose language is in the dataset? -->
<!-- scope: periscope -->
American sports writers
#### License
<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
mit: MIT License
#### Intended Use
<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
Maintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries
#### Primary Task
<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Data-to-Text
#### Communicative Goal
<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
A model trained on this dataset should summarise the statistical and other information from a basketball game. This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate. There no single common narrative, although summaries usually start with who player, when, where, and the score. They then provide high level commentary on what the difference in the game was (why the winner won). breakdowns of statistics for prominent players follow, winning team first. Finally, the upcoming schedule for both teams is usually included. There are, however, other types of fact that can be included, and other narrative structures.
### Credit
#### Curation Organization Type(s)
<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`
#### Curation Organization(s)
<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
University of Aberdeen, Robert Gordon University
#### Dataset Creators
<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Craig Thomson, Ashish Upadhyay
#### Funding
<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
EPSRC
#### Who added the Dataset to GEM?
<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Craig Thomson, Ashish Upadhyay
### Dataset Structure
#### Data Fields
<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
Each instance in the dataset has five fields.
1. "sportsett_id": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.
2. "gem_id": This is a unique id created as per GEM's requirement which follows the `GEM-${DATASET_NAME}-${SPLIT-NAME}-${id}` pattern.
3. "game": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state where it was played.
4. "teams": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.
5. "summaries": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)).
#### Reason for Structure
<!-- info: How was the dataset structure determined? -->
<!-- scope: microscope -->
The structure mostly follows the original structure defined in RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/)) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data ([Thomson et. al. 2020](https://aclanthology.org/2020.inlg-1.6/)).
#### How were labels chosen?
<!-- info: How were the labels chosen? -->
<!-- scope: microscope -->
Similar to RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/))
#### Example Instance
<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
{
"sportsett_id": "1",
"gem_id": "GEM-sportsett_basketball-train-0",
"game": {
"day": "1",
"month": "November",
"year": "2014",
"dayname": "Saturday",
"season": "2014",
"stadium": "Wells Fargo Center",
"city": "Philadelphia",
"state": "Pennsylvania",
"attendance": "19753",
"capacity": "20478",
"game_id": "1"
},
"teams": {
"home": {
"name": "76ers",
"place": "Philadelphia",
"conference": "Eastern Conference",
"division": "Atlantic",
"wins": "0",
"losses": "3",
