parquet-converter commited on
Commit
c5b1558
1 Parent(s): 4d297ff

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,31 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- dataset_infos.json filter=lfs diff=lfs merge=lfs -text
29
- test.json filter=lfs diff=lfs merge=lfs -text
30
- train.json filter=lfs diff=lfs merge=lfs -text
31
- validation.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,673 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - automatically-created
4
- language_creators:
5
- - unknown
6
- language:
7
- - en
8
- - de
9
- license:
10
- - cc-by-4.0
11
- multilinguality:
12
- - unknown
13
- size_categories:
14
- - unknown
15
- source_datasets:
16
- - original
17
- task_categories:
18
- - table-to-text
19
- task_ids: []
20
- pretty_name: RotoWire_English-German
21
- tags:
22
- - data-to-text
23
- ---
24
-
25
- # Dataset Card for GEM/RotoWire_English-German
26
-
27
- ## Dataset Description
28
-
29
- - **Homepage:** https://sites.google.com/view/wngt19/dgt-task
30
- - **Repository:** https://github.com/neulab/dgt
31
- - **Paper:** https://www.aclweb.org/anthology/D19-5601/
32
- - **Leaderboard:** N/A
33
- - **Point of Contact:** Hiroaki Hayashi
34
-
35
- ### Link to Main Data Card
36
-
37
- You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/RotoWire_English-German).
38
-
39
- ### Dataset Summary
40
-
41
- This dataset is a data-to-text dataset in the basketball domain. The input are tables in a fixed format with statistics about a game (in English) and the target is a German translation of the originally English description. The translations were done by professional translators with basketball experience. The dataset can be used to evaluate the cross-lingual data-to-text capabilities of a model with complex inputs.
42
-
43
- You can load the dataset via:
44
- ```
45
- import datasets
46
- data = datasets.load_dataset('GEM/RotoWire_English-German')
47
- ```
48
- The data loader can be found [here](https://huggingface.co/datasets/GEM/RotoWire_English-German).
49
-
50
- #### website
51
- [Website](https://sites.google.com/view/wngt19/dgt-task)
52
-
53
- #### paper
54
- [ACL Anthology](https://www.aclweb.org/anthology/D19-5601/)
55
-
56
- #### authors
57
- Graham Neubig (Carnegie Mellon University), Hiroaki Hayashi (Carnegie Mellon University)
58
-
59
- ## Dataset Overview
60
-
61
- ### Where to find the Data and its Documentation
62
-
63
- #### Webpage
64
-
65
- <!-- info: What is the webpage for the dataset (if it exists)? -->
66
- <!-- scope: telescope -->
67
- [Website](https://sites.google.com/view/wngt19/dgt-task)
68
-
69
- #### Download
70
-
71
- <!-- info: What is the link to where the original dataset is hosted? -->
72
- <!-- scope: telescope -->
73
- [Github](https://github.com/neulab/dgt)
74
-
75
- #### Paper
76
-
77
- <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
78
- <!-- scope: telescope -->
79
- [ACL Anthology](https://www.aclweb.org/anthology/D19-5601/)
80
-
81
- #### BibTex
82
-
83
- <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
84
- <!-- scope: microscope -->
85
- ```
86
- @inproceedings{hayashi-etal-2019-findings,
87
- title = "Findings of the Third Workshop on Neural Generation and Translation",
88
- author = "Hayashi, Hiroaki and
89
- Oda, Yusuke and
90
- Birch, Alexandra and
91
- Konstas, Ioannis and
92
- Finch, Andrew and
93
- Luong, Minh-Thang and
94
- Neubig, Graham and
95
- Sudoh, Katsuhito",
96
- booktitle = "Proceedings of the 3rd Workshop on Neural Generation and Translation",
97
- month = nov,
98
- year = "2019",
99
- address = "Hong Kong",
100
- publisher = "Association for Computational Linguistics",
101
- url = "https://aclanthology.org/D19-5601",
102
- doi = "10.18653/v1/D19-5601",
103
- pages = "1--14",
104
- abstract = "This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.",
105
- }
106
- ```
107
-
108
- #### Contact Name
109
-
110
- <!-- quick -->
111
- <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
112
- <!-- scope: periscope -->
113
- Hiroaki Hayashi
114
-
115
- #### Contact Email
116
-
117
- <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
118
- <!-- scope: periscope -->
119
120
-
121
- #### Has a Leaderboard?
122
-
123
- <!-- info: Does the dataset have an active leaderboard? -->
124
- <!-- scope: telescope -->
125
- no
126
-
127
-
128
- ### Languages and Intended Use
129
-
130
- #### Multilingual?
131
-
132
- <!-- quick -->
133
- <!-- info: Is the dataset multilingual? -->
134
- <!-- scope: telescope -->
135
- yes
136
-
137
- #### Covered Languages
138
-
139
- <!-- quick -->
140
- <!-- info: What languages/dialects are covered in the dataset? -->
141
- <!-- scope: telescope -->
142
- `English`, `German`
143
-
144
- #### License
145
-
146
- <!-- quick -->
147
- <!-- info: What is the license of the dataset? -->
148
- <!-- scope: telescope -->
149
- cc-by-4.0: Creative Commons Attribution 4.0 International
150
-
151
- #### Intended Use
152
-
153
- <!-- info: What is the intended use of the dataset? -->
154
- <!-- scope: microscope -->
155
- Foster the research on document-level generation technology and contrast the methods for different types of inputs.
156
-
157
- #### Primary Task
158
-
159
- <!-- info: What primary task does the dataset support? -->
160
- <!-- scope: telescope -->
161
- Data-to-Text
162
-
163
- #### Communicative Goal
164
-
165
- <!-- quick -->
166
- <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
167
- <!-- scope: periscope -->
168
- Describe a basketball game given its box score table (and possibly a summary in a foreign language).
169
-
170
-
171
- ### Credit
172
-
173
- #### Curation Organization Type(s)
174
-
175
- <!-- info: In what kind of organization did the dataset curation happen? -->
176
- <!-- scope: telescope -->
177
- `academic`
178
-
179
- #### Curation Organization(s)
180
-
181
- <!-- info: Name the organization(s). -->
182
- <!-- scope: periscope -->
183
- Carnegie Mellon University
184
-
185
- #### Dataset Creators
186
-
187
- <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
188
- <!-- scope: microscope -->
189
- Graham Neubig (Carnegie Mellon University), Hiroaki Hayashi (Carnegie Mellon University)
190
-
191
- #### Funding
192
-
193
- <!-- info: Who funded the data creation? -->
194
- <!-- scope: microscope -->
195
- Graham Neubig
196
-
197
- #### Who added the Dataset to GEM?
198
-
199
- <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
200
- <!-- scope: microscope -->
201
- Hiroaki Hayashi (Carnegie Mellon University)
202
-
203
-
204
- ### Dataset Structure
205
-
206
- #### Data Fields
207
-
208
- <!-- info: List and describe the fields present in the dataset. -->
209
- <!-- scope: telescope -->
210
- - `id` (`string`): The identifier from the original dataset.
211
- - `gem_id` (`string`): The identifier from GEMv2.
212
- - `day` (`string`): Date of the game (Format: `MM_DD_YY`)
213
- - `home_name` (`string`): Home team name.
214
- - `home_city` (`string`): Home team city name.
215
- - `vis_name` (`string`): Visiting (Away) team name.
216
- - `vis_city` (`string`): Visiting team (Away) city name.
217
- - `home_line` (`Dict[str, str]`): Home team statistics (e.g., team free throw percentage).
218
- - `vis_line` (`Dict[str, str]`): Visiting team statistics (e.g., team free throw percentage).
