Datasets:
GEM
/

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
parquet-converter commited on
Commit
c445bcd
1 Parent(s): 0e089c2

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,617 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - none
4
- language_creators:
5
- - unknown
6
- language:
7
- - en
8
- license:
9
- - cc-by-sa-4.0
10
- multilinguality:
11
- - unknown
12
- size_categories:
13
- - unknown
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - table-to-text
18
- task_ids: []
19
- pretty_name: e2e_nlg
20
- tags:
21
- - data-to-text
22
- ---
23
-
24
- # Dataset Card for GEM/e2e_nlg
25
-
26
- ## Dataset Description
27
-
28
- - **Homepage:** http://www.macs.hw.ac.uk/InteractionLab/E2E/
29
- - **Repository:** https://github.com/tuetschek/e2e-cleaning
30
- - **Paper:** https://www.aclweb.org/anthology/W17-5525/, [Detailed E2E Challenge writeup
31
- - **Leaderboard:** N/A
32
- - **Point of Contact:** Ondrej Dusek
33
-
34
- ### Link to Main Data Card
35
-
36
- You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/e2e_nlg).
37
-
38
- ### Dataset Summary
39
-
40
- The E2E NLG dataset is an English benchmark dataset for data-to-text models that verbalize a set of 2-9 key-value attribute pairs in the restaurant domain. The version used for GEM is the cleaned E2E NLG dataset, which filters examples with hallucinations and outputs that don't fully cover all input attributes.
41
-
42
- You can load the dataset via:
43
- ```
44
- import datasets
45
- data = datasets.load_dataset('GEM/e2e_nlg')
46
- ```
47
- The data loader can be found [here](https://huggingface.co/datasets/GEM/e2e_nlg).
48
-
49
- #### website
50
- [Website](http://www.macs.hw.ac.uk/InteractionLab/E2E/)
51
-
52
- #### paper
53
- [First data release](https://www.aclweb.org/anthology/W17-5525/), [Detailed E2E Challenge writeup](https://doi.org/10.1016/j.csl.2019.06.009), [Cleaned E2E version](https://www.aclweb.org/anthology/W19-8652/)
54
-
55
- #### authors
56
- Jekaterina Novikova, Ondrej Dusek and Verena Rieser
57
-
58
- ## Dataset Overview
59
-
60
- ### Where to find the Data and its Documentation
61
-
62
- #### Webpage
63
-
64
- <!-- info: What is the webpage for the dataset (if it exists)? -->
65
- <!-- scope: telescope -->
66
- [Website](http://www.macs.hw.ac.uk/InteractionLab/E2E/)
67
-
68
- #### Download
69
-
70
- <!-- info: What is the link to where the original dataset is hosted? -->
71
- <!-- scope: telescope -->
72
- [Github](https://github.com/tuetschek/e2e-cleaning)
73
-
74
- #### Paper
75
-
76
- <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
77
- <!-- scope: telescope -->
78
- [First data release](https://www.aclweb.org/anthology/W17-5525/), [Detailed E2E Challenge writeup](https://doi.org/10.1016/j.csl.2019.06.009), [Cleaned E2E version](https://www.aclweb.org/anthology/W19-8652/)
79
-
80
- #### BibTex
81
-
82
- <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
83
- <!-- scope: microscope -->
84
- ```
85
- @inproceedings{e2e_cleaned,
86
- address = {Tokyo, Japan},
87
- title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}},
88
- url = {https://www.aclweb.org/anthology/W19-8652/},
89
- booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
90
- author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
91
- year = {2019},
92
- pages = {421--426},
93
- }
94
- ```
95
-
96
- #### Contact Name
97
-
98
- <!-- quick -->
99
- <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
100
- <!-- scope: periscope -->
101
- Ondrej Dusek
102
-
103
- #### Contact Email
104
-
105
- <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
106
- <!-- scope: periscope -->
107
108
-
109
- #### Has a Leaderboard?
110
-
111
- <!-- info: Does the dataset have an active leaderboard? -->
112
- <!-- scope: telescope -->
113
- no
114
-
115
-
116
- ### Languages and Intended Use
117
-
118
- #### Multilingual?
119
-
120
- <!-- quick -->
121
- <!-- info: Is the dataset multilingual? -->
122
- <!-- scope: telescope -->
123
- no
124
-
125
- #### Covered Dialects
126
-
127
- <!-- info: What dialects are covered? Are there multiple dialects per language? -->
128
- <!-- scope: periscope -->
129
- Dialect-specific data was not collected and the language is general British English.
130
-
131
- #### Covered Languages
132
-
133
- <!-- quick -->
134
- <!-- info: What languages/dialects are covered in the dataset? -->
135
- <!-- scope: telescope -->
136
- `English`
137
-
138
- #### Whose Language?
139
-
140
- <!-- info: Whose language is in the dataset? -->
141
- <!-- scope: periscope -->
142
- The original dataset was collected using the CrowdFlower (now Appen) platform using native English speakers (self-reported). No demographic information was provided, but the collection was geographically limited to English-speaking countries.
143
-
144
- #### License
145
-
146
- <!-- quick -->
147
- <!-- info: What is the license of the dataset? -->
148
- <!-- scope: telescope -->
149
- cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International
150
-
151
- #### Intended Use
152
-
153
- <!-- info: What is the intended use of the dataset? -->
154
- <!-- scope: microscope -->
155
- The dataset was collected to test neural model on a very well specified realization task.
156
-
157
- #### Primary Task
158
-
159
- <!-- info: What primary task does the dataset support? -->
160
- <!-- scope: telescope -->
161
- Data-to-Text
162
-
163
- #### Communicative Goal
164
-
165
- <!-- quick -->
166
- <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
167
- <!-- scope: periscope -->
168
- Producing a text informing/recommending a restaurant, given all and only the attributes specified on the input.