"conference_standing": 15,
"game_number": "3",
"previous_game_id": "42",
"next_game_id": "2",
"line_score": {
"game": {
"FG3A": "23",
"FG3M": "7",
"FG3_PCT": "30",
"FGA": "67",
"FGM": "35",
"FG_PCT": "52",
"FTA": "26",
"FTM": "19",
"FT_PCT": "73",
"DREB": "33",
"OREB": "4",
"TREB": "37",
"BLK": "10",
"AST": "28",
"STL": "9",
"TOV": "24",
"PF": "21",
"PTS": "96",
"MIN": "4"
},
"H1": {
"FG3A": "82",
"FG3M": "30",
"FG3_PCT": "37",
"FGA": "2115",
"FGM": "138",
"FG_PCT": "7",
"FTA": "212",
"FTM": "18",
"FT_PCT": "8",
"DREB": "810",
"OREB": "21",
"TREB": "831",
"BLK": "51",
"AST": "107",
"STL": "21",
"TOV": "64",
"PTS": "3024",
"MIN": "6060"
},
"H2": {
"FG3A": "85",
"FG3M": "40",
"FG3_PCT": "47",
"FGA": "1615",
"FGM": "104",
"FG_PCT": "6",
"FTA": "66",
"FTM": "55",
"FT_PCT": "83",
"DREB": "96",
"OREB": "10",
"TREB": "106",
"BLK": "22",
"AST": "92",
"STL": "24",
"TOV": "68",
"PTS": "2913",
"MIN": "6060"
},
"Q1": {
"FG3A": "8",
"FG3M": "3",
"FG3_PCT": "38",
"FGA": "21",
"FGM": "13",
"FG_PCT": "62",
"FTA": "2",
"FTM": "1",
"FT_PCT": "50",
"DREB": "8",
"OREB": "2",
"TREB": "10",
"BLK": "5",
"AST": "10",
"STL": "2",
"TOV": "6",
"PTS": "30",
"MIN": "60"
},
"Q2": {
"FG3A": "2",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "15",
"FGM": "8",
"FG_PCT": "53",
"FTA": "12",
"FTM": "8",
"FT_PCT": "67",
"DREB": "10",
"OREB": "1",
"TREB": "11",
"BLK": "1",
"AST": "7",
"STL": "1",
"TOV": "4",
"PTS": "24",
"MIN": "60"
},
"Q3": {
"FG3A": "8",
"FG3M": "4",
"FG3_PCT": "50",
"FGA": "16",
"FGM": "10",
"FG_PCT": "62",
"FTA": "6",
"FTM": "5",
"FT_PCT": "83",
"DREB": "9",
"OREB": "1",
"TREB": "10",
"BLK": "2",
"AST": "9",
"STL": "2",
"TOV": "6",
"PTS": "29",
"MIN": "60"
},
"Q4": {
"FG3A": "5",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "15",
"FGM": "4",
"FG_PCT": "27",
"FTA": "6",
"FTM": "5",
"FT_PCT": "83",
"DREB": "6",
"OREB": "0",
"TREB": "6",
"BLK": "2",
"AST": "2",
"STL": "4",
"TOV": "8",
"PTS": "13",
"MIN": "60"
},
"OT": {
"FG3A": "0",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "0",
"FGM": "0",
"FG_PCT": "0",
"FTA": "0",
"FTM": "0",
"FT_PCT": "0",
"DREB": "0",
"OREB": "0",
"TREB": "0",
"BLK": "0",
"AST": "0",
"STL": "0",
"TOV": "0",
"PTS": "0",
"MIN": "0"
}
},
"box_score": [
{
"first_name": "Tony",
"last_name": "Wroten",
"name": "Tony Wroten",
"starter": "True",
"MIN": "33",
"FGM": "6",
"FGA": "11",
"FG_PCT": "55",
"FG3M": "1",
"FG3A": "4",
"FG3_PCT": "25",
"FTM": "8",
"FTA": "11",
"FT_PCT": "73",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "10",
"STL": "1",
"BLK": "1",
"TOV": "4",
"PF": "1",
"PTS": "21",
"+/-": "-11",
"DOUBLE": "double"
},
{
"first_name": "Hollis",
"last_name": "Thompson",
"name": "Hollis Thompson",
"starter": "True",
"MIN": "32",
"FGM": "4",
"FGA": "8",
"FG_PCT": "50",
"FG3M": "2",
"FG3A": "5",
"FG3_PCT": "40",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "2",
"STL": "0",
"BLK": "3",
"TOV": "2",
"PF": "2",
"PTS": "10",
"+/-": "-17",
"DOUBLE": "none"
},
{
"first_name": "Henry",
"last_name": "Sims",
"name": "Henry Sims",
"starter": "True",
"MIN": "27",
"FGM": "4",
"FGA": "9",
"FG_PCT": "44",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "1",
"DREB": "3",
"TREB": "4",
"AST": "2",
"STL": "0",
"BLK": "1",
"TOV": "0",
"PF": "1",
"PTS": "9",
"+/-": "-10",
"DOUBLE": "none"