219
- - `box_score` (`Dict[str, Dict[str, str]]`): Box score table. (Stat_name to [player ID to stat_value].)
220
- - `summary_en` (`List[string]`): Tokenized target summary in English.
221
- - `sentence_end_index_en` (`List[int]`): Sentence end indices for `summary_en`.
222
- - `summary_de` (`List[string]`): Tokenized target summary in German.
223
- - `sentence_end_index_de` (`List[int]`): ): Sentence end indices for `summary_de`.
224
- - (Unused) `detok_summary_org` (`string`): Original summary provided by RotoWire dataset.
225
- - (Unused) `summary` (`List[string]`): Tokenized summary of `detok_summary_org`.
226
- - (Unused) `detok_summary` (`string`): Detokenized (with organizer's detokenizer) summary of `summary`.
227
-
228
-
229
- #### Reason for Structure
230
-
231
- <!-- info: How was the dataset structure determined? -->
232
- <!-- scope: microscope -->
233
- - Structured data are directly imported from the original RotoWire dataset.
234
- - Textual data (English, German) are associated to each sample.
235
-
236
- #### Example Instance
237
-
238
- <!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
239
- <!-- scope: periscope -->
240
- ```
241
- {
242
- 'id': '11_02_16-Jazz-Mavericks-TheUtahJazzdefeatedthe',
243
- 'gem_id': 'GEM-RotoWire_English-German-train-0'
244
- 'day': '11_02_16',
245
- 'home_city': 'Utah',
246
- 'home_name': 'Jazz',
247
- 'vis_city': 'Dallas',
248
- 'vis_name': 'Mavericks',
249
- 'home_line': {
250
- 'TEAM-FT_PCT': '58', ...
251
- },
252
- 'vis_line': {
253
- 'TEAM-FT_PCT': '80', ...
254
- },
255
- 'box_score': {
256
- 'PLAYER_NAME': {
257
- '0': 'Harrison Barnes', ...
258
- }, ...
259
- 'summary_en': ['The', 'Utah', 'Jazz', 'defeated', 'the', 'Dallas', 'Mavericks', ...],
260
- 'sentence_end_index_en': [16, 52, 100, 137, 177, 215, 241, 256, 288],
261
- 'summary_de': ['Die', 'Utah', 'Jazz', 'besiegten', 'am', 'Mittwoch', 'in', 'der', ...],
262
- 'sentence_end_index_de': [19, 57, 107, 134, 170, 203, 229, 239, 266],
263
- 'detok_summary_org': "The Utah Jazz defeated the Dallas Mavericks 97 - 81 ...",
264
- 'detok_summary': "The Utah Jazz defeated the Dallas Mavericks 97-81 ...",
265
- 'summary': ['The', 'Utah', 'Jazz', 'defeated', 'the', 'Dallas', 'Mavericks', ...],
266
- }
267
- ```
268
-
269
- #### Data Splits
270
-
271
- <!-- info: Describe and name the splits in the dataset if there are more than one. -->
272
- <!-- scope: periscope -->
273
- - Train
274
- - Validation
275
- - Test
276
-
277
- #### Splitting Criteria
278
-
279
- <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
280
- <!-- scope: microscope -->
281
- - English summaries are provided sentence-by-sentence to professional German translators with basketball knowledge to obtain sentence-level German translations.
282
- - Split criteria follows the original RotoWire dataset.
283
-
284
- ####
285
-
286
- <!-- info: What does an outlier of the dataset in terms of length/perplexity/embedding look like? -->
287
- <!-- scope: microscope -->
288
- - The (English) summary length in the training set varies from 145 to 650 words, with an average of 323 words.
289
-
290
-
291
-
292
- ## Dataset in GEM
293
-
294
- ### Rationale for Inclusion in GEM
295
-
296
- #### Why is the Dataset in GEM?
297
-
298
- <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
299
- <!-- scope: microscope -->
300
- The use of two modalities (data, foreign text) to generate a document-level text summary.
301
-
302
- #### Similar Datasets
303
-
304
- <!-- info: Do other datasets for the high level task exist? -->
305
- <!-- scope: telescope -->
306
- yes
307
-
308
- #### Unique Language Coverage
309
-
310
- <!-- info: Does this dataset cover other languages than other datasets for the same task? -->
311
- <!-- scope: periscope -->
312
- yes
313
-
314
- #### Difference from other GEM datasets
315
-
316
- <!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
317
- <!-- scope: microscope -->
318
- The potential use of two modalities (data, foreign text) as input.
319
-
320
- #### Ability that the Dataset measures
321
-
322
- <!-- info: What aspect of model ability can be measured with this dataset? -->
323
- <!-- scope: periscope -->
324
- - Translation
325
- - Data-to-text verbalization
326
- - Aggregation of the two above.
327
-
328
-
329
- ### GEM-Specific Curation
330
-
331
- #### Modificatied for GEM?
332
-
333
- <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
334
- <!-- scope: telescope -->
335
- yes
336
-
337
- #### GEM Modifications
338
-
339
- <!-- info: What changes have been made to he original dataset? -->
340
- <!-- scope: periscope -->
341
- `other`
342
-
343
- #### Modification Details
344
-
345
- <!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification -->
346
- <!-- scope: microscope -->
347
- - Added GEM ID in each sample.
348
- - Normalize the number of players in each sample with "N/A" for consistent data loading.
349
-
350
- #### Additional Splits?
351
-
352
- <!-- info: Does GEM provide additional splits to the dataset? -->
353
- <!-- scope: telescope -->
354
- no
355
-
356
-
357
- ### Getting Started with the Task
358
-
359
- #### Pointers to Resources
360
-
361
- <!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
362
- <!-- scope: microscope -->
363
- - [Challenges in Data-to-Document Generation](https://aclanthology.org/D17-1239)
364
- - [Data-to-Text Generation with Content Selection and Planning](https://ojs.aaai.org//index.php/AAAI/article/view/4668)
365
- - [Findings of the Third Workshop on Neural Generation and Translation](https://aclanthology.org/D19-5601)
366
-
367
- #### Technical Terms
368
-
369
- <!-- info: Technical terms used in this card and the dataset and their definitions -->
370
- <!-- scope: microscope -->
371
- - Data-to-text
372
- - Neural machine translation (NMT)
373
- - Document-level generation and translation (DGT)
374
-
375
-
376
-
377
- ## Previous Results
378
-
379
- ### Previous Results
380
-
381
- #### Measured Model Abilities
382
-
383
- <!-- info: What aspect of model ability can be measured with this dataset? -->
384
- <!-- scope: telescope -->
385
- - Textual accuracy towards the gold-standard summary.
386
- - Content faithfulness to the input structured data.
387
-
388
- #### Metrics
389
-
390
- <!-- info: What metrics are typically used for this task? -->
391
- <!-- scope: periscope -->
392
- `BLEU`, `ROUGE`, `Other: Other Metrics`
393
-
394
- #### Other Metrics
395
-
396
- <!-- info: Definitions of other metrics -->
397
- <!-- scope: periscope -->
398
- Model-based measures proposed by (Wiseman et al., 2017):
399
- - Relation Generation
400
- - Content Selection
401
- - Content Ordering
402
-
403
- #### Proposed Evaluation
404
-
405
- <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
406
- <!-- scope: microscope -->
407
- To evaluate the fidelity of the generated content to the input data.
408
-
409
- #### Previous results available?
410
-
411
- <!-- info: Are previous results available? -->
412
- <!-- scope: telescope -->
413
- yes
414
-
415
- #### Other Evaluation Approaches
416
-
417
- <!-- info: What evaluation approaches have others used? -->
418
- <!-- scope: periscope -->
419
- N/A.