169
-
170
-
171
- ### Credit
172
-
173
- #### Curation Organization Type(s)
174
-
175
- <!-- info: In what kind of organization did the dataset curation happen? -->
176
- <!-- scope: telescope -->
177
- `academic`
178
-
179
- #### Curation Organization(s)
180
-
181
- <!-- info: Name the organization(s). -->
182
- <!-- scope: periscope -->
183
- Heriot-Watt University
184
-
185
- #### Dataset Creators
186
-
187
- <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
188
- <!-- scope: microscope -->
189
- Jekaterina Novikova, Ondrej Dusek and Verena Rieser
190
-
191
- #### Funding
192
-
193
- <!-- info: Who funded the data creation? -->
194
- <!-- scope: microscope -->
195
- This research received funding from the EPSRC projects DILiGENt (EP/M005429/1) and MaDrIgAL (EP/N017536/1).
196
-
197
- #### Who added the Dataset to GEM?
198
-
199
- <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
200
- <!-- scope: microscope -->
201
- Simon Mille wrote the initial data card and Yacine Jernite the data loader. Sebastian Gehrmann migrated the data card to the v2 format and moved the data loader to the hub.
202
-
203
-
204
- ### Dataset Structure
205
-
206
- #### Data Fields
207
-
208
- <!-- info: List and describe the fields present in the dataset. -->
209
- <!-- scope: telescope -->
210
- The data is in a CSV format, with the following fields:
211
-
212
- * `mr` -- the meaning representation (MR, input)
213
- * `ref` -- reference, i.e. the corresponding natural-language description (output)
214
-
215
- There are additional fields (`fixed`, `orig_mr`) indicating whether the data was modified in the
216
- cleaning process and what was the original MR before cleaning, but these aren't used for NLG.
217
-
218
- The MR has a flat structure -- attribute-value pairs are comma separated, with values
219
- enclosed in brackets (see example above). There are 8 attributes:
220
- * `name` -- restaurant name
221
- * `near` -- a landmark close to the restaurant
222
- * `area` -- location (riverside, city centre)
223
- * `food` -- food type / cuisine (e.g. Japanese, Indian, English etc.)
224
- * `eatType` -- restaurant type (restaurant, coffee shop, pub)
225
- * `priceRange` -- price range (low, medium, high, <£20, £20-30, >£30)
226
- * `rating` -- customer rating (low, medium, high, 1/5, 3/5, 5/5)
227
- * `familyFriendly` -- is the restaurant family-friendly (yes/no)
228
-
229
- The same MR is often repeated multiple times with different synonymous references.
230
-
231
-
232
- #### How were labels chosen?
233
-
234
- <!-- info: How were the labels chosen? -->
235
- <!-- scope: microscope -->
236
- The source MRs were generated automatically at random from a set of valid attribute values. The labels were crowdsourced and are natural language
237
-
238
- #### Example Instance
239
-
240
- <!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
241
- <!-- scope: periscope -->
242
- ```
243
- {
244
- "input": "name[Alimentum], area[riverside], familyFriendly[yes], near[Burger King]",
245
- "target": "Alimentum is a kids friendly place in the riverside area near Burger King."
246
- }
247
- ```
248
-
249
- #### Data Splits
250
-
251
- <!-- info: Describe and name the splits in the dataset if there are more than one. -->
252
- <!-- scope: periscope -->
253
-
254
- | | MRs | Distinct MRs | References |
255
- |-------------|------|--------------|------------|
256
- | Training |12,568| 8,362 | 33,525 |
257
- | Development | 1,484| 1,132 | 4,299 |
258
- | Test | 1,847| 1,358 | 4,693 |
259
- | Total |15,899| 10,852 | 42,517 |
260
-
261
-
262
- “Distinct MRs” are MRs that remain distinct even if restaurant/place names (attributes `name`, `near`)
263
- are delexicalized, i.e., replaced with a placeholder.
264
-
265
- #### Splitting Criteria
266
-
267
- <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
268
- <!-- scope: microscope -->
269
- The data are divided so that MRs in different splits do not overlap.
270
-
271
-
272
-
273
-
274
- ## Dataset in GEM
275
-
276
- ### Rationale for Inclusion in GEM
277
-
278
- #### Why is the Dataset in GEM?
279
-
280
- <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
281
- <!-- scope: microscope -->
282
- The E2E dataset is one of the largest limited-domain NLG datasets and is frequently used as a data-to-text generation benchmark. The E2E Challenge included 20 systems of very different architectures, with system outputs available for download.
283
-
284
-
285
-
286
- #### Similar Datasets
287
-
288
- <!-- info: Do other datasets for the high level task exist? -->
289
- <!-- scope: telescope -->
290
- yes
291
-
292
- #### Unique Language Coverage
293
-
294
- <!-- info: Does this dataset cover other languages than other datasets for the same task? -->
295
- <!-- scope: periscope -->
296
- no
297
-
298
- #### Difference from other GEM datasets
299
-
300
- <!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
301
- <!-- scope: microscope -->
302
- The dataset is much cleaner than comparable datasets, and it is also a relatively easy task, making for a straightforward evaluation.
303
-
304
- #### Ability that the Dataset measures
305
-
306
- <!-- info: What aspect of model ability can be measured with this dataset? -->
307
- <!-- scope: periscope -->
308
- surface realization.
309
-
310
-
311
- ### GEM-Specific Curation
312
-
313
- #### Modificatied for GEM?
314
-
315
- <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
316
- <!-- scope: telescope -->
317
- yes
318
-
319
- #### Additional Splits?
320
-
321
- <!-- info: Does GEM provide additional splits to the dataset? -->
322
- <!-- scope: telescope -->
323
- yes
324
-
325
- #### Split Information
326
-
327
- <!-- info: Describe how the new splits were created -->
328
- <!-- scope: periscope -->
329
- 4 special test sets for E2E were added to the GEM evaluation suite.
330
-
331
- 1. We created subsets of the training and development sets of ~500 randomly selected inputs each.
332
- 2. We applied input scrambling on a subset of 500 randomly selected test instances; the order of the input properties was randomly reassigned.
333
- 3. For the input size, we created subpopulations based on the number of restaurant properties in the input.
