Francesco commited on
Commit
b1490a1
1 Parent(s): c41889b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -33,19 +33,115 @@ dataset_info:
33
  '8': person
34
  '9': racoon
35
  '10': skunk
36
- splits:
37
- - name: train
38
- num_bytes: 33587456.0
39
- num_examples: 700
40
- - name: validation
41
- num_bytes: 4900494.0
42
- num_examples: 100
43
- - name: test
44
- num_bytes: 10053411.0
45
- num_examples: 200
46
- download_size: 48538482
47
- dataset_size: 48541361.0
 
 
 
 
 
 
 
 
48
  ---
49
- # Dataset Card for "animals-ij5d2"
50
 
51
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  '8': person
34
  '9': racoon
35
  '10': skunk
36
+ annotations_creators:
37
+ - crowdsourced
38
+ language_creators:
39
+ - found
40
+ language:
41
+ - en
42
+ license:
43
+ - cc
44
+ multilinguality:
45
+ - monolingual
46
+ size_categories:
47
+ - 1K<n<10K
48
+ source_datasets:
49
+ - original
50
+ task_categories:
51
+ - object-detection
52
+ task_ids: []
53
+ pretty_name: animals-ij5d2
54
+ tags:
55
+ - rf100
56
  ---
 
57
 
58
+ # Dataset Card for animals-ij5d2
59
+
60
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
61
+
62
+ ## Dataset Description
63
+
64
+ - **Homepage:** https://universe.roboflow.com/object-detection/animals-ij5d2
65
+ - **Point of Contact:** [email protected]
66
+
67
+ ### Dataset Summary
68
+
69
+ animals-ij5d2
70
+
71
+ ### Supported Tasks and Leaderboards
72
+
73
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
74
+
75
+ ### Languages
76
+
77
+ English
78
+
79
+ ## Dataset Structure
80
+
81
+ ### Data Instances
82
+
83
+ A data point comprises an image and its object annotations.
84
+
85
+ ```
86
+ {
87
+ 'image_id': 15,
88
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
89
+ 'width': 964043,
90
+ 'height': 640,
91
+ 'objects': {
92
+ 'id': [114, 115, 116, 117],
93
+ 'area': [3796, 1596, 152768, 81002],
94
+ 'bbox': [
95
+ [302.0, 109.0, 73.0, 52.0],
96
+ [810.0, 100.0, 57.0, 28.0],
97
+ [160.0, 31.0, 248.0, 616.0],
98
+ [741.0, 68.0, 202.0, 401.0]
99
+ ],
100
+ 'category': [4, 4, 0, 0]
101
+ }
102
+ }
103
+ ```
104
+
105
+ ### Data Fields
106
+
107
+ - `image`: the image id
108
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
109
+ - `width`: the image width
110
+ - `height`: the image height
111
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
112
+ - `id`: the annotation id
113
+ - `area`: the area of the bounding box
114
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
115
+ - `category`: the object's category.
116
+
117
+
118
+ #### Who are the annotators?
119
+
120
+ Annotators are Roboflow users
121
+
122
+ ## Additional Information
123
+
124
+ ### Licensing Information
125
+
126
+ See original homepage https://universe.roboflow.com/object-detection/animals-ij5d2
127
+
128
+ ### Citation Information
129
+
130
+ ```
131
+ @misc{ animals-ij5d2,
132
+ title = { animals ij5d2 Dataset },
133
+ type = { Open Source Dataset },
134
+ author = { Roboflow 100 },
135
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/animals-ij5d2 } },
136
+ url = { https://universe.roboflow.com/object-detection/animals-ij5d2 },
137
+ journal = { Roboflow Universe },
138
+ publisher = { Roboflow },
139
+ year = { 2022 },
140
+ month = { nov },
141
+ note = { visited on 2023-03-29 },
142
+ }"
143
+ ```
144
+
145
+ ### Contributions
146
+
147
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.