420
-
421
- #### Relevant Previous Results
422
-
423
- <!-- info: What are the most relevant previous results for this task/dataset? -->
424
- <!-- scope: microscope -->
425
- See Table 2 to 7 of (https://aclanthology.org/D19-5601) for previous results for this dataset.
426
-
427
-
428
-
429
- ## Dataset Curation
430
-
431
- ### Original Curation
432
-
433
- #### Original Curation Rationale
434
-
435
- <!-- info: Original curation rationale -->
436
- <!-- scope: telescope -->
437
- A random subset of RotoWire dataset was chosen for German translation annotation.
438
-
439
- #### Communicative Goal
440
-
441
- <!-- info: What was the communicative goal? -->
442
- <!-- scope: periscope -->
443
- Foster the research on document-level generation technology and contrast the methods for different types of inputs.
444
-
445
- #### Sourced from Different Sources
446
-
447
- <!-- info: Is the dataset aggregated from different data sources? -->
448
- <!-- scope: telescope -->
449
- yes
450
-
451
- #### Source Details
452
-
453
- <!-- info: List the sources (one per line) -->
454
- <!-- scope: periscope -->
455
- RotoWire
456
-
457
-
458
- ### Language Data
459
-
460
- #### How was Language Data Obtained?
461
-
462
- <!-- info: How was the language data obtained? -->
463
- <!-- scope: telescope -->
464
- `Created for the dataset`
465
-
466
- #### Creation Process
467
-
468
- <!-- info: If created for the dataset, describe the creation process. -->
469
- <!-- scope: microscope -->
470
- Professional German language translators were hired to translate basketball summaries from a subset of RotoWire dataset.
471
-
472
- #### Language Producers
473
-
474
- <!-- info: What further information do we have on the language producers? -->
475
- <!-- scope: microscope -->
476
- Translators are familiar with basketball terminology.
477
-
478
- #### Topics Covered
479
-
480
- <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
481
- <!-- scope: periscope -->
482
- Basketball (NBA) game summaries.
483
-
484
- #### Data Validation
485
-
486
- <!-- info: Was the text validated by a different worker or a data curator? -->
487
- <!-- scope: telescope -->
488
- validated by data curator
489
-
490
- #### Data Preprocessing
491
-
492
- <!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
493
- <!-- scope: microscope -->
494
- Sentence-level translations were aligned back to the original English summary sentences.
495
-
496
- #### Was Data Filtered?
497
-
498
- <!-- info: Were text instances selected or filtered? -->
499
- <!-- scope: telescope -->
500
- not filtered
501
-
502
-
503
- ### Structured Annotations
504
-
505
- #### Additional Annotations?
506
-
507
- <!-- quick -->
508
- <!-- info: Does the dataset have additional annotations for each instance? -->
509
- <!-- scope: telescope -->
510
- automatically created
511
-
512
- #### Annotation Service?
513
-
514
- <!-- info: Was an annotation service used? -->
515
- <!-- scope: telescope -->
516
- no
517
-
518
- #### Annotation Values
519
-
520
- <!-- info: Purpose and values for each annotation -->
521
- <!-- scope: microscope -->
522
- Sentence-end indices for the tokenized summaries. Sentence boundaries can help users accurately identify aligned sentences in both languages, as well as allowing an accurate evaluation that involves sentence boundaries (ROUGE-L).
523
-
524
- #### Any Quality Control?
525
-
526
- <!-- info: Quality control measures? -->
527
- <!-- scope: telescope -->
528
- validated through automated script
529
-
530
- #### Quality Control Details
531
-
532
- <!-- info: Describe the quality control measures that were taken. -->
533
- <!-- scope: microscope -->
534
- Token and number overlaps between pairs of aligned sentences are measured.
535
-
536
-
537
- ### Consent
538
-
539
- #### Any Consent Policy?
540
-
541
- <!-- info: Was there a consent policy involved when gathering the data? -->
542
- <!-- scope: telescope -->
543
- no
544
-
545
- #### Justification for Using the Data
546
-
547
- <!-- info: If not, what is the justification for reusing the data? -->
548
- <!-- scope: microscope -->
549
- Reusing by citing the original papers:
550
- - Sam Wiseman, Stuart M. Shieber, Alexander M. Rush:
551
- Challenges in Data-to-Document Generation. EMNLP 2017.
552
- - Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Konstas, Andrew Finch, Minh-Thang Luong, Graham Neubig, Katsuhito Sudoh. Findings of the Third Workshop on Neural Generation and Translation. WNGT 2019.
553
-
554
-
555
- ### Private Identifying Information (PII)
556
-
557
- #### Contains PII?
558
-
559
- <!-- quick -->
560
- <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
561
- <!-- scope: telescope -->
562
- unlikely
563
-
564
- #### Categories of PII
565
-
566
- <!-- info: What categories of PII are present or suspected in the data? -->
567
- <!-- scope: periscope -->
568
- `generic PII`
569
-
570
- #### Any PII Identification?
571
-
572
- <!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
573
- <!-- scope: periscope -->
574
- no identification
575
-
576
-
577
- ### Maintenance
578
-
579
- #### Any Maintenance Plan?
580
-
581
- <!-- info: Does the original dataset have a maintenance plan? -->
582
- <!-- scope: telescope -->
583
- no
584
-
585
-
586
-
587
- ## Broader Social Context
588
-
589
- ### Previous Work on the Social Impact of the Dataset
590
-
591
- #### Usage of Models based on the Data
592
-
593
- <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
594
- <!-- scope: telescope -->
595
- no
596
-
597
-
598
- ### Impact on Under-Served Communities
599
-
600
- #### Addresses needs of underserved Communities?
601
-
602
- <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
603
- <!-- scope: telescope -->
604
- no
605
-
606
-
607
- ### Discussion of Biases
608
-
609
- #### Any Documented Social Biases?
610
-
611
- <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
612
- <!-- scope: telescope -->
613
- no
614
-
615
- #### Are the Language Producers Representative of the Language?
616
-
617
- <!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
618
- <!-- scope: periscope -->
619
- - English text in this dataset is from Rotowire, originally written by writers at Rotowire.com that are likely US-based.
620
- - German text is produced by professional translators proficient in both English and German.
621
-
622
-
623
-
624
- ## Considerations for Using the Data
625
-
626
- ### PII Risks and Liability
627
-
628
- #### Potential PII Risk
629
-
630
- <!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
631
- <!-- scope: microscope -->
632
- - Structured data contain real National Basketball Association player and organization names.
633
-
634
-
635
- ### Licenses
636
-
637
- #### Copyright Restrictions on the Dataset
638
-
639
- <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
640
- <!-- scope: periscope -->
641
- `open license - commercial use allowed`
642
-
643
- #### Copyright Restrictions on the Language Data
644
-
645
- <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
646
- <!-- scope: periscope -->
647
- `open license - commercial use allowed`
648
-
649
-
650
- ### Known Technical Limitations
651
-
652
- #### Technical Limitations
653
-
654
- <!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
655
- <!-- scope: microscope -->
656
- Potential overlap of box score tables between splits. This was extensively studied and pointed out by [1].
657
-
658
- [1]: Thomson, Craig, Ehud Reiter, and Somayajulu Sripada. "SportSett: Basketball-A robust and maintainable data-set for Natural Language Generation." Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation. 2020.
