Datasets:

Modalities:
Text
Formats:
text
Languages:
French
Fon
Libraries:
Datasets
License:
de-francophones commited on
Commit
d1a0820
1 Parent(s): 496c304

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ language:
4
+ - fr
5
+ - fon
6
+ configs:
7
+ - config_name: FFRv2
8
+ data_files:
9
+ - split: train
10
+ path: "data/ffr_dataset_v2.txt"
11
+ - config_name: FFR_Daily_dialog
12
+ data_files:
13
+ - split: train
14
+ path: "data/Fon_French_Parallel_Data.txt"
15
+ ---
16
+
17
+ > [!NOTE]
18
+ > Dataset origin: https://github.com/bonaventuredossou/ffr-v1
19
+
20
+
21
+ # Description
22
+ The authors of the dataset provide a description in the following PDFs: [here](https://huggingface.co/datasets/de-francophones/FFR/blob/main/FFR_Dataset_Documentation.pdf) and [here](https://huggingface.co/datasets/de-francophones/FFR/blob/main/Data_Statement_FFR_Dataset.pdf).
23
+
24
+
25
+ # Citation
26
+
27
+ ```
28
+ @inproceedings{emezue-dossou-2020-ffr,
29
+ title = "{FFR} v1.1: {F}on-{F}rench Neural Machine Translation",
30
+ author = "Emezue, Chris Chinenye and
31
+ Dossou, Femi Pancrace Bonaventure",
32
+ editor = "Cunha, Rossana and
33
+ Shaikh, Samira and
34
+ Varis, Erika and
35
+ Georgi, Ryan and
36
+ Tsai, Alicia and
37
+ Anastasopoulos, Antonios and
38
+ Chandu, Khyathi Raghavi",
39
+ booktitle = "Proceedings of the Fourth Widening Natural Language Processing Workshop",
40
+ month = jul,
41
+ year = "2020",
42
+ address = "Seattle, USA",
43
+ publisher = "Association for Computational Linguistics",
44
+ url = "https://aclanthology.org/2020.winlp-1.21",
45
+ doi = "10.18653/v1/2020.winlp-1.21",
46
+ pages = "83--87",
47
+ abstract = "All over the world and especially in Africa, researchers are putting efforts into building Neural Machine Translation (NMT) systems to help tackle the language barriers in Africa, a continent of over 2000 different languages. However, the low-resourceness, diacritical, and tonal complexities of African languages are major issues being faced. The FFR project is a major step towards creating a robust translation model from Fon, a very low-resource and tonal language, to French, for research and public use. In this paper, we introduce FFR Dataset, a corpus of Fon-to-French translations, describe the diacritical encoding process, and introduce our FFR v1.1 model, trained on the dataset. The dataset and model are made publicly available, to promote collaboration and reproducibility.",
48
+ }
49
+ ```