Datasets:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataloader for RotoWire English-German dataset.""" | |
import json | |
import os | |
import datasets | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@article{hayashi2019findings, | |
title={Findings of the Third Workshop on Neural Generation and Translation}, | |
author={Hayashi, Hiroaki and Oda, Yusuke and Birch, Alexandra and Konstas, Ioannis and Finch, Andrew and Luong, Minh-Thang and Neubig, Graham and Sudoh, Katsuhito}, | |
journal={EMNLP-IJCNLP 2019}, | |
pages={1}, | |
year={2019} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
Dataset for the WNGT 2019 DGT shared task on "Document-Level Generation and Translation”. | |
""" | |
_HOMEPAGE = "https://sites.google.com/view/wngt19/dgt-task" | |
_LICENSE = "CC-BY 4.0" | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLs = { | |
"train": "train.json", | |
"validation": "validation.json", | |
"test": "test.json" | |
} | |
class RotowireEnglishGerman(datasets.GeneratorBasedBuilder): | |
"""Dataset for WNGT2019 shared task on Document-level Generation and Translation.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
# BUILDER_CONFIGS = [ | |
# datasets.BuilderConfig(name="nlg_en", version=VERSION, description="NLG: Data-to-English text."), | |
# datasets.BuilderConfig(name="nlg_de", version=VERSION, description="NLG: Data-to-German text."), | |
# datasets.BuilderConfig(name="mt_en-de", version=VERSION, description="MT: English-to-German text."), | |
# datasets.BuilderConfig(name="mt_de-en", version=VERSION, description="MT: German-to-English text."), | |
# datasets.BuilderConfig(name="nlg+mt_en-de", version=VERSION, description="NLG+MT: Data+English-to-German text."), | |
# datasets.BuilderConfig(name="nlg+mt_de-en", version=VERSION, description="NLG+MT: Data+German-to-English text."), | |
# ] | |
def _info(self): | |
# max 26 entries in each box_score field. | |
box_score_entry = {str(i): datasets.Value("string") for i in range(26)} | |
box_score_features = { | |
"FIRST_NAME": box_score_entry, | |
"MIN": box_score_entry, | |
"FGM": box_score_entry, | |
"REB": box_score_entry, | |
"FG3A": box_score_entry, | |
"PLAYER_NAME": box_score_entry, | |
"AST": box_score_entry, | |
"FG3M": box_score_entry, | |
"OREB": box_score_entry, | |
"TO": box_score_entry, | |
"START_POSITION": box_score_entry, | |
"PF": box_score_entry, | |
"PTS": box_score_entry, | |
"FGA": box_score_entry, | |
"STL": box_score_entry, | |
"FTA": box_score_entry, | |
"BLK": box_score_entry, | |
"DREB": box_score_entry, | |
"FTM": box_score_entry, | |
"FT_PCT": box_score_entry, | |
"FG_PCT": box_score_entry, | |
"FG3_PCT": box_score_entry, | |
"SECOND_NAME": box_score_entry, | |
"TEAM_CITY": box_score_entry, | |
} | |
line_features = { | |
"TEAM-PTS_QTR2": datasets.Value("string"), | |
"TEAM-FT_PCT": datasets.Value("string"), | |
"TEAM-PTS_QTR1": datasets.Value("string"), | |
"TEAM-PTS_QTR4": datasets.Value("string"), | |
"TEAM-PTS_QTR3": datasets.Value("string"), | |
"TEAM-CITY": datasets.Value("string"), | |
"TEAM-PTS": datasets.Value("string"), | |
"TEAM-AST": datasets.Value("string"), | |
"TEAM-LOSSES": datasets.Value("string"), | |
"TEAM-NAME": datasets.Value("string"), | |
"TEAM-WINS": datasets.Value("string"), | |
"TEAM-REB": datasets.Value("string"), | |
"TEAM-TOV": datasets.Value("string"), | |
"TEAM-FG3_PCT": datasets.Value("string"), | |
"TEAM-FG_PCT": datasets.Value("string") | |
} | |
features = datasets.Features( | |
{ | |
"id":datasets.Value("string"), | |
"gem_id":datasets.Value("string"), | |
"home_name": datasets.Value("string"), | |
"box_score": box_score_features, | |
"vis_name": datasets.Value("string"), | |
"summary": datasets.Sequence(datasets.Value("string")), | |
"home_line": line_features, | |
"home_city": datasets.Value("string"), | |
"vis_line": line_features, | |
"vis_city": datasets.Value("string"), | |
"day": datasets.Value("string"), | |
"detok_summary_org": datasets.Value("string"), | |
"detok_summary": datasets.Value("string"), | |
"summary_en": datasets.Sequence(datasets.Value("string")), | |
"sentence_end_index_en": datasets.Sequence(datasets.Value("int32")), | |
"summary_de": datasets.Sequence(datasets.Value("string")), | |
"sentence_end_index_de": datasets.Sequence(datasets.Value("int32")) | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["test"], | |
"split": "test" | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": data_dir["validation"], | |
"split": "validation", | |
}, | |
), | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
""" Yields examples as (key, example) tuples. """ | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
with open(filepath, encoding="utf-8") as f: | |
all_data = json.load(f) | |
for id_, data in enumerate(all_data): | |
yield id_, data | |