659
-
660
- #### Unsuited Applications
661
-
662
- <!-- info: When using a model trained on this dataset in a setting where users or the public may interact with its predictions, what are some pitfalls to look out for? In particular, describe some applications of the general task featured in this dataset that its curation or properties make it less suitable for. -->
663
- <!-- scope: microscope -->
664
- Users may interact with a trained model to learn about a NBA game in a textual manner. On generated texts, they may observe factual errors that contradicts the actual data that the model conditions on.
665
- Factual errors include wrong statistics of a player (e.g., 3PT), non-existent injury information.
666
-
667
- #### Discouraged Use Cases
668
-
669
- <!-- info: What are some discouraged use cases of a model trained to maximize the proposed metrics on this dataset? In particular, think about settings where decisions made by a model that performs reasonably well on the metric my still have strong negative consequences for user or members of the public. -->
670
- <!-- scope: microscope -->
671
- Publishing the generated text as is. Even if the model achieves high scores on the evaluation metrics, there is a risk of factual errors mentioned above.
672
-
673
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RotoWire_English-German.json DELETED
@@ -1,183 +0,0 @@
1
- {
2
- "overview": {
3
- "where": {
4
- "has-leaderboard": "no",
5
- "leaderboard-url": "N/A",
6
- "leaderboard-description": "N/A",
7
- "website": "[Website](https://sites.google.com/view/wngt19/dgt-task)",
8
- "data-url": "[Github](https://github.com/neulab/dgt)",
9
- "paper-url": "[ACL Anthology](https://www.aclweb.org/anthology/D19-5601/)",
10
- "paper-bibtext": "```\n@inproceedings{hayashi-etal-2019-findings,\n title = \"Findings of the Third Workshop on Neural Generation and Translation\",\n author = \"Hayashi, Hiroaki and\n Oda, Yusuke and\n Birch, Alexandra and\n Konstas, Ioannis and\n Finch, Andrew and\n Luong, Minh-Thang and\n Neubig, Graham and\n Sudoh, Katsuhito\",\n booktitle = \"Proceedings of the 3rd Workshop on Neural Generation and Translation\",\n month = nov,\n year = \"2019\",\n address = \"Hong Kong\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/D19-5601\",\n doi = \"10.18653/v1/D19-5601\",\n pages = \"1--14\",\n abstract = \"This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.\",\n}\n```",
11
- "contact-name": "Hiroaki Hayashi",
12
- "contact-email": "[email protected]"
13
- },
14
- "languages": {
15
- "is-multilingual": "yes",
16
- "license": "cc-by-4.0: Creative Commons Attribution 4.0 International",
17
- "task-other": "N/A",
18
- "language-names": [
19
- "English",
20
- "German"
21
- ],
22
- "intended-use": "Foster the research on document-level generation technology and contrast the methods for different types of inputs.",
23
- "license-other": "N/A",
24
- "task": "Data-to-Text",
25
- "communicative": "Describe a basketball game given its box score table (and possibly a summary in a foreign language)."
26
- },
27
- "credit": {
28
- "organization-type": [
29
- "academic"
30
- ],
31
- "organization-names": "Carnegie Mellon University",
32
- "creators": "Graham Neubig (Carnegie Mellon University), Hiroaki Hayashi (Carnegie Mellon University)",
33
- "funding": "Graham Neubig",
34
- "gem-added-by": "Hiroaki Hayashi (Carnegie Mellon University)"
35
- },
36
- "structure": {
37
- "data-fields": "- `id` (`string`): The identifier from the original dataset.\n- `gem_id` (`string`): The identifier from GEMv2.\n- `day` (`string`): Date of the game (Format: `MM_DD_YY`)\n- `home_name` (`string`): Home team name.\n- `home_city` (`string`): Home team city name.\n- `vis_name` (`string`): Visiting (Away) team name.\n- `vis_city` (`string`): Visiting team (Away) city name.\n- `home_line` (`Dict[str, str]`): Home team statistics (e.g., team free throw percentage).\n- `vis_line` (`Dict[str, str]`): Visiting team statistics (e.g., team free throw percentage).\n- `box_score` (`Dict[str, Dict[str, str]]`): Box score table. (Stat_name to [player ID to stat_value].)\n- `summary_en` (`List[string]`): Tokenized target summary in English.\n- `sentence_end_index_en` (`List[int]`): Sentence end indices for `summary_en`.\n- `summary_de` (`List[string]`): Tokenized target summary in German.\n- `sentence_end_index_de` (`List[int]`): ): Sentence end indices for `summary_de`.\n- (Unused) `detok_summary_org` (`string`): Original summary provided by RotoWire dataset.\n- (Unused) `summary` (`List[string]`): Tokenized summary of `detok_summary_org`.\n- (Unused) `detok_summary` (`string`): Detokenized (with organizer's detokenizer) summary of `summary`.\n",
38
- "structure-description": "- Structured data are directly imported from the original RotoWire dataset.\n- Textual data (English, German) are associated to each sample.",
39
- "structure-labels": "N/A",
40
- "structure-splits": "- Train\n- Validation\n- Test",
41
- "structure-example": "```\n{\n 'id': '11_02_16-Jazz-Mavericks-TheUtahJazzdefeatedthe',\n 'gem_id': 'GEM-RotoWire_English-German-train-0'\n 'day': '11_02_16',\n 'home_city': 'Utah',\n 'home_name': 'Jazz',\n 'vis_city': 'Dallas',\n 'vis_name': 'Mavericks',\n 'home_line': {\n 'TEAM-FT_PCT': '58', ...\n },\n 'vis_line': {\n 'TEAM-FT_PCT': '80', ...\n },\n 'box_score': {\n 'PLAYER_NAME': {\n '0': 'Harrison Barnes', ...\n }, ...\n 'summary_en': ['The', 'Utah', 'Jazz', 'defeated', 'the', 'Dallas', 'Mavericks', ...],\n 'sentence_end_index_en': [16, 52, 100, 137, 177, 215, 241, 256, 288],\n 'summary_de': ['Die', 'Utah', 'Jazz', 'besiegten', 'am', 'Mittwoch', 'in', 'der', ...],\n 'sentence_end_index_de': [19, 57, 107, 134, 170, 203, 229, 239, 266],\n 'detok_summary_org': \"The Utah Jazz defeated the Dallas Mavericks 97 - 81 ...\",\n 'detok_summary': \"The Utah Jazz defeated the Dallas Mavericks 97-81 ...\",\n 'summary': ['The', 'Utah', 'Jazz', 'defeated', 'the', 'Dallas', 'Mavericks', ...],\n}\n```",
42
- "structure-splits-criteria": "- English summaries are provided sentence-by-sentence to professional German translators with basketball knowledge to obtain sentence-level German translations.\n- Split criteria follows the original RotoWire dataset.",
43
- "structure-outlier": "- The (English) summary length in the training set varies from 145 to 650 words, with an average of 323 words."
44
- },
45
- "what": {
46
- "dataset": "This dataset is a data-to-text dataset in the basketball domain. The input are tables in a fixed format with statistics about a game (in English) and the target is a German translation of the originally English description. The translations were done by professional translators with basketball experience. The dataset can be used to evaluate the cross-lingual data-to-text capabilities of a model with complex inputs. "
47
- }
48
- },
49
- "curation": {
50
- "original": {
51
- "is-aggregated": "yes",
52
- "aggregated-sources": "RotoWire",
53
- "rationale": "A random subset of RotoWire dataset was chosen for German translation annotation.",
54
- "communicative": "Foster the research on document-level generation technology and contrast the methods for different types of inputs."
