File size: 44,926 Bytes
3e2ed53
 
 
 
 
53ba948
67c2ee1
53ba948
3e2ed53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
e3f0963
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2ed53
 
 
e3f0963
3e2ed53
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
e3f0963
 
3e2ed53
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
 
 
c7f9c1f
3e2ed53
 
 
 
 
c7f9c1f
3e2ed53
 
 
 
 
c7f9c1f
3e2ed53
 
 
 
 
 
e3f0963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
c7f9c1f
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
 
 
 
 
 
 
 
c7f9c1f
e3f0963
 
c7f9c1f
 
e3f0963
 
c7f9c1f
e3f0963
 
c7f9c1f
 
3e2ed53
 
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
c7f9c1f
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
c7f9c1f
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
c7f9c1f
e3f0963
3e2ed53
e3f0963
3e2ed53
 
c7f9c1f
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
 
 
 
 
e3f0963
 
 
 
 
 
3e2ed53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
3e2ed53
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
3e2ed53
e3f0963
3e2ed53
 
 
e3f0963
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
---
annotations_creators:
- none
language_creators:
- unknown
language:
- en
license:
- mit
multilinguality:
- unknown
pretty_name: sportsett_basketball
size_categories:
- unknown
source_datasets:
- original
task_categories:
- data-to-text
task_ids:
- unknown
---

# Dataset Card for GEM/sportsett_basketball

## Dataset Description

- **Homepage:** https://github.com/nlgcat/sport_sett_basketball
- **Repository:** https://github.com/nlgcat/sport_sett_basketball
- **Paper:** https://aclanthology.org/2020.intellang-1.4/
- **Leaderboard:** N/A
- **Point of Contact:** Craig Thomson

### Link to Main Data Card

You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/sportsett_basketball).

### Dataset Summary 

The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language. 

You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/sportsett_basketball')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/sportsett_basketball).

#### website
[Github](https://github.com/nlgcat/sport_sett_basketball)

#### paper
[ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)

#### authors
Craig Thomson, Ashish Upadhyay

## Dataset Overview

### Where to find the Data and its Documentation

#### Webpage

<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Github](https://github.com/nlgcat/sport_sett_basketball)

#### Download

<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Github](https://github.com/nlgcat/sport_sett_basketball)

#### Paper

<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[ACL Anthology](https://aclanthology.org/2020.intellang-1.4/)