},
{
"first_name": "Nerlens",
"last_name": "Noel",
"name": "Nerlens Noel",
"starter": "True",
"MIN": "25",
"FGM": "1",
"FGA": "4",
"FG_PCT": "25",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "5",
"TREB": "5",
"AST": "3",
"STL": "1",
"BLK": "1",
"TOV": "3",
"PF": "1",
"PTS": "2",
"+/-": "-19",
"DOUBLE": "none"
},
{
"first_name": "Luc",
"last_name": "Mbah a Moute",
"name": "Luc Mbah a Moute",
"starter": "True",
"MIN": "19",
"FGM": "4",
"FGA": "10",
"FG_PCT": "40",
"FG3M": "0",
"FG3A": "2",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "3",
"DREB": "4",
"TREB": "7",
"AST": "3",
"STL": "1",
"BLK": "0",
"TOV": "6",
"PF": "3",
"PTS": "9",
"+/-": "-12",
"DOUBLE": "none"
},
{
"first_name": "Brandon",
"last_name": "Davies",
"name": "Brandon Davies",
"starter": "False",
"MIN": "23",
"FGM": "7",
"FGA": "9",
"FG_PCT": "78",
"FG3M": "1",
"FG3A": "2",
"FG3_PCT": "50",
"FTM": "3",
"FTA": "4",
"FT_PCT": "75",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "0",
"STL": "3",
"BLK": "0",
"TOV": "3",
"PF": "3",
"PTS": "18",
"+/-": "-1",
"DOUBLE": "none"
},
{
"first_name": "Chris",
"last_name": "Johnson",
"name": "Chris Johnson",
"starter": "False",
"MIN": "21",
"FGM": "2",
"FGA": "4",
"FG_PCT": "50",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "2",
"TREB": "2",
"AST": "0",
"STL": "3",
"BLK": "0",
"TOV": "2",
"PF": "5",
"PTS": "5",
"+/-": "3",
"DOUBLE": "none"
},
{
"first_name": "K.J.",
"last_name": "McDaniels",
"name": "K.J. McDaniels",
"starter": "False",
"MIN": "20",
"FGM": "2",
"FGA": "4",
"FG_PCT": "50",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "3",
"FTA": "4",
"FT_PCT": "75",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "2",
"STL": "0",
"BLK": "3",
"TOV": "2",
"PF": "3",
"PTS": "8",
"+/-": "-10",
"DOUBLE": "none"
},
{
"first_name": "Malcolm",
"last_name": "Thomas",
"name": "Malcolm Thomas",
"starter": "False",
"MIN": "19",
"FGM": "4",
"FGA": "4",
"FG_PCT": "100",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "9",
"TREB": "9",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "2",
"PTS": "8",
"+/-": "-6",
"DOUBLE": "none"
},
{
"first_name": "Alexey",
"last_name": "Shved",
"name": "Alexey Shved",
"starter": "False",
"MIN": "14",
"FGM": "1",
"FGA": "4",
"FG_PCT": "25",
"FG3M": "1",
"FG3A": "4",
"FG3_PCT": "25",
"FTM": "3",
"FTA": "3",
"FT_PCT": "100",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "6",
"STL": "0",
"BLK": "0",
"TOV": "2",
"PF": "0",
"PTS": "6",
"+/-": "-7",
"DOUBLE": "none"
},
{
"first_name": "JaKarr",
"last_name": "Sampson",
"name": "JaKarr Sampson",
"starter": "False",
"MIN": "2",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "0",
"STL": "0",
"BLK": "1",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
},
{
"first_name": "Michael",
"last_name": "Carter-Williams",
"name": "Michael Carter-Williams",
"starter": "False",
"MIN": "0",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
}
],
"next_game": {
"day": "3",
"month": "November",
"year": "2014",
"dayname": "Monday",
"stadium": "Wells Fargo Center",
"city": "Philadelphia",
"opponent_name": "Rockets",
"opponent_place": "Houston",
"is_home": "True"
}
},
"vis": {
"name": "Heat",
"place": "Miami",
"conference": "Eastern Conference",
"division": "Southeast",
"wins": "2",
"losses": "0",