334
-
335
- | Input length | Frequency English |
336
- |---------------|-------------------|
337
- | 2 | 5 |
338
- | 3 | 120 |
339
- | 4 | 389 |
340
- | 5 | 737 |
341
- | 6 | 1187 |
342
- | 7 | 1406 |
343
- | 8 | 774 |
344
- | 9 | 73 |
345
- | 10 | 2 |
346
-
347
- #### Split Motivation
348
-
349
- <!-- info: What aspects of the model's generation capacities were the splits created to test? -->
350
- <!-- scope: periscope -->
351
- Generalization and robustness
352
-
353
-
354
- ### Getting Started with the Task
355
-
356
-
357
-
358
-
359
- ## Previous Results
360
-
361
- ### Previous Results
362
-
363
- #### Measured Model Abilities
364
-
365
- <!-- info: What aspect of model ability can be measured with this dataset? -->
366
- <!-- scope: telescope -->
367
- Surface realization.
368
-
369
- #### Metrics
370
-
371
- <!-- info: What metrics are typically used for this task? -->
372
- <!-- scope: periscope -->
373
- `BLEU`, `METEOR`, `ROUGE`
374
-
375
- #### Proposed Evaluation
376
-
377
- <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
378
- <!-- scope: microscope -->
379
- The official evaluation script combines the MT-Eval and COCO Captioning libraries with the following metrics.
380
-
381
- - BLEU
382
- - CIDEr
383
- - NIST
384
- - METEOR
385
- - ROUGE-L
386
-
387
- #### Previous results available?
388
-
389
- <!-- info: Are previous results available? -->
390
- <!-- scope: telescope -->
391
- yes
392
-
393
- #### Other Evaluation Approaches
394
-
395
- <!-- info: What evaluation approaches have others used? -->
396
- <!-- scope: periscope -->
397
- Most previous results, including the shared task results, used the library provided by the dataset creators. The shared task also conducted a human evaluation using the following two criteria:
398
-
399
- - `Quality`: When collecting quality ratings, system outputs were presented to crowd workers together with the corresponding meaning representation, which implies that correctness of the NL utterance relative to the MR should also influence this ranking. The crowd workers were asked: “How do you judge the overall quality of the utterance in terms of its grammatical correctness, fluency, adequacy and other important factors?”
400
- - `Naturalness`: When collecting naturalness ratings, system outputs were presented to crowd workers without the corresponding meaning representation. The crowd workers were asked: “Could the utterance have been produced by a native speaker?”
401
-
402
- #### Relevant Previous Results
403
-
404
- <!-- info: What are the most relevant previous results for this task/dataset? -->
405
- <!-- scope: microscope -->
406
- The shared task writeup has in-depth evaluations of systems (https://www.sciencedirect.com/science/article/pii/S0885230819300919)
407
-
408
-
409
-
410
- ## Dataset Curation
411
-
412
- ### Original Curation
413
-
414
- #### Original Curation Rationale
415
-
416
- <!-- info: Original curation rationale -->
417
- <!-- scope: telescope -->
418
- The dataset was collected to showcase/test neural NLG models. It is larger and contains more lexical richness and syntactic variation than previous closed-domain NLG datasets.
419
-
420
-
421
-
422
- #### Communicative Goal
423
-
424
- <!-- info: What was the communicative goal? -->
425
- <!-- scope: periscope -->
426
- Producing a text informing/recommending a restaurant, given all and only the attributes specified on the input.
427
-
428
- #### Sourced from Different Sources
429
-
430
- <!-- info: Is the dataset aggregated from different data sources? -->
431
- <!-- scope: telescope -->
432
- no
433
-
434
-
435
- ### Language Data
436
-
437
- #### How was Language Data Obtained?
438
-
439
- <!-- info: How was the language data obtained? -->
440
- <!-- scope: telescope -->
441
- `Crowdsourced`
442
-
443
- #### Where was it crowdsourced?
444
-
445
- <!-- info: If crowdsourced, where from? -->
446
- <!-- scope: periscope -->
447
- `Other crowdworker platform`
448
-
449
- #### Language Producers
450
-
451
- <!-- info: What further information do we have on the language producers? -->
452
- <!-- scope: microscope -->
453
- Human references describing the MRs were collected by crowdsourcing on the CrowdFlower (now Appen) platform,
454
- with either textual or pictorial MRs as a baseline.
455
- The pictorial MRs were used in 20% of cases -- these yield higher lexical variation but introduce noise.
456
-
457
- #### Topics Covered
458
-
459
- <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
460
- <!-- scope: periscope -->
461
- The dataset is focused on descriptions of restaurants.
462
-
463
- #### Data Validation
464
-
465
- <!-- info: Was the text validated by a different worker or a data curator? -->
466
- <!-- scope: telescope -->
467
- validated by data curator
468
-
469
- #### Data Preprocessing
470
-
471
- <!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
472
- <!-- scope: microscope -->
473
- There were basic checks (length, valid characters, repetition).
474
-
475
-
476
- #### Was Data Filtered?
477
-
478
- <!-- info: Were text instances selected or filtered? -->
479
- <!-- scope: telescope -->
480
- algorithmically
481
-
482
- #### Filter Criteria
483
-
484
- <!-- info: What were the selection criteria? -->
485
- <!-- scope: microscope -->
486
- The cleaned version of the dataset which we are using in GEM was algorithmically filtered. They used regular expressions to match all human-generated references with a more accurate input when attributes were hallucinated or dropped. Additionally, train-test overlap stemming from the transformation was removed. As a result, this data is much cleaner than the original dataset but not perfect (about 20% of instances may have misaligned slots, compared to 40% of the original data.
487
-
488
-
489
- ### Structured Annotations
490
-
491
- #### Additional Annotations?
492
-
493
- <!-- quick -->
494
- <!-- info: Does the dataset have additional annotations for each instance? -->
495
- <!-- scope: telescope -->
496
- none
497
-
498
- #### Annotation Service?
499
-
500
- <!-- info: Was an annotation service used? -->
501
- <!-- scope: telescope -->
502
- no
503
-
504
-
505
- ### Consent
506
-
507
- #### Any Consent Policy?
508
-
509
- <!-- info: Was there a consent policy involved when gathering the data? -->
510
- <!-- scope: telescope -->
511
- yes
512
-
513
- #### Consent Policy Details
514
-
515
- <!-- info: What was the consent policy? -->
516
- <!-- scope: microscope -->
517
- Since a crowdsourcing platform was used, the involved raters waived their rights to the data and are aware that the produced annotations can be publicly released.
