parquet-converter commited on
Commit
fa721c0
·
1 Parent(s): 99b4a36

Update parquet files

Browse files
data/test-00000-of-00001-9e4a5be00f3b6c04.parquet → Francesco--apples-fvpl5/parquet-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b84c4f461456ec1f2d0c1324b061e9647aed00dbfc8e45380c38aa7fa9a03589
3
- size 7826973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd8e5c607b762c539176da79103749f52743a5132d6b0ebdcbdbef9f8a755403
3
+ size 7826972
dataset.tar.gz → Francesco--apples-fvpl5/parquet-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4eee291b1cf982c6fb7a9ee2f563aac372d9740670e3e6043d2a90b777b44ee8
3
- size 30393727
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:920406ae2c661d19edc6528b64ea81904ae17068c61d4a799be74b64acd01f81
3
+ size 21589616
data/validation-00000-of-00001-54fb9dda67697025.parquet → Francesco--apples-fvpl5/parquet-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7d1fc95363cdfd33a7890f2c3ec3b544bea8016d26dd9414625acd250815488
3
- size 1381272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:967e9c75c2055233ca9180406140dd020aeeca587a33ffdd52125bb3dbf24d72
3
+ size 1381271
README.md DELETED
@@ -1,139 +0,0 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: image_id
5
- dtype: int64
6
- - name: image
7
- dtype: image
8
- - name: width
9
- dtype: int32
10
- - name: height
11
- dtype: int32
12
- - name: objects
13
- sequence:
14
- - name: id
15
- dtype: int64
16
- - name: area
17
- dtype: int64
18
- - name: bbox
19
- sequence: float32
20
- length: 4
21
- - name: category
22
- dtype:
23
- class_label:
24
- names:
25
- '0': apples
26
- '1': apple
27
- '2': damaged_apple
28
- annotations_creators:
29
- - crowdsourced
30
- language_creators:
31
- - found
32
- language:
33
- - en
34
- license:
35
- - cc
36
- multilinguality:
37
- - monolingual
38
- size_categories:
39
- - 1K<n<10K
40
- source_datasets:
41
- - original
42
- task_categories:
43
- - object-detection
44
- task_ids: []
45
- pretty_name: apples-fvpl5
46
- tags:
47
- - rf100
48
- ---
49
-
50
- # Dataset Card for apples-fvpl5
51
-
52
- ** The original COCO dataset is stored at `dataset.tar.gz`**
53
-
54
- ## Dataset Description
55
-
56
- - **Homepage:** https://universe.roboflow.com/object-detection/apples-fvpl5
57
- - **Point of Contact:** [email protected]
58
-
59
- ### Dataset Summary
60
-
61
- apples-fvpl5
62
-
63
- ### Supported Tasks and Leaderboards
64
-
65
- - `object-detection`: The dataset can be used to train a model for Object Detection.
66
-
67
- ### Languages
68
-
69
- English
70
-
71
- ## Dataset Structure
72
-
73
- ### Data Instances
74
-
75
- A data point comprises an image and its object annotations.
76
-
77
- ```
78
- {
79
- 'image_id': 15,
80
- 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
81
- 'width': 964043,
82
- 'height': 640,
83
- 'objects': {
84
- 'id': [114, 115, 116, 117],
85
- 'area': [3796, 1596, 152768, 81002],
86
- 'bbox': [
87
- [302.0, 109.0, 73.0, 52.0],
88
- [810.0, 100.0, 57.0, 28.0],
89
- [160.0, 31.0, 248.0, 616.0],
90
- [741.0, 68.0, 202.0, 401.0]
91
- ],
92
- 'category': [4, 4, 0, 0]
93
- }
94
- }
95
- ```
96
-
97
- ### Data Fields
98
-
99
- - `image`: the image id
100
- - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
101
- - `width`: the image width
102
- - `height`: the image height
103
- - `objects`: a dictionary containing bounding box metadata for the objects present on the image
104
- - `id`: the annotation id
105
- - `area`: the area of the bounding box
106
- - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
107
- - `category`: the object's category.
108
-
109
-
110
- #### Who are the annotators?
111
-
112
- Annotators are Roboflow users
113
-
114
- ## Additional Information
115
-
116
- ### Licensing Information
117
-
118
- See original homepage https://universe.roboflow.com/object-detection/apples-fvpl5
119
-
120
- ### Citation Information
121
-
122
- ```
123
- @misc{ apples-fvpl5,
124
- title = { apples fvpl5 Dataset },
125
- type = { Open Source Dataset },
126
- author = { Roboflow 100 },
127
- howpublished = { \url{ https://universe.roboflow.com/object-detection/apples-fvpl5 } },
128
- url = { https://universe.roboflow.com/object-detection/apples-fvpl5 },
129
- journal = { Roboflow Universe },
130
- publisher = { Roboflow },
131
- year = { 2022 },
132
- month = { nov },
133
- note = { visited on 2023-03-29 },
134
- }"
135
- ```
136
-
137
- ### Contributions
138
-
139
- Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/train-00000-of-00001-d560fe26f676bbbf.parquet DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e39ef97db1f00c9f324bc38b831bffaae1df61d128756e617e4a4b993448664
3
- size 21589617
 
 
 
 
dataset_info.json DELETED
@@ -1 +0,0 @@
1
- {"description": "\napples - v1 2022-07-25 11:57am\n==============================\n\nThis dataset was exported via roboflow.com on July 25, 2022 at 6:57 PM GMT\n\nRoboflow is an end-to-end computer vision platform that helps you\n* collaborate with your team on computer vision projects\n* collect & organize images\n* understand unstructured image data\n* annotate, and create datasets\n* export, train, and deploy computer vision models\n* use active learning to improve your dataset over time\n\nIt includes 697 images.\nApples are annotated in COCO format.\n\nThe following pre-processing was applied to each image:\n* Auto-orientation of pixel data (with EXIF-orientation stripping)\n* Resize to 640x640 (Stretch)\n\nNo image augmentation techniques were applied.\n\n\n", "citation": "@misc{ apples-fvpl5,\n title = { apples fvpl5 Dataset },\n type = { Open Source Dataset },\n author = { Roboflow 100 },\n howpublished = { \\url{ https://universe.roboflow.com/object-detection/apples-fvpl5 } },\n url = { https://universe.roboflow.com/object-detection/apples-fvpl5 },\n journal = { Roboflow Universe },\n publisher = { Roboflow },\n year = { 2022 },\n month = { nov },\n note = { visited on 2023-03-29 },\n}\"", "homepage": "https://universe.roboflow.com/object-detection/apples-fvpl5", "license": "CC BY 4.0", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["apples", "apple", "damaged_apple"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "dataset", "config_name": "default", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 21742278, "num_examples": 489, "dataset_name": "dataset"}, "validation": {"name": "validation", "num_bytes": 1381803, "num_examples": 30, "dataset_name": "dataset"}, "test": {"name": "test", "num_bytes": 7869045, "num_examples": 178, "dataset_name": "dataset"}}, "download_checksums": {"https://huggingface.co/datasets/Francesco/apples-fvpl5/resolve/main/dataset.tar.gz": {"num_bytes": 30393727, "checksum": null}}, "download_size": 30393727, "dataset_size": 30993126, "size_in_bytes": 61386853}