File size: 3,417 Bytes
f578b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364667f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f578b4a
 
364667f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
dataset_info:
  features:
  - name: image_id
    dtype: int64
  - name: image
    dtype: image
  - name: width
    dtype: int32
  - name: height
    dtype: int32
  - name: objects
    sequence:
    - name: id
      dtype: int64
    - name: area
      dtype: int64
    - name: bbox
      sequence: float32
      length: 4
    - name: category
      dtype:
        class_label:
          names:
            '0': corrosion-0
            '1': Slippage
            '2': corrosion
            '3': crack
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- object-detection
task_ids: []
pretty_name: corrosion-bi3q3
tags:
- rf100
---

# Dataset Card for corrosion-bi3q3

** The original COCO dataset is stored at `dataset.tar.gz`**

## Dataset Description

- **Homepage:** https://universe.roboflow.com/object-detection/corrosion-bi3q3
- **Point of Contact:** [email protected]

### Dataset Summary

corrosion-bi3q3

### Supported Tasks and Leaderboards

- `object-detection`: The dataset can be used to train a model for Object Detection.

### Languages

English

## Dataset Structure

### Data Instances

A data point comprises an image and its object annotations.

```
{
  'image_id': 15,
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
  'width': 964043,
  'height': 640,
  'objects': {
    'id': [114, 115, 116, 117], 
    'area': [3796, 1596, 152768, 81002],
    'bbox': [
      [302.0, 109.0, 73.0, 52.0],
      [810.0, 100.0, 57.0, 28.0],
      [160.0, 31.0, 248.0, 616.0],
      [741.0, 68.0, 202.0, 401.0]
    ], 
    'category': [4, 4, 0, 0]
  }
}
```

### Data Fields

- `image`: the image id
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `width`: the image width
- `height`: the image height
- `objects`: a dictionary containing bounding box metadata for the objects present on the image
  - `id`: the annotation id
  - `area`: the area of the bounding box
  - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
  - `category`: the object's category.


#### Who are the annotators?

Annotators are Roboflow users

## Additional Information

### Licensing Information

See original homepage https://universe.roboflow.com/object-detection/corrosion-bi3q3

### Citation Information

```
@misc{ corrosion-bi3q3,
    title = { corrosion bi3q3 Dataset },
    type = { Open Source Dataset },
    author = { Roboflow 100 },
    howpublished = { \url{ https://universe.roboflow.com/object-detection/corrosion-bi3q3 } },
    url = { https://universe.roboflow.com/object-detection/corrosion-bi3q3 },
    journal = { Roboflow Universe },
    publisher = { Roboflow },
    year = { 2022 },
    month = { nov },
    note = { visited on 2023-03-29 },
}"
```

### Contributions

Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.