55
- },
56
- "language": {
57
- "found": [],
58
- "crowdsourced": [],
59
- "created": "Professional German language translators were hired to translate basketball summaries from a subset of RotoWire dataset.",
60
- "machine-generated": "N/A",
61
- "validated": "validated by data curator",
62
- "is-filtered": "not filtered",
63
- "filtered-criteria": "N/A",
64
- "obtained": [
65
- "Created for the dataset"
66
- ],
67
- "producers-description": "Translators are familiar with basketball terminology.",
68
- "topics": "Basketball (NBA) game summaries.",
69
- "pre-processed": "Sentence-level translations were aligned back to the original English summary sentences."
70
- },
71
- "annotations": {
72
- "origin": "automatically created",
73
- "rater-number": "N/A",
74
- "rater-qualifications": "N/A",
75
- "rater-training-num": "N/A",
76
- "rater-test-num": "N/A",
77
- "rater-annotation-service-bool": "no",
78
- "rater-annotation-service": [],
79
- "values": "Sentence-end indices for the tokenized summaries. Sentence boundaries can help users accurately identify aligned sentences in both languages, as well as allowing an accurate evaluation that involves sentence boundaries (ROUGE-L).",
80
- "quality-control": "validated through automated script",
81
- "quality-control-details": "Token and number overlaps between pairs of aligned sentences are measured."
82
- },
83
- "consent": {
84
- "has-consent": "no",
85
- "consent-policy": "N/A",
86
- "consent-other": "N/A",
87
- "no-consent-justification": "Reusing by citing the original papers:\n- Sam Wiseman, Stuart M. Shieber, Alexander M. Rush:\nChallenges in Data-to-Document Generation. EMNLP 2017.\n- Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Konstas, Andrew Finch, Minh-Thang Luong, Graham Neubig, Katsuhito Sudoh. Findings of the Third Workshop on Neural Generation and Translation. WNGT 2019."
88
- },
89
- "pii": {
90
- "has-pii": "unlikely",
91
- "no-pii-justification": "N/A",
92
- "is-pii-identified": "no identification",
93
- "pii-identified-method": "N/A",
94
- "is-pii-replaced": "N/A",
95
- "pii-replaced-method": "N/A",
96
- "pii-categories": [
97
- "generic PII"
98
- ]
99
- },
100
- "maintenance": {
101
- "has-maintenance": "no",
102
- "description": "N/A",
103
- "contact": "N/A",
104
- "contestation-mechanism": "N/A",
105
- "contestation-link": "N/A",
106
- "contestation-description": "N/A"
107
- }
108
- },
109
- "gem": {
110
- "rationale": {
111
- "sole-task-dataset": "yes",
112
- "distinction-description": "The potential use of two modalities (data, foreign text) as input.",
113
- "sole-language-task-dataset": "yes",
114
- "contribution": "The use of two modalities (data, foreign text) to generate a document-level text summary.",
115
- "model-ability": "- Translation\n- Data-to-text verbalization\n- Aggregation of the two above."
116
- },
117
- "curation": {
118
- "has-additional-curation": "yes",
119
- "modification-types": [
120
- "other"
121
- ],
122
- "modification-description": "- Added GEM ID in each sample.\n- Normalize the number of players in each sample with \"N/A\" for consistent data loading.",
123
- "has-additional-splits": "no",
124
- "additional-splits-description": "N/A",
125
- "additional-splits-capacicites": "N/A"
126
- },
127
- "starting": {
128
- "technical-terms": "- Data-to-text\n- Neural machine translation (NMT)\n- Document-level generation and translation (DGT) ",
129
- "research-pointers": "- [Challenges in Data-to-Document Generation](https://aclanthology.org/D17-1239)\n- [Data-to-Text Generation with Content Selection and Planning](https://ojs.aaai.org//index.php/AAAI/article/view/4668)\n- [Findings of the Third Workshop on Neural Generation and Translation](https://aclanthology.org/D19-5601)"
130
- }
131
- },
132
- "results": {
133
- "results": {
134
- "other-metrics-definitions": "Model-based measures proposed by (Wiseman et al., 2017):\n- Relation Generation\n- Content Selection\n- Content Ordering",
135
- "has-previous-results": "yes",
136
- "current-evaluation": "N/A.",
137
- "previous-results": "See Table 2 to 7 of (https://aclanthology.org/D19-5601) for previous results for this dataset.",
138
- "metrics": [
139
- "BLEU",
140
- "ROUGE",
141
- "Other: Other Metrics"
142
- ],
143
- "original-evaluation": "To evaluate the fidelity of the generated content to the input data.",
144
- "model-abilities": "- Textual accuracy towards the gold-standard summary.\n- Content faithfulness to the input structured data."
145
- }
146
- },
147
- "considerations": {
148
- "pii": {
149
- "risks-description": "- Structured data contain real National Basketball Association player and organization names."
150
- },
151
- "licenses": {
152
- "dataset-restrictions-other": "N/A",
153
- "data-copyright-other": "N/A",
154
- "dataset-restrictions": [
155
- "open license - commercial use allowed"
156
- ],
157
- "data-copyright": [
158
- "open license - commercial use allowed"
159
- ]
160
- },
161
- "limitations": {
162
- "data-technical-limitations": "Potential overlap of box score tables between splits. This was extensively studied and pointed out by [1].\n\n[1]: Thomson, Craig, Ehud Reiter, and Somayajulu Sripada. \"SportSett: Basketball-A robust and maintainable data-set for Natural Language Generation.\" Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation. 2020.",
163
- "data-unsuited-applications": "Users may interact with a trained model to learn about a NBA game in a textual manner. On generated texts, they may observe factual errors that contradicts the actual data that the model conditions on.\nFactual errors include wrong statistics of a player (e.g., 3PT), non-existent injury information.",
164
- "data-discouraged-use": "Publishing the generated text as is. Even if the model achieves high scores on the evaluation metrics, there is a risk of factual errors mentioned above."
165
- }
166
- },
167
- "context": {
168
- "previous": {
169
- "is-deployed": "no",
170
- "described-risks": "N/A",
171
- "changes-from-observation": "N/A"
172
- },
173
- "underserved": {
174
- "helps-underserved": "no",
175
- "underserved-description": "N/A"
176
- },
177
- "biases": {
178
- "has-biases": "no",
179
- "bias-analyses": "N/A",
180
- "speaker-distibution": "- English text in this dataset is from Rotowire, originally written by writers at Rotowire.com that are likely US-based.\n- German text is produced by professional translators proficient in both English and German."
181
- }
182
- }
183
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RotoWire_English-German.py DELETED
@@ -1,501 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Dataloader for RotoWire English-German dataset."""
16
-
17
- import json
18
- import os
19
-
20
- import datasets
21
- import re
22
-
23
- # Find for instance the citation on arxiv or on the dataset repo/website
24
- _CITATION = """\
25
- @article{hayashi2019findings,
26
- title={Findings of the Third Workshop on Neural Generation and Translation},
27
- author={Hayashi, Hiroaki and Oda, Yusuke and Birch, Alexandra and Konstas, Ioannis and Finch, Andrew and Luong, Minh-Thang and Neubig, Graham and Sudoh, Katsuhito},
28
- journal={EMNLP-IJCNLP 2019},
29
- pages={1},
30
- year={2019}
31
- }
32
- """
33
-
34
- # You can copy an official description
35
- _DESCRIPTION = """\
36
- Dataset for the WNGT 2019 DGT shared task on "Document-Level Generation and Translation”.