"conference_standing": 1,
"game_number": "2",
"previous_game_id": "329",
"next_game_id": "330",
"line_score": {
"game": {
"FG3A": "24",
"FG3M": "12",
"FG3_PCT": "50",
"FGA": "83",
"FGM": "41",
"FG_PCT": "49",
"FTA": "29",
"FTM": "20",
"FT_PCT": "69",
"DREB": "26",
"OREB": "9",
"TREB": "35",
"BLK": "0",
"AST": "33",
"STL": "16",
"TOV": "16",
"PF": "20",
"PTS": "114",
"MIN": "4"
},
"H1": {
"FG3A": "69",
"FG3M": "44",
"FG3_PCT": "64",
"FGA": "2321",
"FGM": "1110",
"FG_PCT": "48",
"FTA": "106",
"FTM": "64",
"FT_PCT": "60",
"DREB": "35",
"OREB": "23",
"TREB": "58",
"BLK": "00",
"AST": "88",
"STL": "53",
"TOV": "34",
"PTS": "3228",
"MIN": "6060"
},
"H2": {
"FG3A": "45",
"FG3M": "22",
"FG3_PCT": "49",
"FGA": "1920",
"FGM": "1010",
"FG_PCT": "53",
"FTA": "85",
"FTM": "55",
"FT_PCT": "65",
"DREB": "612",
"OREB": "22",
"TREB": "634",
"BLK": "00",
"AST": "98",
"STL": "35",
"TOV": "36",
"PTS": "2727",
"MIN": "6060"
},
"Q1": {
"FG3A": "6",
"FG3M": "4",
"FG3_PCT": "67",
"FGA": "23",
"FGM": "11",
"FG_PCT": "48",
"FTA": "10",
"FTM": "6",
"FT_PCT": "60",
"DREB": "3",
"OREB": "2",
"TREB": "5",
"BLK": "0",
"AST": "8",
"STL": "5",
"TOV": "3",
"PTS": "32",
"MIN": "60"
},
"Q2": {
"FG3A": "9",
"FG3M": "4",
"FG3_PCT": "44",
"FGA": "21",
"FGM": "10",
"FG_PCT": "48",
"FTA": "6",
"FTM": "4",
"FT_PCT": "67",
"DREB": "5",
"OREB": "3",
"TREB": "8",
"BLK": "0",
"AST": "8",
"STL": "3",
"TOV": "4",
"PTS": "28",
"MIN": "60"
},
"Q3": {
"FG3A": "4",
"FG3M": "2",
"FG3_PCT": "50",
"FGA": "19",
"FGM": "10",
"FG_PCT": "53",
"FTA": "8",
"FTM": "5",
"FT_PCT": "62",
"DREB": "6",
"OREB": "2",
"TREB": "8",
"BLK": "0",
"AST": "9",
"STL": "3",
"TOV": "3",
"PTS": "27",
"MIN": "60"
},
"Q4": {
"FG3A": "5",
"FG3M": "2",
"FG3_PCT": "40",
"FGA": "20",
"FGM": "10",
"FG_PCT": "50",
"FTA": "5",
"FTM": "5",
"FT_PCT": "100",
"DREB": "12",
"OREB": "2",
"TREB": "14",
"BLK": "0",
"AST": "8",
"STL": "5",
"TOV": "6",
"PTS": "27",
"MIN": "60"
},
"OT": {
"FG3A": "0",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "0",
"FGM": "0",
"FG_PCT": "0",
"FTA": "0",
"FTM": "0",
"FT_PCT": "0",
"DREB": "0",
"OREB": "0",
"TREB": "0",
"BLK": "0",
"AST": "0",
"STL": "0",
"TOV": "0",
"PTS": "0",
"MIN": "0"
}
},
"box_score": [
{
"first_name": "Chris",
"last_name": "Bosh",
"name": "Chris Bosh",
"starter": "True",
"MIN": "33",
"FGM": "9",
"FGA": "17",
"FG_PCT": "53",
"FG3M": "2",
"FG3A": "5",
"FG3_PCT": "40",
"FTM": "10",
"FTA": "11",
"FT_PCT": "91",
"OREB": "3",
"DREB": "5",
"TREB": "8",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "3",
"PF": "2",
"PTS": "30",
"+/-": "10",
"DOUBLE": "none"
},
{
"first_name": "Dwyane",
"last_name": "Wade",
"name": "Dwyane Wade",
"starter": "True",
"MIN": "32",
"FGM": "4",
"FGA": "18",
"FG_PCT": "22",
"FG3M": "0",
"FG3A": "1",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "3",
"FT_PCT": "33",
"OREB": "1",
"DREB": "2",
"TREB": "3",
"AST": "10",
"STL": "3",
"BLK": "0",
"TOV": "6",
"PF": "1",
"PTS": "9",
"+/-": "13",
"DOUBLE": "none"
},
{
"first_name": "Luol",
"last_name": "Deng",
"name": "Luol Deng",
"starter": "True",
"MIN": "29",
"FGM": "7",
"FGA": "11",
"FG_PCT": "64",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "0",
"FTA": "1",
"FT_PCT": "0",
"OREB": "2",
"DREB": "2",
"TREB": "4",
"AST": "2",
"STL": "2",
"BLK": "0",
"TOV": "1",