518
-
519
-
520
- ### Private Identifying Information (PII)
521
-
522
- #### Contains PII?
523
-
524
- <!-- quick -->
525
- <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
526
- <!-- scope: telescope -->
527
- no PII
528
-
529
- #### Justification for no PII
530
-
531
- <!-- info: Provide a justification for selecting `no PII` above. -->
532
- <!-- scope: periscope -->
533
- The dataset is artificial and does not contain any description of people.
534
-
535
-
536
- ### Maintenance
537
-
538
- #### Any Maintenance Plan?
539
-
540
- <!-- info: Does the original dataset have a maintenance plan? -->
541
- <!-- scope: telescope -->
542
- no
543
-
544
-
545
-
546
- ## Broader Social Context
547
-
548
- ### Previous Work on the Social Impact of the Dataset
549
-
550
- #### Usage of Models based on the Data
551
-
552
- <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
553
- <!-- scope: telescope -->
554
- no
555
-
556
-
557
- ### Impact on Under-Served Communities
558
-
559
- #### Addresses needs of underserved Communities?
560
-
561
- <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
562
- <!-- scope: telescope -->
563
- no
564
-
565
-
566
- ### Discussion of Biases
567
-
568
- #### Any Documented Social Biases?
569
-
570
- <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
571
- <!-- scope: telescope -->
572
- no
573
-
574
- #### Are the Language Producers Representative of the Language?
575
-
576
- <!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
577
- <!-- scope: periscope -->
578
- The source data is generated randomly, so it should not contain biases. The human references may be biased by the workers' demographic, but that was not investigated upon data collection.
579
-
580
-
581
-
582
- ## Considerations for Using the Data
583
-
584
- ### PII Risks and Liability
585
-
586
-
587
-
588
- ### Licenses
589
-
590
- #### Copyright Restrictions on the Dataset
591
-
592
- <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
593
- <!-- scope: periscope -->
594
- `open license - commercial use allowed`
595
-
596
- #### Copyright Restrictions on the Language Data
597
-
598
- <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
599
- <!-- scope: periscope -->
600
- `open license - commercial use allowed`
601
-
602
-
603
- ### Known Technical Limitations
604
-
605
- #### Technical Limitations
606
-
607
- <!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
608
- <!-- scope: microscope -->
609
- The cleaned version still has data points with hallucinated or omitted attributes.
610
-
611
- #### Unsuited Applications
612
-
613
- <!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
614
- <!-- scope: microscope -->
615
- The data only pertains to the restaurant domain and the included attributes. A model cannot be expected to handle other domains or attributes.
616
-
617
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1,222 +0,0 @@
1
- {
2
- "e2e_nlg": {
3
- "description": "GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation,\nboth through human annotations and automated Metrics.\n\nGEM aims to:\n- measure NLG progress across 13 datasets spanning many NLG tasks and languages.\n- provide an in-depth analysis of data and models presented via data statements and challenge sets.\n- develop standards for evaluation of generated text using both automated and human metrics.\n\nIt is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development\nby extending existing data or developing datasets for additional languages.\n",
4
- "citation": "@article{gem_benchmark,\n author = {Sebastian Gehrmann and\n Tosin P. Adewumi and\n Karmanya Aggarwal and\n Pawan Sasanka Ammanamanchi and\n Aremu Anuoluwapo and\n Antoine Bosselut and\n Khyathi Raghavi Chandu and\n Miruna{-}Adriana Clinciu and\n Dipanjan Das and\n Kaustubh D. Dhole and\n Wanyu Du and\n Esin Durmus and\n Ondrej Dusek and\n Chris Emezue and\n Varun Gangal and\n Cristina Garbacea and\n Tatsunori Hashimoto and\n Yufang Hou and\n Yacine Jernite and\n Harsh Jhamtani and\n Yangfeng Ji and\n Shailza Jolly and\n Dhruv Kumar and\n Faisal Ladhak and\n Aman Madaan and\n Mounica Maddela and\n Khyati Mahajan and\n Saad Mahamood and\n Bodhisattwa Prasad Majumder and\n Pedro Henrique Martins and\n Angelina McMillan{-}Major and\n Simon Mille and\n Emiel van Miltenburg and\n Moin Nadeem and\n Shashi Narayan and\n Vitaly Nikolaev and\n Rubungo Andre Niyongabo and\n Salomey Osei and\n Ankur P. Parikh and\n Laura Perez{-}Beltrachini and\n Niranjan Ramesh Rao and\n Vikas Raunak and\n Juan Diego Rodriguez and\n Sashank Santhanam and\n Joao Sedoc and\n Thibault Sellam and\n Samira Shaikh and\n Anastasia Shimorina and\n Marco Antonio Sobrevilla Cabezudo and\n Hendrik Strobelt and\n Nishant Subramani and\n Wei Xu and\n Diyi Yang and\n Akhila Yerukola and\n Jiawei Zhou},\n title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and\n Metrics},\n journal = {CoRR},\n volume = {abs/2102.01672},\n year = {2021},\n url = {https://arxiv.org/abs/2102.01672},\n archivePrefix = {arXiv},\n eprint = {2102.01672}\n}\n",
5
- "homepage": "https://gem-benchmark.github.io/",
6
- "license": "CC-BY-SA-4.0",
7
- "features": {
8
- "gem_id": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "gem_parent_id": {
14
- "dtype": "string",
15
- "id": null,
16
- "_type": "Value"
17
- },
18
- "meaning_representation": {
19
- "dtype": "string",
20
- "id": null,
21
- "_type": "Value"
22
- },
23
- "target": {
24
- "dtype": "string",
25
- "id": null,
26
- "_type": "Value"
27
- },
28
- "references": [
29
- {
30
- "dtype": "string",
31
- "id": null,
32
- "_type": "Value"
33
- }
34
- ]
35
- },
36
- "post_processed": null,
37
- "supervised_keys": {
38
- "input": "meaning_representation",
39
- "output": "target"
40
- },
41
- "task_templates": null,
42
- "builder_name": "new_e2e",
43
- "config_name": "default",
44
- "version": {
45
- "version_str": "1.0.1",
46
- "description": null,
47
- "major": 1,
48
- "minor": 0,
49
- "patch": 1
50
- },
51
- "splits": {
52