#### BibTex

<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{thomson-etal-2020-sportsett,
    title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
    author = "Thomson, Craig  and
      Reiter, Ehud  and
      Sripada, Somayajulu",
    booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
    month = sep,
    year = "2020",
    address = "Santiago de Compostela, Spain",
    publisher = "Association for Computational Lingustics",
    url = "https://aclanthology.org/2020.intellang-1.4",
    pages = "32--40",
}
```

#### Contact Name

<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Craig Thomson

#### Contact Email

<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]

#### Has a Leaderboard?

<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no


### Languages and Intended Use

#### Multilingual?

<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no

#### Covered Dialects

<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
American English

One dialect, one language.

#### Covered Languages

<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`English`

#### Whose Language?

<!-- info: Whose language is in the dataset? -->
<!-- scope: periscope -->
American sports writers

#### License

<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
mit: MIT License

#### Intended Use

<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
Maintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries

#### Primary Task

<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Data-to-Text

#### Communicative Goal

<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
A model trained on this dataset should summarise the statistical and other information from a basketball game.  This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate.  There no single common narrative, although summaries usually start with who player, when, where, and the score.  They then provide high level commentary on what the difference in the game was (why the winner won).  breakdowns of statistics for prominent players follow, winning team first.  Finally, the upcoming schedule for both teams is usually included.  There are, however, other types of fact that can be included, and other narrative structures.


### Credit

#### Curation Organization Type(s)

<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`

#### Curation Organization(s)

<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
University of Aberdeen, Robert Gordon University

#### Dataset Creators

<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Craig Thomson, Ashish Upadhyay

#### Funding

<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
EPSRC

#### Who added the Dataset to GEM?

<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Craig Thomson, Ashish Upadhyay


### Dataset Structure

#### Data Fields

<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
Each instance in the dataset has five fields. 

1. "sportsett_id": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.

2. "gem_id": This is a unique id created as per GEM's requirement which follows the `GEM-${DATASET_NAME}-${SPLIT-NAME}-${id}` pattern.

3. "game": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state  where it was played.

4. "teams": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.

5. "summaries": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)).

#### Reason for Structure

<!-- info: How was the dataset structure determined? -->
<!-- scope: microscope -->
The structure mostly follows the original structure defined in RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/)) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data ([Thomson et. al. 2020](https://aclanthology.org/2020.inlg-1.6/)).

#### How were labels chosen?

<!-- info: How were the labels chosen? -->
<!-- scope: microscope -->
Similar to RotoWire dataset ([Wiseman et. al. 2017](https://aclanthology.org/D17-1239/))

#### Example Instance

<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
{
	"sportsett_id": "1",
	"gem_id": "GEM-sportsett_basketball-train-0",
	"game": {
		"day": "1",
		"month": "November",
		"year": "2014",
		"dayname": "Saturday",
		"season": "2014",
		"stadium": "Wells Fargo Center",
		"city": "Philadelphia",
		"state": "Pennsylvania",
		"attendance": "19753",
		"capacity": "20478",
		"game_id": "1"
	},
	"teams": {
		"home": {
			"name": "76ers",
			"place": "Philadelphia",
			"conference": "Eastern Conference",
			"division": "Atlantic",
			"wins": "0",
			"losses": "3",
			"conference_standing": 15,
			"game_number": "3",
			"previous_game_id": "42",
