Francesco commited on
Commit
d717415
·
1 Parent(s): ee4eb50

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -35,19 +35,115 @@ dataset_info:
35
  '10': Sweetness-Brut-SecSweetness-Brut-Sec
36
  '11': TypeWine Type
37
  '12': VintageYear
38
- splits:
39
- - name: train
40
- num_bytes: 114639602.12
41
- num_examples: 3172
42
- - name: validation
43
- num_bytes: 24851292.0
44
- num_examples: 630
45
- - name: test
46
- num_bytes: 33618774.0
47
- num_examples: 841
48
- download_size: 163647348
49
- dataset_size: 173109668.12
 
 
 
 
 
 
 
 
50
  ---
51
- # Dataset Card for "wine-labels"
52
 
53
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  '10': Sweetness-Brut-SecSweetness-Brut-Sec
36
  '11': TypeWine Type
37
  '12': VintageYear
38
+ annotations_creators:
39
+ - crowdsourced
40
+ language_creators:
41
+ - found
42
+ language:
43
+ - en
44
+ license:
45
+ - cc
46
+ multilinguality:
47
+ - monolingual
48
+ size_categories:
49
+ - 1K<n<10K
50
+ source_datasets:
51
+ - original
52
+ task_categories:
53
+ - object-detection
54
+ task_ids: []
55
+ pretty_name: wine-labels
56
+ tags:
57
+ - rf100
58
  ---
 
59
 
60
+ # Dataset Card for wine-labels
61
+
62
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
63
+
64
+ ## Dataset Description
65
+
66
+ - **Homepage:** https://universe.roboflow.com/object-detection/wine-labels
67
+ - **Point of Contact:** [email protected]
68
+
69
+ ### Dataset Summary
70
+
71
+ wine-labels
72
+
73
+ ### Supported Tasks and Leaderboards
74
+
75
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
76
+
77
+ ### Languages
78
+
79
+ English
80
+
81
+ ## Dataset Structure
82
+
83
+ ### Data Instances
84
+
85
+ A data point comprises an image and its object annotations.
86
+
87
+ ```
88
+ {
89
+ 'image_id': 15,
90
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
91
+ 'width': 964043,
92
+ 'height': 640,
93
+ 'objects': {
94
+ 'id': [114, 115, 116, 117],
95
+ 'area': [3796, 1596, 152768, 81002],
96
+ 'bbox': [
97
+ [302.0, 109.0, 73.0, 52.0],
98
+ [810.0, 100.0, 57.0, 28.0],
99
+ [160.0, 31.0, 248.0, 616.0],
100
+ [741.0, 68.0, 202.0, 401.0]
101
+ ],
102
+ 'category': [4, 4, 0, 0]
103
+ }
104
+ }
105
+ ```
106
+
107
+ ### Data Fields
108
+
109
+ - `image`: the image id
110
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
111
+ - `width`: the image width
112
+ - `height`: the image height
113
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
114
+ - `id`: the annotation id
115
+ - `area`: the area of the bounding box
116
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
117
+ - `category`: the object's category.
118
+
119
+
120
+ #### Who are the annotators?
121
+
122
+ Annotators are Roboflow users
123
+
124
+ ## Additional Information
125
+
126
+ ### Licensing Information
127
+
128
+ See original homepage https://universe.roboflow.com/object-detection/wine-labels
129
+
130
+ ### Citation Information
131
+
132
+ ```
133
+ @misc{ wine-labels,
134
+ title = { wine labels Dataset },
135
+ type = { Open Source Dataset },
136
+ author = { Roboflow 100 },
137
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/wine-labels } },
138
+ url = { https://universe.roboflow.com/object-detection/wine-labels },
139
+ journal = { Roboflow Universe },
140
+ publisher = { Roboflow },
141
+ year = { 2022 },
142
+ month = { nov },
143
+ note = { visited on 2023-03-29 },
144
+ }"
145
+ ```
146
+
147
+ ### Contributions
148
+
149
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.