Francesco commited on
Commit
07181d7
·
1 Parent(s): a2b85a9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -14
README.md CHANGED
@@ -24,19 +24,115 @@ dataset_info:
24
  names:
25
  '0': acl-x-ray
26
  '1': acl
27
- splits:
28
- - name: train
29
- num_bytes: 45899910.976
30
- num_examples: 2141
31
- - name: validation
32
- num_bytes: 6576557.0
33
- num_examples: 306
34
- - name: test
35
- num_bytes: 13306085.0
36
- num_examples: 612
37
- download_size: 65723141
38
- dataset_size: 65782552.976
 
 
 
 
 
 
 
 
39
  ---
40
- # Dataset Card for "acl-x-ray"
41
 
42
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  names:
25
  '0': acl-x-ray
26
  '1': acl
27
+ annotations_creators:
28
+ - crowdsourced
29
+ language_creators:
30
+ - found
31
+ language:
32
+ - en
33
+ license:
34
+ - cc
35
+ multilinguality:
36
+ - monolingual
37
+ size_categories:
38
+ - 1K<n<10K
39
+ source_datasets:
40
+ - original
41
+ task_categories:
42
+ - object-detection
43
+ task_ids: []
44
+ pretty_name: acl-x-ray
45
+ tags:
46
+ - rf100
47
  ---
 
48
 
49
+ # Dataset Card for acl-x-ray
50
+
51
+ ** The original COCO dataset is stored at `dataset.tar.gz`**
52
+
53
+ ## Dataset Description
54
+
55
+ - **Homepage:** https://universe.roboflow.com/object-detection/acl-x-ray
56
+ - **Point of Contact:** [email protected]
57
+
58
+ ### Dataset Summary
59
+
60
+ acl-x-ray
61
+
62
+ ### Supported Tasks and Leaderboards
63
+
64
+ - `object-detection`: The dataset can be used to train a model for Object Detection.
65
+
66
+ ### Languages
67
+
68
+ English
69
+
70
+ ## Dataset Structure
71
+
72
+ ### Data Instances
73
+
74
+ A data point comprises an image and its object annotations.
75
+
76
+ ```
77
+ {
78
+ 'image_id': 15,
79
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>,
80
+ 'width': 964043,
81
+ 'height': 640,
82
+ 'objects': {
83
+ 'id': [114, 115, 116, 117],
84
+ 'area': [3796, 1596, 152768, 81002],
85
+ 'bbox': [
86
+ [302.0, 109.0, 73.0, 52.0],
87
+ [810.0, 100.0, 57.0, 28.0],
88
+ [160.0, 31.0, 248.0, 616.0],
89
+ [741.0, 68.0, 202.0, 401.0]
90
+ ],
91
+ 'category': [4, 4, 0, 0]
92
+ }
93
+ }
94
+ ```
95
+
96
+ ### Data Fields
97
+
98
+ - `image`: the image id
99
+ - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
100
+ - `width`: the image width
101
+ - `height`: the image height
102
+ - `objects`: a dictionary containing bounding box metadata for the objects present on the image
103
+ - `id`: the annotation id
104
+ - `area`: the area of the bounding box
105
+ - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format)
106
+ - `category`: the object's category.
107
+
108
+
109
+ #### Who are the annotators?
110
+
111
+ Annotators are Roboflow users
112
+
113
+ ## Additional Information
114
+
115
+ ### Licensing Information
116
+
117
+ See original homepage https://universe.roboflow.com/object-detection/acl-x-ray
118
+
119
+ ### Citation Information
120
+
121
+ ```
122
+ @misc{ acl-x-ray,
123
+ title = { acl x ray Dataset },
124
+ type = { Open Source Dataset },
125
+ author = { Roboflow 100 },
126
+ howpublished = { \url{ https://universe.roboflow.com/object-detection/acl-x-ray } },
127
+ url = { https://universe.roboflow.com/object-detection/acl-x-ray },
128
+ journal = { Roboflow Universe },
129
+ publisher = { Roboflow },
130
+ year = { 2022 },
131
+ month = { nov },
132
+ note = { visited on 2023-03-29 },
133
+ }"
134
+ ```
135
+
136
+ ### Contributions
137
+
138
+ Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.