			"next_game_id": "2",
			"line_score": {
				"game": {
					"FG3A": "23",
					"FG3M": "7",
					"FG3_PCT": "30",
					"FGA": "67",
					"FGM": "35",
					"FG_PCT": "52",
					"FTA": "26",
					"FTM": "19",
					"FT_PCT": "73",
					"DREB": "33",
					"OREB": "4",
					"TREB": "37",
					"BLK": "10",
					"AST": "28",
					"STL": "9",
					"TOV": "24",
					"PF": "21",
					"PTS": "96",
					"MIN": "4"
				},
				"H1": {
					"FG3A": "82",
					"FG3M": "30",
					"FG3_PCT": "37",
					"FGA": "2115",
					"FGM": "138",
					"FG_PCT": "7",
					"FTA": "212",
					"FTM": "18",
					"FT_PCT": "8",
					"DREB": "810",
					"OREB": "21",
					"TREB": "831",
					"BLK": "51",
					"AST": "107",
					"STL": "21",
					"TOV": "64",
					"PTS": "3024",
					"MIN": "6060"
				},
				"H2": {
					"FG3A": "85",
					"FG3M": "40",
					"FG3_PCT": "47",
					"FGA": "1615",
					"FGM": "104",
					"FG_PCT": "6",
					"FTA": "66",
					"FTM": "55",
					"FT_PCT": "83",
					"DREB": "96",
					"OREB": "10",
					"TREB": "106",
					"BLK": "22",
					"AST": "92",
					"STL": "24",
					"TOV": "68",
					"PTS": "2913",
					"MIN": "6060"
				},
				"Q1": {
					"FG3A": "8",
					"FG3M": "3",
					"FG3_PCT": "38",
					"FGA": "21",
					"FGM": "13",
					"FG_PCT": "62",
					"FTA": "2",
					"FTM": "1",
					"FT_PCT": "50",
					"DREB": "8",
					"OREB": "2",
					"TREB": "10",
					"BLK": "5",
					"AST": "10",
					"STL": "2",
					"TOV": "6",
					"PTS": "30",
					"MIN": "60"
				},
				"Q2": {
					"FG3A": "2",
					"FG3M": "0",
					"FG3_PCT": "0",
					"FGA": "15",
					"FGM": "8",
					"FG_PCT": "53",
					"FTA": "12",
					"FTM": "8",
					"FT_PCT": "67",
					"DREB": "10",
					"OREB": "1",
					"TREB": "11",
					"BLK": "1",
					"AST": "7",
					"STL": "1",
					"TOV": "4",
					"PTS": "24",
					"MIN": "60"
				},
				"Q3": {
					"FG3A": "8",
					"FG3M": "4",
					"FG3_PCT": "50",
					"FGA": "16",
					"FGM": "10",
					"FG_PCT": "62",
					"FTA": "6",
					"FTM": "5",
					"FT_PCT": "83",
					"DREB": "9",
					"OREB": "1",
					"TREB": "10",
					"BLK": "2",
					"AST": "9",
					"STL": "2",
					"TOV": "6",
					"PTS": "29",
					"MIN": "60"
				},
				"Q4": {
					"FG3A": "5",
					"FG3M": "0",
					"FG3_PCT": "0",
					"FGA": "15",
					"FGM": "4",
					"FG_PCT": "27",
					"FTA": "6",
					"FTM": "5",
					"FT_PCT": "83",
					"DREB": "6",
					"OREB": "0",
					"TREB": "6",
					"BLK": "2",
					"AST": "2",
					"STL": "4",
					"TOV": "8",
					"PTS": "13",
					"MIN": "60"
				},
				"OT": {
					"FG3A": "0",
					"FG3M": "0",
					"FG3_PCT": "0",
					"FGA": "0",
					"FGM": "0",
					"FG_PCT": "0",
					"FTA": "0",
					"FTM": "0",
					"FT_PCT": "0",
					"DREB": "0",
					"OREB": "0",
					"TREB": "0",
					"BLK": "0",
					"AST": "0",
					"STL": "0",
					"TOV": "0",
					"PTS": "0",
					"MIN": "0"
				}
			},
			"box_score": [
				{
					"first_name": "Tony",
					"last_name": "Wroten",
					"name": "Tony Wroten",
					"starter": "True",
					"MIN": "33",
					"FGM": "6",
					"FGA": "11",
					"FG_PCT": "55",
					"FG3M": "1",
					"FG3A": "4",
					"FG3_PCT": "25",
					"FTM": "8",
					"FTA": "11",
					"FT_PCT": "73",
					"OREB": "0",
					"DREB": "3",
					"TREB": "3",
					"AST": "10",
					"STL": "1",
					"BLK": "1",
					"TOV": "4",
					"PF": "1",
					"PTS": "21",
					"+/-": "-11",
					"DOUBLE": "double"
				},
				{
					"first_name": "Hollis",
					"last_name": "Thompson",
					"name": "Hollis Thompson",
					"starter": "True",
					"MIN": "32",
					"FGM": "4",
					"FGA": "8",
					"FG_PCT": "50",
					"FG3M": "2",
					"FG3A": "5",
					"FG3_PCT": "40",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "1",
					"TREB": "1",
					"AST": "2",
					"STL": "0",
					"BLK": "3",
					"TOV": "2",
					"PF": "2",
					"PTS": "10",
					"+/-": "-17",
					"DOUBLE": "none"
				},
				{
					"first_name": "Henry",
					"last_name": "Sims",
					"name": "Henry Sims",
					"starter": "True",
					"MIN": "27",
					"FGM": "4",
					"FGA": "9",
					"FG_PCT": "44",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "1",
					"FTA": "2",
					"FT_PCT": "50",
					"OREB": "1",
					"DREB": "3",
					"TREB": "4",
					"AST": "2",
					"STL": "0",
					"BLK": "1",
					"TOV": "0",
					"PF": "1",
					"PTS": "9",
					"+/-": "-10",
					"DOUBLE": "none"
				},
				{
					"first_name": "Nerlens",
					"last_name": "Noel",
					"name": "Nerlens Noel",
					"starter": "True",
					"MIN": "25",
					"FGM": "1",
					"FGA": "4",
					"FG_PCT": "25",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "5",
					"TREB": "5",
