File size: 9,617 Bytes
71079b6 abc4219 71079b6 3c34c48 71079b6 3fb328f abc4219 71079b6 3c34c48 71079b6 abc4219 3fb328f abc4219 71079b6 3fb328f 71079b6 abc4219 71079b6 abc4219 71079b6 3c34c48 71079b6 abc4219 71079b6 abc4219 3fb328f abc4219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
_CITATION = """\
@inproceedings{balakrishnan-etal-2019-constrained,
title = "Constrained Decoding for Neural {NLG} from Compositional Representations in Task-Oriented Dialogue",
author = "Balakrishnan, Anusha and
Rao, Jinfeng and
Upasani, Kartikeya and
White, Michael and
Subba, Rajen",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1080",
doi = "10.18653/v1/P19-1080",
pages = "831--844"
}
"""
_DESCRIPTION = """\
The Conversational Weather dataset is designed for generation of responses to weather queries based on a structured input data. The input allows specifying data attributes such as dates, times, locations, weather conditions, and errors, and also offers control over structure of response through discourse relations such as join, contrast, and justification.
"""
_HOMEPAGE = "https://github.com/facebookresearch/TreeNLG"
_LICENSE = "CC-BY-NC-4.0"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
'default': {
'train': 'https://raw.githubusercontent.com/facebookresearch/TreeNLG/master/data/weather/train.tsv',
'validation': 'https://raw.githubusercontent.com/facebookresearch/TreeNLG/master/data/weather/val.tsv',
'test': 'https://raw.githubusercontent.com/facebookresearch/TreeNLG/master/data/weather/test.tsv'
},
'challenge': {
'disc_test': './data/challenge_sets/disc_test.tsv',
'dial_test_freq': {
'dial_test_freq_1': './data/challenge_sets/dial_test_freq_1.tsv',
'dial_test_freq_2': './data/challenge_sets/dial_test_freq_2.tsv',
'dial_test_freq_3': './data/challenge_sets/dial_test_freq_3.tsv',
'dial_test_freq_4': './data/challenge_sets/dial_test_freq_4.tsv',
'dial_test_freq_5': './data/challenge_sets/dial_test_freq_5.tsv'
},
'disc_test_freq': {
'disc_test_freq_0': './data/challenge_sets/disc_test_freq_0.tsv',
'disc_test_freq_1': './data/challenge_sets/disc_test_freq_1.tsv',
'disc_test_freq_2': './data/challenge_sets/disc_test_freq_2.tsv',
'disc_test_freq_3': './data/challenge_sets/disc_test_freq_3.tsv'
},
}
}
class ConversationalWeather(datasets.GeneratorBasedBuilder):
"""The Conversational Weather dataset is designed for generation of responses to weather queries
based on a structured input data. The input allows specifying data attributes such as dates, times,
locations, weather conditions, and errors, and also offers control over structure of response through
discourse relations such as join, contrast, and justification."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description="This part of my dataset covers a first domain"),
datasets.BuilderConfig(name="challenge", version=VERSION, description="This part of my dataset covers a second domain"),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"gem_id": datasets.Value("string"),
"data_id": datasets.Value("string"),
"user_query": datasets.Value("string"),
"tree_str_mr": datasets.Value("string"),
"response": datasets.Value("string"),
"target": datasets.Value("string"),
"references": [datasets.Value("string")],
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
if self.config.name is 'challenge':
disc_test_freq_data = []
for k in range(len(_URLs['challenge']['disc_test_freq'])):
disc_test_freq_data.append(
datasets.SplitGenerator(
name=datasets.NamedSplit(f"disc_test_freq_{k}"),
gen_kwargs={
"filepath": os.path.join(data_dir['disc_test_freq'][f'disc_test_freq_{k}']),
"split": f"disc-test-freq-{k}",
},
))
dial_test_freq_data = []
for k in range(1, len(_URLs['challenge']['dial_test_freq'])+1):
dial_test_freq_data.append(
datasets.SplitGenerator(
name=datasets.NamedSplit(f"dial_test_freq_{k}"),
gen_kwargs={
"filepath": os.path.join(data_dir['dial_test_freq'][f'dial_test_freq_{k}']),
"split": f"dial-test-freq-{k}",
},
))
return [
datasets.SplitGenerator(
name=datasets.NamedSplit("disc_test"),
gen_kwargs={
"filepath": os.path.join(data_dir['disc_test']),
"split": "disc-test",
},
)] + disc_test_freq_data + dial_test_freq_data
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['train']),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['test']),
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['validation']),
"split": "dev",
},
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
print(filepath)
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, delimiter='\t')
for id_, row in enumerate(csv_reader):
assert len(row) == 4
yield id_, {
"gem_id": f"{self.config.name}-{split}-{id_}",
"data_id": row[0],
"user_query": row[1],
"tree_str_mr": row[2],
"response": row[3],
"target": row[3],
"references": [row[3]],
}
|