"PF": "0",
"PTS": "15",
"+/-": "4",
"DOUBLE": "none"
},
{
"first_name": "Shawne",
"last_name": "Williams",
"name": "Shawne Williams",
"starter": "True",
"MIN": "29",
"FGM": "5",
"FGA": "9",
"FG_PCT": "56",
"FG3M": "3",
"FG3A": "5",
"FG3_PCT": "60",
"FTM": "2",
"FTA": "2",
"FT_PCT": "100",
"OREB": "0",
"DREB": "4",
"TREB": "4",
"AST": "4",
"STL": "1",
"BLK": "0",
"TOV": "1",
"PF": "4",
"PTS": "15",
"+/-": "16",
"DOUBLE": "none"
},
{
"first_name": "Norris",
"last_name": "Cole",
"name": "Norris Cole",
"starter": "True",
"MIN": "27",
"FGM": "4",
"FGA": "7",
"FG_PCT": "57",
"FG3M": "2",
"FG3A": "4",
"FG3_PCT": "50",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "10",
"+/-": "6",
"DOUBLE": "none"
},
{
"first_name": "Mario",
"last_name": "Chalmers",
"name": "Mario Chalmers",
"starter": "False",
"MIN": "25",
"FGM": "6",
"FGA": "9",
"FG_PCT": "67",
"FG3M": "2",
"FG3A": "2",
"FG3_PCT": "100",
"FTM": "6",
"FTA": "10",
"FT_PCT": "60",
"OREB": "0",
"DREB": "2",
"TREB": "2",
"AST": "4",
"STL": "4",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "20",
"+/-": "18",
"DOUBLE": "none"
},
{
"first_name": "Shabazz",
"last_name": "Napier",
"name": "Shabazz Napier",
"starter": "False",
"MIN": "20",
"FGM": "2",
"FGA": "3",
"FG_PCT": "67",
"FG3M": "1",
"FG3A": "2",
"FG3_PCT": "50",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "1",
"PF": "4",
"PTS": "5",
"+/-": "11",
"DOUBLE": "none"
},
{
"first_name": "Chris",
"last_name": "Andersen",
"name": "Chris Andersen",
"starter": "False",
"MIN": "17",
"FGM": "0",
"FGA": "2",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "2",
"TREB": "3",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "2",
"PTS": "0",
"+/-": "6",
"DOUBLE": "none"
},
{
"first_name": "Josh",
"last_name": "McRoberts",
"name": "Josh McRoberts",
"starter": "False",
"MIN": "11",
"FGM": "1",
"FGA": "3",
"FG_PCT": "33",
"FG3M": "0",
"FG3A": "1",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "2",
"PF": "3",
"PTS": "3",
"+/-": "1",
"DOUBLE": "none"
},
{
"first_name": "James",
"last_name": "Ennis",
"name": "James Ennis",
"starter": "False",
"MIN": "7",
"FGM": "2",
"FGA": "3",
"FG_PCT": "67",
"FG3M": "1",
"FG3A": "1",
"FG3_PCT": "100",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "1",
"TREB": "2",
"AST": "1",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "5",
"+/-": "2",
"DOUBLE": "none"
},
{
"first_name": "Justin",
"last_name": "Hamilton",
"name": "Justin Hamilton",
"starter": "False",
"MIN": "5",
"FGM": "1",
"FGA": "1",
"FG_PCT": "100",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "1",
"TREB": "2",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "1",
"PF": "0",
"PTS": "2",
"+/-": "3",
"DOUBLE": "none"
},
{
"first_name": "Andre",
"last_name": "Dawkins",
"name": "Andre Dawkins",
"starter": "False",
"MIN": "1",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "1",
"PF": "1",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
},
{
"first_name": "Shannon",
"last_name": "Brown",
"name": "Shannon Brown",
"starter": "False",
"MIN": "0",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
}
],
"next_game": {
"day": "2",
"month": "November",
"year": "2014",
"dayname": "Sunday",
"stadium": "American Airlines Arena",
"city": "Miami",
"opponent_name": "Raptors",
"opponent_place": "Toronto",