					"AST": "3",
					"STL": "1",
					"BLK": "1",
					"TOV": "3",
					"PF": "1",
					"PTS": "2",
					"+/-": "-19",
					"DOUBLE": "none"
				},
				{
					"first_name": "Luc",
					"last_name": "Mbah a Moute",
					"name": "Luc Mbah a Moute",
					"starter": "True",
					"MIN": "19",
					"FGM": "4",
					"FGA": "10",
					"FG_PCT": "40",
					"FG3M": "0",
					"FG3A": "2",
					"FG3_PCT": "0",
					"FTM": "1",
					"FTA": "2",
					"FT_PCT": "50",
					"OREB": "3",
					"DREB": "4",
					"TREB": "7",
					"AST": "3",
					"STL": "1",
					"BLK": "0",
					"TOV": "6",
					"PF": "3",
					"PTS": "9",
					"+/-": "-12",
					"DOUBLE": "none"
				},
				{
					"first_name": "Brandon",
					"last_name": "Davies",
					"name": "Brandon Davies",
					"starter": "False",
					"MIN": "23",
					"FGM": "7",
					"FGA": "9",
					"FG_PCT": "78",
					"FG3M": "1",
					"FG3A": "2",
					"FG3_PCT": "50",
					"FTM": "3",
					"FTA": "4",
					"FT_PCT": "75",
					"OREB": "0",
					"DREB": "3",
					"TREB": "3",
					"AST": "0",
					"STL": "3",
					"BLK": "0",
					"TOV": "3",
					"PF": "3",
					"PTS": "18",
					"+/-": "-1",
					"DOUBLE": "none"
				},
				{
					"first_name": "Chris",
					"last_name": "Johnson",
					"name": "Chris Johnson",
					"starter": "False",
					"MIN": "21",
					"FGM": "2",
					"FGA": "4",
					"FG_PCT": "50",
					"FG3M": "1",
					"FG3A": "3",
					"FG3_PCT": "33",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "2",
					"TREB": "2",
					"AST": "0",
					"STL": "3",
					"BLK": "0",
					"TOV": "2",
					"PF": "5",
					"PTS": "5",
					"+/-": "3",
					"DOUBLE": "none"
				},
				{
					"first_name": "K.J.",
					"last_name": "McDaniels",
					"name": "K.J. McDaniels",
					"starter": "False",
					"MIN": "20",
					"FGM": "2",
					"FGA": "4",
					"FG_PCT": "50",
					"FG3M": "1",
					"FG3A": "3",
					"FG3_PCT": "33",
					"FTM": "3",
					"FTA": "4",
					"FT_PCT": "75",
					"OREB": "0",
					"DREB": "1",
					"TREB": "1",
					"AST": "2",
					"STL": "0",
					"BLK": "3",
					"TOV": "2",
					"PF": "3",
					"PTS": "8",
					"+/-": "-10",
					"DOUBLE": "none"
				},
				{
					"first_name": "Malcolm",
					"last_name": "Thomas",
					"name": "Malcolm Thomas",
					"starter": "False",
					"MIN": "19",
					"FGM": "4",
					"FGA": "4",
					"FG_PCT": "100",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "9",
					"TREB": "9",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "0",
					"PF": "2",
					"PTS": "8",
					"+/-": "-6",
					"DOUBLE": "none"
				},
				{
					"first_name": "Alexey",
					"last_name": "Shved",
					"name": "Alexey Shved",
					"starter": "False",
					"MIN": "14",
					"FGM": "1",
					"FGA": "4",
					"FG_PCT": "25",
					"FG3M": "1",
					"FG3A": "4",
					"FG3_PCT": "25",
					"FTM": "3",
					"FTA": "3",
					"FT_PCT": "100",
					"OREB": "0",
					"DREB": "1",
					"TREB": "1",
					"AST": "6",
					"STL": "0",
					"BLK": "0",
					"TOV": "2",
					"PF": "0",
					"PTS": "6",
					"+/-": "-7",
					"DOUBLE": "none"
				},
				{
					"first_name": "JaKarr",
					"last_name": "Sampson",
					"name": "JaKarr Sampson",
					"starter": "False",
					"MIN": "2",
					"FGM": "0",
					"FGA": "0",
					"FG_PCT": "0",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "1",
					"TREB": "1",
					"AST": "0",
					"STL": "0",
					"BLK": "1",
					"TOV": "0",
					"PF": "0",
					"PTS": "0",
					"+/-": "0",
					"DOUBLE": "none"
				},
				{
					"first_name": "Michael",
					"last_name": "Carter-Williams",
					"name": "Michael Carter-Williams",
					"starter": "False",
					"MIN": "0",
					"FGM": "0",
					"FGA": "0",
					"FG_PCT": "0",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "0",
					"TREB": "0",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "0",
					"PF": "0",
					"PTS": "0",
					"+/-": "0",
					"DOUBLE": "none"
				}
			],
			"next_game": {
				"day": "3",
				"month": "November",
				"year": "2014",
				"dayname": "Monday",
				"stadium": "Wells Fargo Center",
				"city": "Philadelphia",
				"opponent_name": "Rockets",
				"opponent_place": "Houston",
				"is_home": "True"
			}
		},
		"vis": {
			"name": "Heat",
			"place": "Miami",
			"conference": "Eastern Conference",
			"division": "Southeast",
			"wins": "2",
			"losses": "0",
			"conference_standing": 1,
			"game_number": "2",
			"previous_game_id": "329",
			"next_game_id": "330",
			"line_score": {
				"game": {
					"FG3A": "24",
					"FG3M": "12",
					"FG3_PCT": "50",
					"FGA": "83",
					"FGM": "41",
					"FG_PCT": "49",
					"FTA": "29",
					"FTM": "20",
					"FT_PCT": "69",