- "train": {
53
- "name": "train",
54
- "num_bytes": 9128934,
55
- "num_examples": 33525,
56
- "dataset_name": "new_e2e"
57
- },
58
- "validation": {
59
- "name": "validation",
60
- "num_bytes": 1373692,
61
- "num_examples": 1484,
62
- "dataset_name": "new_e2e"
63
- },
64
- "test": {
65
- "name": "test",
66
- "num_bytes": 1642884,
67
- "num_examples": 1847,
68
- "dataset_name": "new_e2e"
69
- },
70
- "challenge_train_sample": {
71
- "name": "challenge_train_sample",
72
- "num_bytes": 145295,
73
- "num_examples": 500,
74
- "dataset_name": "new_e2e"
75
- },
76
- "challenge_validation_sample": {
77
- "name": "challenge_validation_sample",
78
- "num_bytes": 226501,
79
- "num_examples": 500,
80
- "dataset_name": "new_e2e"
81
- },
82
- "challenge_test_scramble": {
83
- "name": "challenge_test_scramble",
84
- "num_bytes": 236175,
85
- "num_examples": 500,
86
- "dataset_name": "new_e2e"
87
- }
88
- },
89
- "download_checksums": {
90
- "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv": {
91
- "num_bytes": 11100744,
92
- "checksum": "12a4f59ec85ddd2586244aaf166f65d1b8cd468b6227e6620108baf118d5b325"
93
- },
94
- "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json": {
95
- "num_bytes": 880752,
96
- "checksum": "92206cb272e2cd2a146b0e9255d04f596c8864a328303b09f819c4bba926981d"
97
- },
98
- "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json": {
99
- "num_bytes": 1081450,
100
- "checksum": "e52a3cfc76fced9546c8362eb7de4c65dc64c2b935b496916c7ddfa1170b9aaa"
101
- },
102
- "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip": {
103
- "num_bytes": 70641,
104
- "checksum": "5d9db67219c984f778dda42e718bc8199945bde609f0b313153de2894e33a883"
105
- }
106
- },
107
- "download_size": 13133587,
108
- "post_processing_size": null,
109
- "dataset_size": 12753481,
110
- "size_in_bytes": 25887068
111
- },
112
- "default": {
113
- "description": "The E2E dataset is designed for a limited-domain data-to-text task --\ngeneration of restaurant descriptions/recommendations based on up to 8 different\nattributes (name, area, price range etc.).\n",
114
- "citation": "@inproceedings{e2e_cleaned,\n\taddress = {Tokyo, Japan},\n\ttitle = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}},\n\turl = {https://www.aclweb.org/anthology/W19-8652/},\n\tbooktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},\n\tauthor = {Du\u0161ek, Ond\u0159ej and Howcroft, David M and Rieser, Verena},\n\tyear = {2019},\n\tpages = {421--426},\n}\n",
115
- "homepage": "http://www.macs.hw.ac.uk/InteractionLab/E2E/",
116
- "license": "",
117
- "features": {
118
- "gem_id": {
119
- "dtype": "string",
120
- "id": null,
121
- "_type": "Value"
122
- },
123
- "gem_parent_id": {
124
- "dtype": "string",
125
- "id": null,
126
- "_type": "Value"
127
- },
128
- "meaning_representation": {
129
- "dtype": "string",
130
- "id": null,
131
- "_type": "Value"
132
- },
133
- "target": {
134
- "dtype": "string",
135
- "id": null,
136
- "_type": "Value"
137
- },
138
- "references": [
139
- {
140
- "dtype": "string",
141
- "id": null,
142
- "_type": "Value"
143
- }
144
- ]
145
- },
146
- "post_processed": null,
147
- "supervised_keys": {
148
- "input": "meaning_representation",
149
- "output": "target"
150
- },
151
- "task_templates": null,
152
- "builder_name": "new_e2e",
153
- "config_name": "default",
154
- "version": {
155
- "version_str": "1.0.1",
156
- "description": null,
157
- "major": 1,
158
- "minor": 0,
159
- "patch": 1
160
- },
161
- "splits": {
162
- "train": {
163
- "name": "train",
164
- "num_bytes": 9128934,
165
- "num_examples": 33525,
166
- "dataset_name": "new_e2e"
167
- },
168
- "validation": {
169
- "name": "validation",
170
- "num_bytes": 1013046,
171
- "num_examples": 1484,
172
- "dataset_name": "new_e2e"
173
- },
174
- "test": {
175
- "name": "test",
176
- "num_bytes": 1241649,
177
- "num_examples": 1847,
178
- "dataset_name": "new_e2e"
179
- },
180
- "challenge_train_sample": {
181
- "name": "challenge_train_sample",
182
- "num_bytes": 145295,
183
- "num_examples": 500,
184
- "dataset_name": "new_e2e"
185
- },
186
- "challenge_validation_sample": {
187
- "name": "challenge_validation_sample",
188
- "num_bytes": 226501,
189
- "num_examples": 500,
190
- "dataset_name": "new_e2e"
191
- },
192
- "challenge_test_scramble": {
193
- "name": "challenge_test_scramble",
194
- "num_bytes": 236175,
195
- "num_examples": 500,
196
- "dataset_name": "new_e2e"
197
- }
198
- },
199
- "download_checksums": {
200
- "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv": {
201
- "num_bytes": 11100744,
202
- "checksum": "12a4f59ec85ddd2586244aaf166f65d1b8cd468b6227e6620108baf118d5b325"
203
- },
204
- "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json": {
205
- "num_bytes": 880752,
206
- "checksum": "92206cb272e2cd2a146b0e9255d04f596c8864a328303b09f819c4bba926981d"
207
- },
208
- "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json": {
209
- "num_bytes": 1081450,
210
- "checksum": "e52a3cfc76fced9546c8362eb7de4c65dc64c2b935b496916c7ddfa1170b9aaa"
211
- },
212
- "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip": {
213
- "num_bytes": 70641,
214
- "checksum": "5d9db67219c984f778dda42e718bc8199945bde609f0b313153de2894e33a883"
215
- }
216
- },
217
- "download_size": 13133587,
218
- "post_processing_size": null,
219
- "dataset_size": 11991600,
220
- "size_in_bytes": 25125187
221
- }
222
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
default/e2e_nlg-challenge_test_scramble.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c5098769a9b10a9443b054083f76ad9983beea049a7fd611da5b7dbc580bd61
3
+ size 74825
default/e2e_nlg-challenge_train_sample.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f18852b3fe9beedb44a6784c680f65f3be2e5fbf85575f2542f756572cb2e7
3
+ size 43978
default/e2e_nlg-challenge_validation_sample.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b6c01c08d9427036755f82249c7258395e22f478f61e1e6eb2b3029d1e20959
3
+ size 62877
default/e2e_nlg-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a29d0908a3dbabb24e0fcb2a7aa9f5b9a4803bd8175759ce68bbc4e5d6b335