"is_home": "True"
}
}
},
"summaries": [
"The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets ."
]
}
```
#### Data Splits
<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
- Train: NBA seasons - 2014, 2015, & 2016; total instances - 3690
- Validation: NBA seasons - 2017; total instances - 1230
- Test: NBA seasons - 2018; total instances - 1230
#### Splitting Criteria
<!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
<!-- scope: microscope -->
The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset
## Dataset in GEM
### Rationale for Inclusion in GEM
#### Why is the Dataset in GEM?
<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
This dataset contains a data analytics problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)). That is, there is a large amount of data from which insights need to be selected. Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time). There is far more on the data side than is required to be realised, and indeed, could be practically realised. This depth of data analytics problem does not exist in other datasets.
#### Similar Datasets
<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no
#### Ability that the Dataset measures
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
### GEM-Specific Curation
#### Modificatied for GEM?
<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
no
#### Additional Splits?
<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no
### Getting Started with the Task
#### Pointers to Resources
<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
For dataset discussion see [Thomson et al, 2020](https://aclanthology.org/2020.intellang-1.4/)
For evaluation see:
- [Thomson & Reiter 2020, Thomson & Reiter (2021)](https://aclanthology.org/2021.inlg-1.23)
- [Kasner et al (2021)](https://aclanthology.org/2021.inlg-1.25)
For a system using the relational database form of SportSett, see:
- [Thomson et al (2020)](https://aclanthology.org/2020.inlg-1.6/)
For recent systems using the Rotowire dataset, see:
- [Puduppully & Lapata (2021)](https://github.com/ratishsp/data2text-macro-plan-py)
- [Rebuffel et all (2020)](https://github.com/KaijuML/data-to-text-hierarchical)
## Previous Results
### Previous Results
#### Measured Model Abilities
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
#### Metrics
<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`
#### Proposed Evaluation
<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
BLEU is the only off-the-shelf metric commonly used. Works have also used custom metrics like RG ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)), and a recent shared task explored other metrics and their corrolation with human evaluation ([Thomson & Reiter, 2021](https://aclanthology.org/2021.inlg-1.23)).
#### Previous results available?
<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes
#### Other Evaluation Approaches
<!-- info: What evaluation approaches have others used? -->
<!-- scope: periscope -->
Most results from prior works use the original Rotowire dataset, which has train/validation/test contamination. For results of BLEU and RG on the relational database format of SportSett, as a guide, see [Thomson et al, 2020](https://aclanthology.org/2020.inlg-1.6).