					"DREB": "26",
					"OREB": "9",
					"TREB": "35",
					"BLK": "0",
					"AST": "33",
					"STL": "16",
					"TOV": "16",
					"PF": "20",
					"PTS": "114",
					"MIN": "4"
				},
				"H1": {
					"FG3A": "69",
					"FG3M": "44",
					"FG3_PCT": "64",
					"FGA": "2321",
					"FGM": "1110",
					"FG_PCT": "48",
					"FTA": "106",
					"FTM": "64",
					"FT_PCT": "60",
					"DREB": "35",
					"OREB": "23",
					"TREB": "58",
					"BLK": "00",
					"AST": "88",
					"STL": "53",
					"TOV": "34",
					"PTS": "3228",
					"MIN": "6060"
				},
				"H2": {
					"FG3A": "45",
					"FG3M": "22",
					"FG3_PCT": "49",
					"FGA": "1920",
					"FGM": "1010",
					"FG_PCT": "53",
					"FTA": "85",
					"FTM": "55",
					"FT_PCT": "65",
					"DREB": "612",
					"OREB": "22",
					"TREB": "634",
					"BLK": "00",
					"AST": "98",
					"STL": "35",
					"TOV": "36",
					"PTS": "2727",
					"MIN": "6060"
				},
				"Q1": {
					"FG3A": "6",
					"FG3M": "4",
					"FG3_PCT": "67",
					"FGA": "23",
					"FGM": "11",
					"FG_PCT": "48",
					"FTA": "10",
					"FTM": "6",
					"FT_PCT": "60",
					"DREB": "3",
					"OREB": "2",
					"TREB": "5",
					"BLK": "0",
					"AST": "8",
					"STL": "5",
					"TOV": "3",
					"PTS": "32",
					"MIN": "60"
				},
				"Q2": {
					"FG3A": "9",
					"FG3M": "4",
					"FG3_PCT": "44",
					"FGA": "21",
					"FGM": "10",
					"FG_PCT": "48",
					"FTA": "6",
					"FTM": "4",
					"FT_PCT": "67",
					"DREB": "5",
					"OREB": "3",
					"TREB": "8",
					"BLK": "0",
					"AST": "8",
					"STL": "3",
					"TOV": "4",
					"PTS": "28",
					"MIN": "60"
				},
				"Q3": {
					"FG3A": "4",
					"FG3M": "2",
					"FG3_PCT": "50",
					"FGA": "19",
					"FGM": "10",
					"FG_PCT": "53",
					"FTA": "8",
					"FTM": "5",
					"FT_PCT": "62",
					"DREB": "6",
					"OREB": "2",
					"TREB": "8",
					"BLK": "0",
					"AST": "9",
					"STL": "3",
					"TOV": "3",
					"PTS": "27",
					"MIN": "60"
				},
				"Q4": {
					"FG3A": "5",
					"FG3M": "2",
					"FG3_PCT": "40",
					"FGA": "20",
					"FGM": "10",
					"FG_PCT": "50",
					"FTA": "5",
					"FTM": "5",
					"FT_PCT": "100",
					"DREB": "12",
					"OREB": "2",
					"TREB": "14",
					"BLK": "0",
					"AST": "8",
					"STL": "5",
					"TOV": "6",
					"PTS": "27",
					"MIN": "60"
				},
				"OT": {
					"FG3A": "0",
					"FG3M": "0",
					"FG3_PCT": "0",
					"FGA": "0",
					"FGM": "0",
					"FG_PCT": "0",
					"FTA": "0",
					"FTM": "0",
					"FT_PCT": "0",
					"DREB": "0",
					"OREB": "0",
					"TREB": "0",
					"BLK": "0",
					"AST": "0",
					"STL": "0",
					"TOV": "0",
					"PTS": "0",
					"MIN": "0"
				}
			},
			"box_score": [
				{
					"first_name": "Chris",
					"last_name": "Bosh",
					"name": "Chris Bosh",
					"starter": "True",
					"MIN": "33",
					"FGM": "9",
					"FGA": "17",
					"FG_PCT": "53",
					"FG3M": "2",
					"FG3A": "5",
					"FG3_PCT": "40",
					"FTM": "10",
					"FTA": "11",
					"FT_PCT": "91",
					"OREB": "3",
					"DREB": "5",
					"TREB": "8",
					"AST": "4",
					"STL": "2",
					"BLK": "0",
					"TOV": "3",
					"PF": "2",
					"PTS": "30",
					"+/-": "10",
					"DOUBLE": "none"
				},
				{
					"first_name": "Dwyane",
					"last_name": "Wade",
					"name": "Dwyane Wade",
					"starter": "True",
					"MIN": "32",
					"FGM": "4",
					"FGA": "18",
					"FG_PCT": "22",
					"FG3M": "0",
					"FG3A": "1",
					"FG3_PCT": "0",
					"FTM": "1",
					"FTA": "3",
					"FT_PCT": "33",
					"OREB": "1",
					"DREB": "2",
					"TREB": "3",
					"AST": "10",
					"STL": "3",
					"BLK": "0",
					"TOV": "6",
					"PF": "1",
					"PTS": "9",
					"+/-": "13",
					"DOUBLE": "none"
				},
				{
					"first_name": "Luol",
					"last_name": "Deng",
					"name": "Luol Deng",
					"starter": "True",
					"MIN": "29",
					"FGM": "7",
					"FGA": "11",
					"FG_PCT": "64",
					"FG3M": "1",
					"FG3A": "3",
					"FG3_PCT": "33",
					"FTM": "0",
					"FTA": "1",
					"FT_PCT": "0",
					"OREB": "2",
					"DREB": "2",
					"TREB": "4",
					"AST": "2",
					"STL": "2",
					"BLK": "0",
					"TOV": "1",
					"PF": "0",
					"PTS": "15",
					"+/-": "4",
					"DOUBLE": "none"
				},
				{
					"first_name": "Shawne",
					"last_name": "Williams",
					"name": "Shawne Williams",
					"starter": "True",
					"MIN": "29",
					"FGM": "5",
					"FGA": "9",
					"FG_PCT": "56",
					"FG3M": "3",
					"FG3A": "5",
					"FG3_PCT": "60",
					"FTM": "2",
					"FTA": "2",
					"FT_PCT": "100",
					"OREB": "0",
					"DREB": "4",
					"TREB": "4",
					"AST": "4",
					"STL": "1",
					"BLK": "0",
					"TOV": "1",