3
+ size 323208
default/e2e_nlg-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e024f90c236c9b4e25761a5615c61cc43e342ec45f5ccb38f6d7ac3270aa6f37
3
+ size 2668469
default/e2e_nlg-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad599a702ec347b53498893f0902111d45af0b6d26759d6d1c745790b040dce0
3
+ size 271877
e2e_nlg.json DELETED
@@ -1,182 +0,0 @@
1
- {
2
- "overview": {
3
- "where": {
4
- "has-leaderboard": "no",
5
- "leaderboard-url": "N/A",
6
- "leaderboard-description": "N/A",
7
- "website": "[Website](http://www.macs.hw.ac.uk/InteractionLab/E2E/)",
8
- "data-url": "[Github](https://github.com/tuetschek/e2e-cleaning)",
9
- "paper-url": "[First data release](https://www.aclweb.org/anthology/W17-5525/), [Detailed E2E Challenge writeup](https://doi.org/10.1016/j.csl.2019.06.009), [Cleaned E2E version](https://www.aclweb.org/anthology/W19-8652/)",
10
- "paper-bibtext": "```\n@inproceedings{e2e_cleaned,\n\taddress = {Tokyo, Japan},\n\ttitle = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}},\n\turl = {https://www.aclweb.org/anthology/W19-8652/},\n\tbooktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},\n\tauthor = {Du\u0161ek, Ond\u0159ej and Howcroft, David M and Rieser, Verena},\n\tyear = {2019},\n\tpages = {421--426},\n}\n```",
11
- "contact-name": "Ondrej Dusek",
12
- "contact-email": "[email protected]"
13
- },
14
- "languages": {
15
- "is-multilingual": "no",
16
- "license": "cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International",
17
- "task-other": "N/A",
18
- "language-names": [
19
- "English"
20
- ],
21
- "language-speakers": "The original dataset was collected using the CrowdFlower (now Appen) platform using native English speakers (self-reported). No demographic information was provided, but the collection was geographically limited to English-speaking countries. ",
22
- "language-dialects": "Dialect-specific data was not collected and the language is general British English. ",
23
- "intended-use": "The dataset was collected to test neural model on a very well specified realization task. ",
24
- "license-other": "N/A",
25
- "task": "Data-to-Text",
26
- "communicative": "Producing a text informing/recommending a restaurant, given all and only the attributes specified on the input."
27
- },
28
- "credit": {
29
- "organization-type": [
30
- "academic"
31
- ],
32
- "organization-names": "Heriot-Watt University",
33
- "creators": "Jekaterina Novikova, Ondrej Dusek and Verena Rieser",
34
- "funding": "This research received funding from the EPSRC projects DILiGENt (EP/M005429/1) and MaDrIgAL (EP/N017536/1).",
35
- "gem-added-by": "Simon Mille wrote the initial data card and Yacine Jernite the data loader. Sebastian Gehrmann migrated the data card to the v2 format and moved the data loader to the hub."
36
- },
37
- "structure": {
38
- "data-fields": "The data is in a CSV format, with the following fields:\n\n* `mr` -- the meaning representation (MR, input)\n* `ref` -- reference, i.e. the corresponding natural-language description (output)\n\nThere are additional fields (`fixed`, `orig_mr`) indicating whether the data was modified in the\ncleaning process and what was the original MR before cleaning, but these aren't used for NLG.\n\nThe MR has a flat structure -- attribute-value pairs are comma separated, with values\nenclosed in brackets (see example above). There are 8 attributes:\n* `name` -- restaurant name\n* `near` -- a landmark close to the restaurant\n* `area` -- location (riverside, city centre)\n* `food` -- food type / cuisine (e.g. Japanese, Indian, English etc.)\n* `eatType` -- restaurant type (restaurant, coffee shop, pub)\n* `priceRange` -- price range (low, medium, high, <\u00a320, \u00a320-30, >\u00a330)\n* `rating` -- customer rating (low, medium, high, 1/5, 3/5, 5/5)\n* `familyFriendly` -- is the restaurant family-friendly (yes/no)\n\nThe same MR is often repeated multiple times with different synonymous references.\n",
39
- "structure-splits": "\n| | MRs | Distinct MRs | References |\n|-------------|------|--------------|------------|\n| Training |12,568| 8,362 | 33,525 |\n| Development | 1,484| 1,132 | 4,299 |\n| Test | 1,847| 1,358 | 4,693 |\n| Total |15,899| 10,852 | 42,517 |\n\n\n\u201cDistinct MRs\u201d are MRs that remain distinct even if restaurant/place names (attributes `name`, `near`)\nare delexicalized, i.e., replaced with a placeholder.",
40
- "structure-splits-criteria": "The data are divided so that MRs in different splits do not overlap.\n",
41
- "structure-description": "n/a",
42
- "structure-labels": "The source MRs were generated automatically at random from a set of valid attribute values. The labels were crowdsourced and are natural language",
43
- "structure-example": "```\n{\n \"input\": \"name[Alimentum], area[riverside], familyFriendly[yes], near[Burger King]\",\n \"target\": \"Alimentum is a kids friendly place in the riverside area near Burger King.\" \n}\n```",
44
- "structure-outlier": "n/a"
45
- },
46
- "what": {
47
- "dataset": "The E2E NLG dataset is an English benchmark dataset for data-to-text models that verbalize a set of 2-9 key-value attribute pairs in the restaurant domain. The version used for GEM is the cleaned E2E NLG dataset, which filters examples with hallucinations and outputs that don't fully cover all input attributes. "
48
- }
49
- },
50
- "gem": {
51
- "rationale": {
52
- "sole-task-dataset": "yes",
53
- "sole-language-task-dataset": "no",
54
- "distinction-description": "The dataset is much cleaner than comparable datasets, and it is also a relatively easy task, making for a straightforward evaluation. ",
55
- "contribution": "The E2E dataset is one of the largest limited-domain NLG datasets and is frequently used as a data-to-text generation benchmark. The E2E Challenge included 20 systems of very different architectures, with system outputs available for download.\n\n",
56
- "model-ability": "surface realization."
