parquet-converter commited on
Commit
11ac645
·
1 Parent(s): d807d10

Update parquet files

Browse files
data/test-00000-of-00001-1962293878345fe1.parquet → Francesco--wall-damage/parquet-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:043cb6e0c579fe0bf1fbd3c2dcbcac367b442e40feb00c040a4d8cf0f2f9a05d
3
- size 2974250
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e840a82c9b96392460c84468f8f77424c5b57b15c97ab57079dcd5b61932bcc
3
+ size 2974249
data/train-00000-of-00001-99984d1ffc205e04.parquet → Francesco--wall-damage/parquet-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:19a3bf3b9e220eb57af7e2d9eb745633070e2675941fbccc06f8f15e7a82d51c
3
- size 9790156
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87667a383cbb25a7f3472a186cceaf5d8254052d1fda5b5408983a454012785f
3
+ size 9790155
data/validation-00000-of-00001-b45a39c75e8c66dc.parquet → Francesco--wall-damage/parquet-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:35b258ab4aec03e0497dcdb9a272359007770c61cf25e244c700eb1cad4bc133
3
- size 1307091
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b942fce2cfd0b81cc9093700d3880df5a92d41b1eb46ccf0bb12fe8b57f53f4
3
+ size 1307090
README.md DELETED
@@ -1,140 +0,0 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: image_id
5
- dtype: int64
6
- - name: image
7
- dtype: image
8
- - name: width
9
- dtype: int32
10
- - name: height
11
- dtype: int32
12
- - name: objects
13
- sequence:
14
- - name: id
15
- dtype: int64
16
- - name: area
17
- dtype: int64
18
- - name: bbox
19
- sequence: float32
20
- length: 4
21
- - name: category
22
- dtype:
23
- class_label:
24
- names:
25
- '0': wall-damage
26
- '1': Minorrotation
27
- '2': Moderaterotation
28
- '3': Severerotation
29
- annotations_creators:
30
- - crowdsourced
31
- language_creators:
32
- - found
33
- language:
34
- - en
35
- license:
36
- - cc
37
- multilinguality:
38
- - monolingual
39
- size_categories:
40
- - 1K<n<10K
41
- source_datasets:
42
- - original
43
- task_categories:
44
- - object-detection
45
- task_ids: []
46
- pretty_name: wall-damage
47
- tags:
48
- - rf100
49
- ---
50
-
51
- # Dataset Card for wall-damage
52
-
53
- ** The original COCO dataset is stored at `dataset.tar.gz`**
54
-
55
- ## Dataset Description
56
-
57
- - **Homepage:** https://universe.roboflow.com/object-detection/wall-damage
58
- - **Point of Contact:** [email protected]
59
-
60
- ### Dataset Summary
61
-
62
- wall-damage
63
-
64
- ### Supported Tasks and Leaderboards
65
-
66
- - `object-detection`: The dataset can be used to train a model for Object Detection.
67
-
68
- ### Languages
69
-
70
- English
71
-
72
- ## Dataset Structure
73
-
74
- ### Data Instances
75
-
76
- A data point comprises an image and its object annotations.
77
-
78
- ```
79
- {
80
- 'image_id': 15,
81
- 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
82
- 'width': 964043,
83
- 'height': 640,
84
- 'objects': {
85
- 'id': [114, 115, 116, 117],
86
- 'area': [3796, 1596, 152768, 81002],
87
- 'bbox': [
88
- [302.0, 109.0, 73.0, 52.0],
89
- [810.0, 100.0, 57.0, 28.0],
90
- [160.0, 31.0, 248.0, 616.0],
91
- [741.0, 68.0, 202.0, 401.0]
92
- ],
93
- 'category': [4, 4, 0, 0]
94
- }
95
- }
96
- ```
97
-
98
- ### Data Fields
99
-
100
- - `image`: the image id
101
- - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
102
- - `width`: the image width
103
- - `height`: the image height
104
- - `objects`: a dictionary containing bounding box metadata for the objects present on the image
105
- - `id`: the annotation id
106
- - `area`: the area of the bounding box
107
- - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
108
- - `category`: the object's category.
109
-
110
-
111
- #### Who are the annotators?
112
-
113
- Annotators are Roboflow users
114
-
115
- ## Additional Information
116
-
117
- ### Licensing Information
118
-
119
- See original homepage https://universe.roboflow.com/object-detection/wall-damage
120
-
121
- ### Citation Information
122
-
123
- ```
124
- @misc{ wall-damage,
125
- title = { wall damage Dataset },
126
- type = { Open Source Dataset },
127
- author = { Roboflow 100 },
128
- howpublished = { \url{ https://universe.roboflow.com/object-detection/wall-damage } },
129
- url = { https://universe.roboflow.com/object-detection/wall-damage },
130
- journal = { Roboflow Universe },
131
- publisher = { Roboflow },
132
- year = { 2022 },
133
- month = { nov },
134
- note = { visited on 2023-03-29 },
135
- }"
136
- ```
137
-
138
- ### Contributions
139
-
140
- Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset.tar.gz DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:713152e8b9d9e4d581047205a4e30dab7a4895d84d5c3dd1b7369820d1517470
3
- size 13666719
 
 
 
 
dataset_info.json DELETED
@@ -1 +0,0 @@
1
- {"description": "\nwall damage - v1 2022-08-04 6:29am\n==============================\n\nThis dataset was exported via roboflow.com on August 4, 2022 at 1:29 PM GMT\n\nRoboflow is an end-to-end computer vision platform that helps you\n* collaborate with your team on computer vision projects\n* collect & organize images\n* understand unstructured image data\n* annotate, and create datasets\n* export, train, and deploy computer vision models\n* use active learning to improve your dataset over time\n\nIt includes 461 images.\nWall-damage are annotated in COCO format.\n\nThe following pre-processing was applied to each image:\n* Auto-orientation of pixel data (with EXIF-orientation stripping)\n* Resize to 640x640 (Stretch)\n\nNo image augmentation techniques were applied.\n\n\n", "citation": "@misc{ wall-damage,\n title = { wall damage Dataset },\n type = { Open Source Dataset },\n author = { Roboflow 100 },\n howpublished = { \\url{ https://universe.roboflow.com/object-detection/wall-damage } },\n url = { https://universe.roboflow.com/object-detection/wall-damage },\n journal = { Roboflow Universe },\n publisher = { Roboflow },\n year = { 2022 },\n month = { nov },\n note = { visited on 2023-03-29 },\n}\"", "homepage": "https://universe.roboflow.com/object-detection/wall-damage", "license": "CC BY 4.0", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["wall-damage", "Minorrotation", "Moderaterotation", "Severerotation"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "dataset", "config_name": "default", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9841054, "num_examples": 325, "dataset_name": "dataset"}, "validation": {"name": "validation", "num_bytes": 1307840, "num_examples": 40, "dataset_name": "dataset"}, "test": {"name": "test", "num_bytes": 2982909, "num_examples": 96, "dataset_name": "dataset"}}, "download_checksums": {"https://huggingface.co/datasets/Francesco/wall-damage/resolve/main/dataset.tar.gz": {"num_bytes": 13666719, "checksum": null}}, "download_size": 13666719, "dataset_size": 14131803, "size_in_bytes": 27798522}