					"PF": "4",
					"PTS": "15",
					"+/-": "16",
					"DOUBLE": "none"
				},
				{
					"first_name": "Norris",
					"last_name": "Cole",
					"name": "Norris Cole",
					"starter": "True",
					"MIN": "27",
					"FGM": "4",
					"FGA": "7",
					"FG_PCT": "57",
					"FG3M": "2",
					"FG3A": "4",
					"FG3_PCT": "50",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "1",
					"TREB": "1",
					"AST": "4",
					"STL": "2",
					"BLK": "0",
					"TOV": "0",
					"PF": "1",
					"PTS": "10",
					"+/-": "6",
					"DOUBLE": "none"
				},
				{
					"first_name": "Mario",
					"last_name": "Chalmers",
					"name": "Mario Chalmers",
					"starter": "False",
					"MIN": "25",
					"FGM": "6",
					"FGA": "9",
					"FG_PCT": "67",
					"FG3M": "2",
					"FG3A": "2",
					"FG3_PCT": "100",
					"FTM": "6",
					"FTA": "10",
					"FT_PCT": "60",
					"OREB": "0",
					"DREB": "2",
					"TREB": "2",
					"AST": "4",
					"STL": "4",
					"BLK": "0",
					"TOV": "0",
					"PF": "1",
					"PTS": "20",
					"+/-": "18",
					"DOUBLE": "none"
				},
				{
					"first_name": "Shabazz",
					"last_name": "Napier",
					"name": "Shabazz Napier",
					"starter": "False",
					"MIN": "20",
					"FGM": "2",
					"FGA": "3",
					"FG_PCT": "67",
					"FG3M": "1",
					"FG3A": "2",
					"FG3_PCT": "50",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "3",
					"TREB": "3",
					"AST": "4",
					"STL": "2",
					"BLK": "0",
					"TOV": "1",
					"PF": "4",
					"PTS": "5",
					"+/-": "11",
					"DOUBLE": "none"
				},
				{
					"first_name": "Chris",
					"last_name": "Andersen",
					"name": "Chris Andersen",
					"starter": "False",
					"MIN": "17",
					"FGM": "0",
					"FGA": "2",
					"FG_PCT": "0",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "1",
					"DREB": "2",
					"TREB": "3",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "0",
					"PF": "2",
					"PTS": "0",
					"+/-": "6",
					"DOUBLE": "none"
				},
				{
					"first_name": "Josh",
					"last_name": "McRoberts",
					"name": "Josh McRoberts",
					"starter": "False",
					"MIN": "11",
					"FGM": "1",
					"FGA": "3",
					"FG_PCT": "33",
					"FG3M": "0",
					"FG3A": "1",
					"FG3_PCT": "0",
					"FTM": "1",
					"FTA": "2",
					"FT_PCT": "50",
					"OREB": "0",
					"DREB": "3",
					"TREB": "3",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "2",
					"PF": "3",
					"PTS": "3",
					"+/-": "1",
					"DOUBLE": "none"
				},
				{
					"first_name": "James",
					"last_name": "Ennis",
					"name": "James Ennis",
					"starter": "False",
					"MIN": "7",
					"FGM": "2",
					"FGA": "3",
					"FG_PCT": "67",
					"FG3M": "1",
					"FG3A": "1",
					"FG3_PCT": "100",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "1",
					"DREB": "1",
					"TREB": "2",
					"AST": "1",
					"STL": "0",
					"BLK": "0",
					"TOV": "0",
					"PF": "1",
					"PTS": "5",
					"+/-": "2",
					"DOUBLE": "none"
				},
				{
					"first_name": "Justin",
					"last_name": "Hamilton",
					"name": "Justin Hamilton",
					"starter": "False",
					"MIN": "5",
					"FGM": "1",
					"FGA": "1",
					"FG_PCT": "100",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "1",
					"DREB": "1",
					"TREB": "2",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "1",
					"PF": "0",
					"PTS": "2",
					"+/-": "3",
					"DOUBLE": "none"
				},
				{
					"first_name": "Andre",
					"last_name": "Dawkins",
					"name": "Andre Dawkins",
					"starter": "False",
					"MIN": "1",
					"FGM": "0",
					"FGA": "0",
					"FG_PCT": "0",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "0",
					"TREB": "0",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "1",
					"PF": "1",
					"PTS": "0",
					"+/-": "0",
					"DOUBLE": "none"
				},
				{
					"first_name": "Shannon",
					"last_name": "Brown",
					"name": "Shannon Brown",
					"starter": "False",
					"MIN": "0",
					"FGM": "0",
					"FGA": "0",
					"FG_PCT": "0",
					"FG3M": "0",
					"FG3A": "0",
					"FG3_PCT": "0",
					"FTM": "0",
					"FTA": "0",
					"FT_PCT": "0",
					"OREB": "0",
					"DREB": "0",
					"TREB": "0",
					"AST": "0",
					"STL": "0",
					"BLK": "0",
					"TOV": "0",
					"PF": "0",
					"PTS": "0",
					"+/-": "0",
					"DOUBLE": "none"
				}
			],
			"next_game": {
				"day": "2",
				"month": "November",
				"year": "2014",
				"dayname": "Sunday",
				"stadium": "American Airlines Arena",
				"city": "Miami",
				"opponent_name": "Raptors",
				"opponent_place": "Toronto",
				"is_home": "True"
			}
		}
	},
	"summaries": [
		"The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets ."
	]
}
```