37
- """
38
-
39
- _HOMEPAGE = "https://sites.google.com/view/wngt19/dgt-task"
40
-
41
- _LICENSE = "CC-BY 4.0"
42
-
43
- # The HuggingFace dataset library don't host the datasets but only point to the original files
44
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
45
- _URLs = {
46
- "train": "train.json",
47
- "validation": "validation.json",
48
- "test": "test.json"
49
- }
50
-
51
- NUM_PLAYERS = 13
52
- player_line = "<PLAYER> %s <TEAM> %s <POS> %s <RANK> %s <MIN> %d <PTS> %d <FG> %d %d %d <FG3> %d %d %d " \
53
- "<FT> %d %d %d <REB> %d <AST> %d <STL> %s " \
54
- "<BLK> %d <DREB> %d <OREB> %d <TO> %d"
55
-
56
- team_line = "%s <TEAM> %s <CITY> %s <TEAM-RESULT> %s <TEAM-PTS> %d <WINS-LOSSES> %d %d <QTRS> %d %d %d %d " \
57
- "<TEAM-AST> %d <3PT> %d <TEAM-FG> %d <TEAM-FT> %d <TEAM-REB> %d <TEAM-TO> %d"
58
-
59
- def detokenize(text):
60
- """
61
- Untokenizing a text undoes the tokenizing operation, restoring
62
- punctuation and spaces to the places that people expect them to be.
63
- Ideally, `untokenize(tokenize(text))` should be identical to `text`,
64
- except for line breaks.
65
- """
66
- step1 = text.replace("`` ", '"').replace(" ''", '"').replace('. . .', '...')
67
- step2 = step1.replace(" ( ", " (").replace(" ) ", ") ")
68
- step3 = re.sub(r' ([.,:;?!%]+)([ \'"`])', r"\1\2", step2)
69
- step4 = re.sub(r' ([.,:;?!%]+)$', r"\1", step3)
70
- step5 = step4.replace(" '", "'").replace(" n't", "n't").replace(
71
- "can not", "cannot").replace(" 've", "'ve")
72
- step6 = step5.replace(" ` ", " '")
73
- return step6.strip()
74
-
75
- class RotowireEnglishGerman(datasets.GeneratorBasedBuilder):
76
- """Dataset for WNGT2019 shared task on Document-level Generation and Translation."""
77
-
78
- VERSION = datasets.Version("1.1.0")
79
-
80
- # This is an example of a dataset with multiple configurations.
81
- # If you don't want/need to define several sub-sets in your dataset,
82
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
83
-
84
- # If you need to make complex sub-parts in the datasets with configurable options
85
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
86
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
87
-
88
- # You will be able to load one or the other configurations in the following list with
89
- # data = datasets.load_dataset('my_dataset', 'first_domain')
90
- # data = datasets.load_dataset('my_dataset', 'second_domain')
91
- # BUILDER_CONFIGS = [
92
- # datasets.BuilderConfig(name="nlg_en", version=VERSION, description="NLG: Data-to-English text."),
93
- # datasets.BuilderConfig(name="nlg_de", version=VERSION, description="NLG: Data-to-German text."),
94
- # datasets.BuilderConfig(name="mt_en-de", version=VERSION, description="MT: English-to-German text."),
95
- # datasets.BuilderConfig(name="mt_de-en", version=VERSION, description="MT: German-to-English text."),
96
- # datasets.BuilderConfig(name="nlg+mt_en-de", version=VERSION, description="NLG+MT: Data+English-to-German text."),
97
- # datasets.BuilderConfig(name="nlg+mt_de-en", version=VERSION, description="NLG+MT: Data+German-to-English text."),
98
- # ]
99
-
100
- def _info(self):
101
- # max 26 entries in each box_score field.
102
- box_score_entry = {str(i): datasets.Value("string") for i in range(26)}
103
- box_score_features = {
104
- "FIRST_NAME": box_score_entry,
105
- "MIN": box_score_entry,
106
- "FGM": box_score_entry,
107
- "REB": box_score_entry,
108
- "FG3A": box_score_entry,
109
- "PLAYER_NAME": box_score_entry,
110
- "AST": box_score_entry,
111
- "FG3M": box_score_entry,
112
- "OREB": box_score_entry,
113
- "TO": box_score_entry,
114
- "START_POSITION": box_score_entry,
115
- "PF": box_score_entry,
116
- "PTS": box_score_entry,
117
- "FGA": box_score_entry,
118
- "STL": box_score_entry,
119
- "FTA": box_score_entry,
120
- "BLK": box_score_entry,
121
- "DREB": box_score_entry,
122
- "FTM": box_score_entry,
123
- "FT_PCT": box_score_entry,
124
- "FG_PCT": box_score_entry,
125
- "FG3_PCT": box_score_entry,
126
- "SECOND_NAME": box_score_entry,
127
- "TEAM_CITY": box_score_entry,
128
- }
129
- line_features = {
130
- "TEAM-PTS_QTR2": datasets.Value("string"),
131
- "TEAM-FT_PCT": datasets.Value("string"),
132
- "TEAM-PTS_QTR1": datasets.Value("string"),
133
- "TEAM-PTS_QTR4": datasets.Value("string"),
134
- "TEAM-PTS_QTR3": datasets.Value("string"),
135
- "TEAM-CITY": datasets.Value("string"),
136
- "TEAM-PTS": datasets.Value("string"),
137
- "TEAM-AST": datasets.Value("string"),
138
- "TEAM-LOSSES": datasets.Value("string"),
139
- "TEAM-NAME": datasets.Value("string"),
140
- "TEAM-WINS": datasets.Value("string"),
141
- "TEAM-REB": datasets.Value("string"),
142
- "TEAM-TOV": datasets.Value("string"),
143
- "TEAM-FG3_PCT": datasets.Value("string"),
144
- "TEAM-FG_PCT": datasets.Value("string")
145
- }
146
- features = datasets.Features(
147
- {
148
- "id":datasets.Value("string"),
149
- "gem_id":datasets.Value("string"),
150
- "home_name": datasets.Value("string"),
151
- "box_score": box_score_features,
152
- "vis_name": datasets.Value("string"),
153
- "summary": datasets.Sequence(datasets.Value("string")),
154
- "home_line": line_features,
155
- "home_city": datasets.Value("string"),
156
- "vis_line": line_features,
157
- "vis_city": datasets.Value("string"),
158
- "day": datasets.Value("string"),
159
- "detok_summary_org": datasets.Value("string"),
160
- "detok_summary": datasets.Value("string"),
161
- "summary_en": datasets.Sequence(datasets.Value("string")),
162
- "sentence_end_index_en": datasets.Sequence(datasets.Value("int32")),
163
- "summary_de": datasets.Sequence(datasets.Value("string")),
164
- "target": datasets.Value("string"),
165
- "references": [datasets.Value("string")],
166
- "sentence_end_index_de": datasets.Sequence(datasets.Value("int32")),
167
- "linearized_input": datasets.Value("string")
168
- }
169
- )
170
- return datasets.DatasetInfo(
171
- # This is the description that will appear on the datasets page.
172
- description=_DESCRIPTION,
173
- # This defines the different columns of the dataset and their types
174
- features=features, # Here we define them above because they are different between the two configurations
175
- # If there's a common (input, target) tuple from the features,
176
- # specify them here. They'll be used if as_supervised=True in
177
- # builder.as_dataset.
178
- supervised_keys=None,
179
- # Homepage of the dataset for documentation
180
- homepage=_HOMEPAGE,
181
- # License for the dataset if available
182
- license=_LICENSE,
183
- # Citation for the dataset
184
- citation=_CITATION,
185
- )
186
-
187
- def _split_generators(self, dl_manager):
188
- """Returns SplitGenerators."""