57
- },
58
- "curation": {
59
- "has-additional-curation": "yes",
60
- "modification-types": [],
61
- "modification-description": "N/A",
62
- "has-additional-splits": "yes",
63
- "additional-splits-description": "4 special test sets for E2E were added to the GEM evaluation suite.\n\n1. We created subsets of the training and development sets of ~500 randomly selected inputs each.\n2. We applied input scrambling on a subset of 500 randomly selected test instances; the order of the input properties was randomly reassigned.\n3. For the input size, we created subpopulations based on the number of restaurant properties in the input.\n\n| Input length | Frequency English |\n|---------------|-------------------|\n| 2 | 5 |\n| 3 | 120 |\n| 4 | 389 |\n| 5 | 737 |\n| 6 | 1187 |\n| 7 | 1406 |\n| 8 | 774 |\n| 9 | 73 |\n| 10 | 2 |",
64
- "additional-splits-capacicites": "Generalization and robustness"
65
- },
66
- "starting": {
67
- "research-pointers": "n/a",
68
- "technical-terms": "n/a"
69
- }
70
- },
71
- "curation": {
72
- "original": {
73
- "is-aggregated": "no",
74
- "aggregated-sources": "N/A",
75
- "rationale": "The dataset was collected to showcase/test neural NLG models. It is larger and contains more lexical richness and syntactic variation than previous closed-domain NLG datasets.\n\n",
76
- "communicative": "Producing a text informing/recommending a restaurant, given all and only the attributes specified on the input."
77
- },
78
- "language": {
79
- "found": [],
80
- "crowdsourced": [
81
- "Other crowdworker platform"
82
- ],
83
- "created": "N/A",
84
- "machine-generated": "N/A",
85
- "validated": "validated by data curator",
86
- "is-filtered": "algorithmically",
87
- "filtered-criteria": "The cleaned version of the dataset which we are using in GEM was algorithmically filtered. They used regular expressions to match all human-generated references with a more accurate input when attributes were hallucinated or dropped. Additionally, train-test overlap stemming from the transformation was removed. As a result, this data is much cleaner than the original dataset but not perfect (about 20% of instances may have misaligned slots, compared to 40% of the original data. ",
88
- "obtained": [
89
- "Crowdsourced"
90
- ],
91
- "producers-description": "Human references describing the MRs were collected by crowdsourcing on the CrowdFlower (now Appen) platform,\nwith either textual or pictorial MRs as a baseline. \nThe pictorial MRs were used in 20% of cases -- these yield higher lexical variation but introduce noise.",
92
- "topics": "The dataset is focused on descriptions of restaurants.",
93
- "pre-processed": "There were basic checks (length, valid characters, repetition).\n"
94
- },
95
- "annotations": {
96
- "origin": "none",
97
- "rater-number": "N/A",
98
- "rater-qualifications": "N/A",
99
- "rater-training-num": "N/A",
100
- "rater-test-num": "N/A",
101
- "rater-annotation-service-bool": "no",
102
- "rater-annotation-service": [],
103
- "values": "N/A",
104
- "quality-control": [],
105
- "quality-control-details": "N/A"
106
- },
107
- "consent": {
108
- "has-consent": "yes",
109
- "consent-policy": "Since a crowdsourcing platform was used, the involved raters waived their rights to the data and are aware that the produced annotations can be publicly released. ",
110
- "consent-other": "N/A",
111
- "no-consent-justification": "N/A"
112
- },
113
- "pii": {
114
- "has-pii": "no PII",
115
- "no-pii-justification": "The dataset is artificial and does not contain any description of people.",
116
- "is-pii-identified": "N/A",
117
- "pii-identified-method": "N/A",
118
- "is-pii-replaced": "N/A",
119
- "pii-replaced-method": "N/A",
120
- "pii-categories": []
121
- },
122
- "maintenance": {
123
- "has-maintenance": "no",
124
- "description": "N/A",
125
- "contact": "N/A",
126
- "contestation-mechanism": "N/A",
127
- "contestation-link": "N/A",
128
- "contestation-description": "N/A"
129
- }
130
- },
131
- "results": {
132
- "results": {
133
- "other-metrics-definitions": "N/A",
134
- "has-previous-results": "yes",
135
- "current-evaluation": "Most previous results, including the shared task results, used the library provided by the dataset creators. The shared task also conducted a human evaluation using the following two criteria: \n\n- `Quality`: When collecting quality ratings, system outputs were presented to crowd workers together with the corresponding meaning representation, which implies that correctness of the NL utterance relative to the MR should also influence this ranking. The crowd workers were asked: \u201cHow do you judge the overall quality of the utterance in terms of its grammatical correctness, fluency, adequacy and other important factors?\u201d\n- `Naturalness`: When collecting naturalness ratings, system outputs were presented to crowd workers without the corresponding meaning representation. The crowd workers were asked: \u201cCould the utterance have been produced by a native speaker?\u201d",
136
- "previous-results": "The shared task writeup has in-depth evaluations of systems (https://www.sciencedirect.com/science/article/pii/S0885230819300919) ",
137
- "model-abilities": "Surface realization.",
138
- "metrics": [
139
- "BLEU",
140
- "METEOR",
141
- "ROUGE"
142
- ],
143
- "original-evaluation": "The official evaluation script combines the MT-Eval and COCO Captioning libraries with the following metrics.\n\n- BLEU\n- CIDEr\n- NIST\n- METEOR\n- ROUGE-L"
144
- }
145
- },
146
- "considerations": {
147
- "pii": {
148
- "risks-description": "n/a"
149
- },
150
- "licenses": {
151
- "dataset-restrictions-other": "N/A",
152
- "data-copyright-other": "N/A",
153
- "dataset-restrictions": [
154
- "open license - commercial use allowed"
155
- ],
156
- "data-copyright": [
157
- "open license - commercial use allowed"
158
- ]
159
- },
160
- "limitations": {
161
- "data-technical-limitations": "The cleaned version still has data points with hallucinated or omitted attributes. ",
162
- "data-unsuited-applications": "The data only pertains to the restaurant domain and the included attributes. A model cannot be expected to handle other domains or attributes. ",
163
- "data-discouraged-use": "n/a"
164
- }
165
- },
166
- "context": {
167
- "previous": {
168
- "is-deployed": "no",
169
- "described-risks": "N/A",
170
- "changes-from-observation": "N/A"
171
- },
172
- "underserved": {
173
- "helps-underserved": "no",
174
- "underserved-description": "N/A"
175
- },
176
- "biases": {
177
- "has-biases": "no",
178
- "bias-analyses": "N/A",
179
- "speaker-distibution": "The source data is generated randomly, so it should not contain biases. The human references may be biased by the workers' demographic, but that was not investigated upon data collection."