#### Data Splits

<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
- Train: NBA seasons - 2014, 2015, & 2016; total instances - 3690
- Validation: NBA seasons - 2017; total instances - 1230
- Test: NBA seasons - 2018; total instances - 1230

#### Splitting Criteria

<!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
<!-- scope: microscope -->
The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset



## Dataset in GEM

### Rationale for Inclusion in GEM

#### Why is the Dataset in GEM?

<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
This dataset contains a data analytics problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)).  That is, there is a large amount of data from which insights need to be selected.  Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time).  There is far more on the data side than is required to be realised, and indeed, could be practically realised.  This depth of data analytics problem does not exist in other datasets.

#### Similar Datasets

<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no

#### Ability that the Dataset measures

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Many, if not all aspects of data-to-text systems can be measured with this dataset.  It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements.  Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.


### GEM-Specific Curation

#### Modificatied for GEM?

<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
no

#### Additional Splits?

<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no


### Getting Started with the Task

#### Pointers to Resources

<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
For dataset discussion see [Thomson et al, 2020](https://aclanthology.org/2020.intellang-1.4/)

For evaluation see:
- [Thomson & Reiter 2020, Thomson & Reiter (2021)](https://aclanthology.org/2021.inlg-1.23)
- [Kasner et al (2021)](https://aclanthology.org/2021.inlg-1.25)

For a system using the relational database form of SportSett, see:
- [Thomson et al (2020)](https://aclanthology.org/2020.inlg-1.6/)

For recent systems using the Rotowire dataset, see:
- [Puduppully & Lapata (2021)](https://github.com/ratishsp/data2text-macro-plan-py)
- [Rebuffel et all (2020)](https://github.com/KaijuML/data-to-text-hierarchical)



## Previous Results

### Previous Results

#### Measured Model Abilities

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Many, if not all aspects of data-to-text systems can be measured with this dataset.  It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements.  Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.