#### Relevant Previous Results
<!-- info: What are the most relevant previous results for this task/dataset? -->
<!-- scope: microscope -->
The results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment. See Thomson et al, 2021 (https://aclanthology.org/2021.inlg-1.23) for an overview, and Kasner et al (2021) for the best performing metric at the time of writing (https://aclanthology.org/2021.inlg-1.25).
## Dataset Curation
### Original Curation
#### Original Curation Rationale
<!-- info: Original curation rationale -->
<!-- scope: telescope -->
The references texts were taken from the existing dataset RotoWire-FG ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)), which is in turn based on Rotowire ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)). The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.
#### Communicative Goal
<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Create a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate. This is a data-to-text problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts.
#### Sourced from Different Sources
<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
yes
#### Source Details
<!-- info: List the sources (one per line) -->
<!-- scope: periscope -->
RotoWire-FG (https://www.rotowire.com).
Wikipedia (https://en.wikipedia.org/wiki/Main_Page)
Basketball Reference (https://www.basketball-reference.com)
### Language Data
#### How was Language Data Obtained?
<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Found`
#### Where was it found?
<!-- info: If found, where from? -->
<!-- scope: telescope -->
`Multiple websites`
#### Language Producers
<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
None
#### Topics Covered
<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
Summaries of basketball games (in the NBA).
#### Data Validation
<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
not validated
#### Data Preprocessing
<!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
<!-- scope: microscope -->
It retains the original tokenization scheme employed by Wang 2019
#### Was Data Filtered?
<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
manually
#### Filter Criteria
<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
Games from the 2014 through 2018 seasons were selected. Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.
### Structured Annotations
#### Additional Annotations?
<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
none
#### Annotation Service?
<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no
### Consent
#### Any Consent Policy?
<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no
#### Justification for Using the Data
<!-- info: If not, what is the justification for reusing the data? -->
<!-- scope: microscope -->
The dataset consits of a pre-existing dataset, as well as publically available facts.
### Private Identifying Information (PII)
#### Contains PII?
<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
unlikely
#### Categories of PII
<!-- info: What categories of PII are present or suspected in the data? -->
<!-- scope: periscope -->
`generic PII`
#### Any PII Identification?
<!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
<!-- scope: periscope -->
no identification
### Maintenance
#### Any Maintenance Plan?
<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no
## Broader Social Context
### Previous Work on the Social Impact of the Dataset
#### Usage of Models based on the Data
<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no
### Impact on Under-Served Communities
#### Addresses needs of underserved Communities?
<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no
### Discussion of Biases
#### Any Documented Social Biases?
<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
yes
#### Links and Summaries of Analysis Work
<!-- info: Provide links to and summaries of works analyzing these biases. -->
<!-- scope: microscope -->
Unaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games. It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text. This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.
#### Are the Language Producers Representative of the Language?
<!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
<!-- scope: periscope -->
No, it is very specifically American English from the sports journalism domain.
## Considerations for Using the Data
### PII Risks and Liability
#### Potential PII Risk
<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
All information relating to persons is of public record.
### Licenses
#### Copyright Restrictions on the Dataset
<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`public domain`
#### Copyright Restrictions on the Language Data
<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`public domain`
### Known Technical Limitations
#### Technical Limitations
<!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
<!-- scope: microscope -->
SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable. For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players. It is unavoidable that some data which is aggregated, exists in its base form in previous partitions. The season-based partition scheme heavily constrains this however.
#### Unsuited Applications
<!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
<!-- scope: microscope -->
Factual accuray continues to be a problem, systems may incorrectly represent the facts of the game.
#### Discouraged Use Cases
<!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
<!-- scope: microscope -->
Using the RG metric to maximise the number of true facts in a generate summary is not nececeraly
|