180
- }
181
- }
182
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e_nlg.py DELETED
@@ -1,123 +0,0 @@
1
- import csv
2
- import json
3
- import os
4
- import datasets
5
-
6
- _CITATION = """\
7
- @inproceedings{e2e_cleaned,
8
- address = {Tokyo, Japan},
9
- title = {Semantic {Noise} {Matters} for {Neural} {Natural} {Language} {Generation}},
10
- url = {https://www.aclweb.org/anthology/W19-8652/},
11
- booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)},
12
- author = {Dušek, Ondřej and Howcroft, David M and Rieser, Verena},
13
- year = {2019},
14
- pages = {421--426},
15
- }
16
- """
17
-
18
- _DESCRIPTION = """\
19
- The E2E dataset is designed for a limited-domain data-to-text task --
20
- generation of restaurant descriptions/recommendations based on up to 8 different
21
- attributes (name, area, price range etc.).
22
- """
23
-
24
- _URLs = {
25
- "train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv",
26
- "validation": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/validation.json",
27
- "test": "https://raw.githubusercontent.com/jordiclive/GEM_datasets/main/e2e/test.json",
28
- "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip",
29
- }
30
-
31
-
32
- class E2ENlg(datasets.GeneratorBasedBuilder):
33
- VERSION = datasets.Version("1.0.1")
34
- DEFAULT_CONFIG_NAME = "e2e_nlg"
35
-
36
- def _info(self):
37
- features = datasets.Features(
38
- {
39
- "gem_id": datasets.Value("string"),
40
- "gem_parent_id": datasets.Value("string"),
41
- "meaning_representation": datasets.Value("string"),
42
- "target": datasets.Value("string"),
43
- "references": [datasets.Value("string")],
44
- }
45
- )
46
- return datasets.DatasetInfo(
47
- description=_DESCRIPTION,
48
- features=features,
49
- supervised_keys=datasets.info.SupervisedKeysData(
50
- input="meaning_representation", output="target"
51
- ),
52
- homepage="http://www.macs.hw.ac.uk/InteractionLab/E2E/",
53
- citation=_CITATION,
54
- )
55
-
56
- def _split_generators(self, dl_manager):
57
- """Returns SplitGenerators."""
58
- dl_dir = dl_manager.download_and_extract(_URLs)
59
- challenge_sets = [
60
- ("challenge_train_sample", "train_e2e_nlg_RandomSample500.json"),
61
- ("challenge_validation_sample", "validation_e2e_nlg_RandomSample500.json"),
62
- ("challenge_test_scramble", "test_e2e_nlg_ScrambleInputStructure500.json"),
63
- ]
64
- return [
65
- datasets.SplitGenerator(
66
- name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl}
67
- )
68
- for spl in ["train", "validation", "test"]
69
- ] + [
70
- datasets.SplitGenerator(
71
- name=challenge_split,
72
- gen_kwargs={
73
- "filepath": os.path.join(
74
- dl_dir["challenge_set"], "e2e_nlg", filename
75
- ),
76
- "split": challenge_split,
77
- },
78
- )
79
- for challenge_split, filename in challenge_sets
80
- ]
81
-
82
- def _generate_examples(self, filepath, split, filepaths=None, lang=None):
83
- """Yields examples."""
84
- if split.startswith("challenge"):
85
- exples = json.load(open(filepath, encoding="utf-8"))
86
- if isinstance(exples, dict):
87
- assert len(exples) == 1, "multiple entries found"
88
- exples = list(exples.values())[0]
89
- for id_, exple in enumerate(exples):
90
- if len(exple) == 0:
91
- continue
92
- exple["gem_parent_id"] = exple["gem_id"]
93
- exple["gem_id"] = f"e2e_nlg-{split}-{id_}"
94
- yield id_, exple
95
- if split.startswith("test") or split.startswith("validation"):
96
- exples = json.load(open(filepath, encoding="utf-8"))
97
- if isinstance(exples, dict):
98
- assert len(exples) == 1, "multiple entries found"
99
- exples = list(exples.values())[0]
100
- for id_, exple in enumerate(exples):
101
- if len(exple) == 0:
102
- continue
103
- yield id_, {
104
- "gem_id": f"e2e_nlg-{split}-{id_}",
105
- "gem_parent_id": f"e2e_nlg-{split}-{id_}",
106
- "meaning_representation": exple["meaning_representation"],
107
- "target": exple["references"][0],
108
- "references": exple["references"],
109
- }
110
- else:
111
- with open(filepath, encoding="utf-8") as f:
112
- reader = csv.DictReader(f)
113
- for id_, example in enumerate(reader):
114
- yield id_, {
115
- "gem_id": f"e2e_nlg-{split}-{id_}",
116
- "gem_parent_id": f"e2e_nlg-{split}-{id_}",
117
- "meaning_representation": example["mr"],
118
- "target": example["ref"],
119
- "references": []
120
- }
121
-
122
-
123
-