189
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
190
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
191
-
192
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
193
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
194
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
195
- data_dir = dl_manager.download_and_extract(_URLs)
196
- return [
197
- datasets.SplitGenerator(
198
- name=datasets.Split.TRAIN,
199
- # These kwargs will be passed to _generate_examples
200
- gen_kwargs={
201
- "filepath": data_dir["train"],
202
- "split": "train",
203
- },
204
- ),
205
- datasets.SplitGenerator(
206
- name=datasets.Split.TEST,
207
- # These kwargs will be passed to _generate_examples
208
- gen_kwargs={
209
- "filepath": data_dir["test"],
210
- "split": "test"
211
- },
212
- ),
213
- datasets.SplitGenerator(
214
- name=datasets.Split.VALIDATION,
215
- # These kwargs will be passed to _generate_examples
216
- gen_kwargs={
217
- "filepath": data_dir["validation"],
218
- "split": "validation",
219
- },
220
- ),
221
- ]
222
-
223
- def handle_na(self, value):
224
- return "0" if value == "N/A" else value
225
-
226
- def tokenize_initials(self, value):
227
- attrib_value = re.sub(r"(\w)\.(\w)\.", r"\g<1>. \g<2>.", value)
228
- return attrib_value
229
-
230
- def sort_points(self, entry):
231
- home_team_map = {}
232
- vis_team_map = {}
233
- bs = entry["box_score"]
234
- nplayers = 0
235
- for k, v in bs["PTS"].items():
236
- nplayers += 1
237
-
238
- num_home, num_vis = 0, 0
239
- home_pts = []
240
- vis_pts = []
241
- for i in range(nplayers):
242
- player_city = entry["box_score"]["TEAM_CITY"][str(i)]
243
- player_name = bs["PLAYER_NAME"][str(i)]
244
- if player_city == entry["home_city"]:
245
- if num_home < NUM_PLAYERS:
246
- home_team_map[player_name] = bs["PTS"][str(i)]
247
- if bs["PTS"][str(i)] != "N/A":
248
- home_pts.append(int(bs["PTS"][str(i)]))
249
- num_home += 1
250
- else:
251
- if num_vis < NUM_PLAYERS:
252
- vis_team_map[player_name] = bs["PTS"][str(i)]
253
- if bs["PTS"][str(i)] != "N/A":
254
- vis_pts.append(int(bs["PTS"][str(i)]))
255
- num_vis += 1
256
- if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles":
257
- num_home, num_vis = 0, 0
258
- for i in range(nplayers):
259
- player_name = bs["PLAYER_NAME"][str(i)]
260
- if num_vis < NUM_PLAYERS:
261
- vis_team_map[player_name] = bs["PTS"][str(i)]
262
- if bs["PTS"][str(i)] != "N/A":
263
- vis_pts.append(int(bs["PTS"][str(i)]))
264
- num_vis += 1
265
- elif num_home < NUM_PLAYERS:
266
- home_team_map[player_name] = bs["PTS"][str(i)]
267
- if bs["PTS"][str(i)] != "N/A":
268
- home_pts.append(int(bs["PTS"][str(i)]))
269
- num_home += 1
270
- home_seq = sorted(home_pts, reverse=True)
271
- vis_seq = sorted(vis_pts, reverse=True)
272
- return home_team_map, vis_team_map, home_seq, vis_seq
273
-
274
- def sort_player_and_points(self, entry):
275
- bs = entry["box_score"]
276
- nplayers = 0
277
- for k, v in bs["PTS"].items():
278
- nplayers += 1
279
-
280
- num_home, num_vis = 0, 0
281
- home_pts = []
282
- vis_pts = []
283
- for i in range(nplayers):
284
- player_city = entry["box_score"]["TEAM_CITY"][str(i)]
285
- player_name = bs["PLAYER_NAME"][str(i)]
286
- if player_city == entry["home_city"]:
287
- if num_home < NUM_PLAYERS:
288
- if bs["PTS"][str(i)] != "N/A":
289
- home_pts.append((player_name, int(bs["PTS"][str(i)])))
290
- else:
291
- home_pts.append((player_name, -1))
292
- num_home += 1
293
- else:
294
- if num_vis < NUM_PLAYERS:
295
- if bs["PTS"][str(i)] != "N/A":
296
- vis_pts.append((player_name, int(bs["PTS"][str(i)])))
297
- else:
298
- vis_pts.append((player_name, -1))
299
- num_vis += 1
300
- if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles":
301
- num_home, num_vis = 0, 0
302
- for i in range(nplayers):
303
- player_name = bs["PLAYER_NAME"][str(i)]
304
- if num_vis < NUM_PLAYERS:
305
- if bs["PTS"][str(i)] != "N/A":
306
- vis_pts.append((player_name, int(bs["PTS"][str(i)])))
307
- else:
308
- vis_pts.append((player_name, -1))
309
- num_vis += 1
310
- elif num_home < NUM_PLAYERS:
311
- if bs["PTS"][str(i)] != "N/A":
312
- home_pts.append((player_name, int(bs["PTS"][str(i)])))
313
- else:
314
- home_pts.append((player_name, -1))
315
- num_home += 1
316
- home_seq = sorted(home_pts, key=lambda x: -x[1])
317
- vis_seq = sorted(vis_pts, key=lambda x: -x[1])
318
- return home_seq, vis_seq
319
-
320
- def get_players(self, entry):
321
- player_team_map = {}
322
- bs = entry["box_score"]
323
- nplayers = 0
324
- home_players, vis_players = [], []
325
- for k, v in entry["box_score"]["PTS"].items():
326
- nplayers += 1
327
-
328
- num_home, num_vis = 0, 0
329
- for i in range(nplayers):
330
- player_city = entry["box_score"]["TEAM_CITY"][str(i)]
331
- player_name = bs["PLAYER_NAME"][str(i)]
332
- second_name = bs["SECOND_NAME"][str(i)]
333
- first_name = bs["FIRST_NAME"][str(i)]
334
- if player_city == entry["home_city"]:
335
- if len(home_players) < NUM_PLAYERS:
336
- home_players.append((player_name, second_name,
337
- first_name))
338
- player_team_map[player_name] = " ".join(
339
- [player_city, entry["home_line"]["TEAM-NAME"]])
340
- num_home += 1
341
- else:
342
- if len(vis_players) < NUM_PLAYERS:
343
- vis_players.append((player_name, second_name,
344
- first_name))
345
- player_team_map[player_name] = " ".join(
346
- [player_city, entry["vis_line"]["TEAM-NAME"]])
347
- num_vis += 1
348
-
349
- if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles":
350
- home_players, vis_players = [], []
351
- num_home, num_vis = 0, 0
352
- for i in range(nplayers):
353
- player_name = bs["PLAYER_NAME"][str(i)]
354
- second_name = bs["SECOND_NAME"][str(i)]
355
- first_name = bs["FIRST_NAME"][str(i)]
356
- if len(vis_players) < NUM_PLAYERS:
357
- vis_players.append((player_name, second_name,
358
- first_name))
359
- player_team_map[player_name] = " ".join(
360
- ["Los Angeles", entry["vis_line"]["TEAM-NAME"]])
361
- num_vis += 1
362
- elif len(home_players) < NUM_PLAYERS:
363
- home_players.append((player_name, second_name,
364
- first_name))
365
- player_team_map[player_name] = " ".join(
366
- ["Los Angeles", entry["home_line"]["TEAM-NAME"]])
367
- num_home += 1
368
-
369
- players = []
370
- for ii, player_list in enumerate([home_players, vis_players]):
371
- for j in range(NUM_PLAYERS):
372
- players.append(player_list[j] if j < len(player_list) else ("N/A", "N/A", "N/A"))
373
- return players, player_team_map
374
-
375
- def get_result_player(self, player_name, home_name, vis_name, home_won, player_team_map):
376
- if player_team_map[player_name] == home_name:
377
- result = "won" if home_won else "lost"
378
- elif player_team_map[player_name] == vis_name:
379
- result = "lost" if home_won else "won"
380
- else:
381
- assert False
382
- return result
383
-
384
- def get_box_score(self, entry):
385
- box_score_ = entry["box_score"]
386
- if int(entry["home_line"]["TEAM-PTS"]) > int(entry["vis_line"]["TEAM-PTS"]):
387
- home_won = True
388
- else:
389
- home_won = False
390
- descs = []
391
- desc = []
392
- if home_won:
393
- home_line = self.get_team_line(entry["home_line"], "won", "home")
394
- vis_line = self.get_team_line(entry["vis_line"], "lost", "vis")
395
- else:
396
- home_line = self.get_team_line(entry["home_line"], "lost", "home")
397
- vis_line = self.get_team_line(entry["vis_line"], "won", "vis")
398
- descs.append(home_line)
399
- descs.append(vis_line)
400
- players_list, player_team_map = self.get_players(entry)
401
- home_team_map, vis_team_map, home_player_pts, vis_player_pts = self.sort_points(entry)
402
- home_player_seq, vis_player_seq = self.sort_player_and_points(entry)
403
- desc = []
404
- for player_name, _ in home_player_seq + vis_player_seq:
405
- if player_name == "N/A":
406
- continue
407
- result = self.get_result_player(player_name, entry["home_city"] + " " + entry["home_line"]["TEAM-NAME"],
408
- entry["vis_city"] + " " + entry["vis_line"]["TEAM-NAME"], home_won,
409
- player_team_map)
410
- player_line = self.get_player_line(box_score_, player_name, player_team_map, home_player_pts,
411
- vis_player_pts, home_team_map, vis_team_map, result)
412
- desc.append(player_line)
413
- descs.extend(desc)
414
- return descs
415
-
416
- def get_rank(self, player_name, home_seq, vis_seq, home_team_map, vis_team_map, result):
417
- if player_name in home_team_map:
418
- if home_team_map[player_name] == 'N/A':
419
- rank = 'HOME-DIDNTPLAY'
420
- else:
421
- rank = 'HOME-' + str(home_seq.index(int(home_team_map[player_name])))
422
- elif player_name in vis_team_map:
423
- if vis_team_map[player_name] == 'N/A':
424
- rank = 'VIS-DIDNTPLAY'
425
- else:
426
- rank = 'VIS-' + str(vis_seq.index(int(vis_team_map[player_name])))
427
- else:
428
- print("player_name", player_name)
429
- assert False
430
- return rank
431
-
432
- def get_player_line(self, bs, input_player_name, player_team_map, home_player_pts, vis_player_pts, home_team_map,
433
- vis_team_map, result):
434
- rank = self.get_rank(input_player_name, home_player_pts, vis_player_pts, home_team_map, vis_team_map, result)
435
- player_names = list(bs["PLAYER_NAME"].items())
436
- player_found = False
437
- player_tup = None
438
- for (pid, name) in player_names:
439
- if name == input_player_name:
440
- player_tup = (self.tokenize_initials(name), player_team_map[input_player_name],
441
- bs["START_POSITION"][pid],
442
- rank,
443
- int(self.handle_na(bs["MIN"][pid])),
444
- int(self.handle_na(bs["PTS"][pid])),
445
- int(self.handle_na(bs["FGM"][pid])),
446
- int(self.handle_na(bs["FGA"][pid])), int(self.handle_na(bs["FG_PCT"][pid])),
447
- int(self.handle_na(bs["FG3M"][pid])), int(self.handle_na(bs["FG3A"][pid])),
448
- int(self.handle_na(bs["FG3_PCT"][pid])),
449
- int(self.handle_na(bs["FTM"][pid])), int(self.handle_na(bs["FTA"][pid])),
450
- int(self.handle_na(bs["FT_PCT"][pid])),
451
- int(self.handle_na(bs["REB"][pid])), int(self.handle_na(bs["AST"][pid])),
452
- int(self.handle_na(bs["STL"][pid])),
453
- int(self.handle_na(bs["BLK"][pid])), int(self.handle_na(bs["DREB"][pid])),
454
- int(self.handle_na(bs["OREB"][pid])), int(self.handle_na(bs["TO"][pid])))
455
- player_found = True
456
- break
457
- assert player_found
458
- return player_line % (player_tup)
459
-
460
- def get_team_line(self, line, result, type):
461
- city = line["TEAM-CITY"]
462
- name = line["TEAM-NAME"]
463
- wins = int(line["TEAM-WINS"])
464
- losses = int(line["TEAM-LOSSES"])
465
- pts = int(line["TEAM-PTS"])
466
- ast = int(line["TEAM-AST"])
467
- three_pointers_pct = int(line["TEAM-FG3_PCT"])
468
- field_goals_pct = int(line["TEAM-FG_PCT"])
469
- free_throws_pct = int(line["TEAM-FT_PCT"])
470
- pts_qtr1 = int(line["TEAM-PTS_QTR1"])
471
- pts_qtr2 = int(line["TEAM-PTS_QTR2"])
472
- pts_qtr3 = int(line["TEAM-PTS_QTR3"])
473
- pts_qtr4 = int(line["TEAM-PTS_QTR4"])
474
- reb = int(line["TEAM-REB"])
475
- tov = int(line["TEAM-TOV"])
476
- updated_type = "<" + type.upper() + ">"
477
- team_tup = (updated_type, name, city, result, pts, wins, losses, pts_qtr1, pts_qtr2, pts_qtr3, pts_qtr4, ast,
478
- three_pointers_pct, field_goals_pct, free_throws_pct, reb, tov)
479
- return team_line % (team_tup)
480
-
481
- def linearize_input(self, entry):
482
- output = self.get_box_score(entry)
483
- linearized_input = " ".join(output)
484
- linearized_input = linearized_input.replace(" ", " ")
485
- return linearized_input
486
-
487
- def _generate_examples(
488
- self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
489
- ):
490
- """ Yields examples as (key, example) tuples. """
491
- # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
492
- # The `key` is here for legacy reason (tfds) and is not important in itself.
493
-
494
- with open(filepath, encoding="utf-8") as f:
495
- all_data = json.load(f)
496
- for id_, data in enumerate(all_data):
497
- detok_target = detokenize(" ".join(data['summary_de']))
498
- data['linearized_input'] = self.linearize_input(data)
499
- data['target'] = detok_target
500
- data['references'] = [detok_target]
501
- yield id_, data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json → default/roto_wire_english-german-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f4a8df1f5677f21148d65ab7b5fb40074f3e5c0fb52bffbf3ebcc551ba5d66ad
3
- size 40690
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e313e785e19f0bb455e4bd119488702f512eccd337c1eca3c1d39ac4ee47606
3
+ size 2272605
test.json → default/roto_wire_english-german-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dda18553405cc2230e09821e4bdc71ac3950142b48b4e5cef40b12fc77c821f1
3
- size 4994556
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3268d3fe0a5d4ac758dc7a71e45389a5d6a5c7cfe7422bf19fb7a091eb077310
3
+ size 2240630
train.json → default/roto_wire_english-german-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e5852a77fd68e10cc94d13f08d9e84dcfb5d9192c6e2fb2ceee7bb1a6bb7a36a
3
- size 4953213
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc4af41dd8914114f5d971998afede507710c2341f530ffae7075c4af3c32a1
3
+ size 2238658
validation.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:919c8a1f8c593a54c4758a5bc92374f30517c594cfae647f627680e5900883d6
3
- size 4954756