#### Metrics

<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`

#### Proposed Evaluation

<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
BLEU is the only off-the-shelf metric commonly used.  Works have also used custom metrics like RG ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)), and a recent shared task explored other metrics and their corrolation with human evaluation ([Thomson & Reiter, 2021](https://aclanthology.org/2021.inlg-1.23)).

#### Previous results available?

<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes

#### Other Evaluation Approaches

<!-- info: What evaluation approaches have others used? -->
<!-- scope: periscope -->
Most results from prior works use the original Rotowire dataset, which has train/validation/test contamination.  For results of BLEU and RG on the relational database format of SportSett, as a guide, see [Thomson et al, 2020](https://aclanthology.org/2020.inlg-1.6).

#### Relevant Previous Results

<!-- info: What are the most relevant previous results for this task/dataset? -->
<!-- scope: microscope -->
The results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment.  See Thomson et al, 2021 (https://aclanthology.org/2021.inlg-1.23) for an overview, and  Kasner et al (2021) for the best performing metric at the time of writing (https://aclanthology.org/2021.inlg-1.25).



## Dataset Curation

### Original Curation

#### Original Curation Rationale

<!-- info: Original curation rationale -->
<!-- scope: telescope -->
The references texts were taken from the existing dataset RotoWire-FG ([Wang, 2019](https://www.aclweb.org/anthology/W19-8639)), which is in turn based on Rotowire ([Wiseman et al, 2017](https://aclanthology.org/D17-1239)).  The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.

#### Communicative Goal

<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Create a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate.  This is a data-to-text problem in the classic sense ([Reiter, 2007](https://aclanthology.org/W07-2315)) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts.

#### Sourced from Different Sources

<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
yes

#### Source Details

<!-- info: List the sources (one per line) -->
<!-- scope: periscope -->
RotoWire-FG (https://www.rotowire.com).
Wikipedia (https://en.wikipedia.org/wiki/Main_Page)
Basketball Reference (https://www.basketball-reference.com)



### Language Data

#### How was Language Data Obtained?

<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Found`

#### Where was it found?

<!-- info: If found, where from? -->
<!-- scope: telescope -->
`Multiple websites`

#### Language Producers

<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
None

#### Topics Covered

<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
Summaries of basketball games (in the NBA).

#### Data Validation

<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
not validated

#### Data Preprocessing

<!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
<!-- scope: microscope -->
It retains the original tokenization scheme employed by Wang 2019

#### Was Data Filtered?

<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
manually

#### Filter Criteria

<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
Games from the 2014 through 2018 seasons were selected.  Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.


### Structured Annotations

#### Additional Annotations?

<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
none

#### Annotation Service?

<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no


### Consent

#### Any Consent Policy?

<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no

#### Justification for Using the Data

<!-- info: If not, what is the justification for reusing the data? -->
<!-- scope: microscope -->
The dataset consits of a pre-existing dataset, as well as publically available facts.


### Private Identifying Information (PII)

#### Contains PII?

<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
unlikely

#### Categories of PII

<!-- info: What categories of PII are present or suspected in the data? -->
<!-- scope: periscope -->
`generic PII`

#### Any PII Identification?

<!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
<!-- scope: periscope -->
no identification


### Maintenance

#### Any Maintenance Plan?

<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no



## Broader Social Context

### Previous Work on the Social Impact of the Dataset

#### Usage of Models based on the Data

<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no


### Impact on Under-Served Communities

#### Addresses needs of underserved Communities?

<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no


### Discussion of Biases

#### Any Documented Social Biases?

<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
yes

#### Links and Summaries of Analysis Work

<!-- info: Provide links to and summaries of works analyzing these biases. -->
<!-- scope: microscope -->
Unaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games.  It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text.  This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.

#### Are the Language Producers Representative of the Language?

<!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
<!-- scope: periscope -->
No, it is very specifically American English from the sports journalism domain.



## Considerations for Using the Data

### PII Risks and Liability

#### Potential PII Risk

<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
All information relating to persons is of public record.


### Licenses

#### Copyright Restrictions on the Dataset

<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`public domain`

#### Copyright Restrictions on the Language Data

<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`public domain`


### Known Technical Limitations

#### Technical Limitations

<!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
<!-- scope: microscope -->
SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable.  For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players.  It is unavoidable that some data which is aggregated, exists in its base form in previous partitions.  The season-based partition scheme heavily constrains this however.

#### Unsuited Applications

<!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
<!-- scope: microscope -->
Factual accuray continues to be a problem, systems may incorrectly represent the facts of the game.  

#### Discouraged Use Cases

<!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
<!-- scope: microscope -->
Using the RG metric to maximise the number of true facts in a generate summary is not nececeraly