mgaido91 commited on
Commit
04fcf96
·
verified ·
1 Parent(s): f1f0f39

[DEV] Add scripts for hallucination detection

Browse files
README.md CHANGED
@@ -1,231 +1,121 @@
1
- ---
2
- annotations_creators:
3
- - machine-generated
4
- task_categories:
5
- - automatic-speech-recognition
6
- - text-to-speech
7
- language:
8
- - en
9
- - bg
10
- - hr
11
- - cs
12
- - da
13
- - nl
14
- - et
15
- - fi
16
- - fr
17
- - de
18
- - el
19
- - hu
20
- - ga
21
- - it
22
- - lv
23
- - lt
24
- - mt
25
- - pl
26
- - pt
27
- - ro
28
- - sk
29
- - sl
30
- - es
31
- - sv
32
- language_creators:
33
- - found
34
- modality:
35
- - text
36
- - audio
37
- multilinguality:
38
- - multilingual
39
- pretty_name: MOSEL
40
- license: cc-by-4.0
41
- tags:
42
- - speech
43
- - speech-to-text
44
- - open-source
45
- - whisper
46
- configs:
47
- - config_name: bg
48
- data_files:
49
- - split: train_voxpopuli
50
- path: bg/voxpopuli*
51
- - config_name: cs
52
- data_files:
53
- - split: train_voxpopuli
54
- path: cs/voxpopuli*
55
- - config_name: da
56
- data_files:
57
- - split: train_voxpopuli
58
- path: da/voxpopuli*
59
- - config_name: de
60
- data_files:
61
- - split: train_voxpopuli
62
- path: de/voxpopuli*
63
- - config_name: el
64
- data_files:
65
- - split: train_voxpopuli
66
- path: el/voxpopuli*
67
- - config_name: en
68
- data_files:
69
- - split: train_voxpopuli
70
- path: en/voxpopuli*
71
- - split: train_librilight
72
- path: en/librilight*
73
- - config_name: es
74
- data_files:
75
- - split: train_voxpopuli
76
- path: es/voxpopuli*
77
- - config_name: et
78
- data_files:
79
- - split: train_voxpopuli
80
- path: et/voxpopuli*
81
- - config_name: fi
82
- data_files:
83
- - split: train_voxpopuli
84
- path: fi/voxpopuli*
85
- - config_name: fr
86
- data_files:
87
- - split: train_voxpopuli
88
- path: fr/voxpopuli*
89
- - config_name: hr
90
- data_files:
91
- - split: train_voxpopuli
92
- path: hr/voxpopuli*
93
- - config_name: hu
94
- data_files:
95
- - split: train_voxpopuli
96
- path: hu/voxpopuli*
97
- - config_name: it
98
- data_files:
99
- - split: train_voxpopuli
100
- path: it/voxpopuli*
101
- - config_name: lt
102
- data_files:
103
- - split: train_voxpopuli
104
- path: lt/voxpopuli*
105
- - config_name: lv
106
- data_files:
107
- - split: train_voxpopuli
108
- path: lv/voxpopuli*
109
- - config_name: mt
110
- data_files:
111
- - split: train_voxpopuli
112
- path: mt/voxpopuli*
113
- - config_name: nl
114
- data_files:
115
- - split: train_voxpopuli
116
- path: nl/voxpopuli*
117
- - config_name: pl
118
- data_files:
119
- - split: train_voxpopuli
120
- path: pl/voxpopuli*
121
- - config_name: pt
122
- data_files:
123
- - split: train_voxpopuli
124
- path: pt/voxpopuli*
125
- - config_name: ro
126
- data_files:
127
- - split: train_voxpopuli
128
- path: ro/voxpopuli*
129
- - config_name: sk
130
- data_files:
131
- - split: train_voxpopuli
132
- path: sk/voxpopuli*
133
- - config_name: sl
134
- data_files:
135
- - split: train_voxpopuli
136
- path: sl/voxpopuli*
137
- - config_name: sv
138
- data_files:
139
- - split: train_voxpopuli
140
- path: sv/voxpopuli*
141
- ---
142
-
143
- <img src="./mosel-logo-transparent.png" align="center" width="100%">
144
-
145
- ### Dataset Description, Collection, and Source
146
-
147
- The MOSEL corpus is a multilingual dataset collection including up to 950K hours of open-source speech recordings covering the 24 official languages of the European Union. We collect data by surveying labeled and unlabeled speech corpora under open-source compliant licenses.
148
- In particular, MOSEL includes the automatic transcripts of 441k hours of unlabeled speech from VoxPopuli and LibriLight. The data is transcribed using [Whisper large v3](https://huggingface.co/openai/whisper-large-v3).
149
- Whisper is released under the OS Apache 2.0 License which allows releasing the generated content under any license. Since LibriLight, differently from VoxPopuli, contains segments longer than Whisper's maximum duration limit of 30sec, we split them into chunks of up to 30sec.
150
-
151
- - **Curated by:** Marco Gaido, Sara Papi, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
152
- - **Funded by:** FAIR, Meetween, and CINECA
153
- - **Shared by:** Fondazione Bruno Kessler
154
-
155
- ### License
156
- - CC-BY-4.0
157
-
158
- ### Dataset Sources
159
-
160
- - **Collection Repository:** [MOSEL](https://github.com/hlt-mt/mosel)
161
- - **Paper:** [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](http://arxiv.org/abs/2410.01036)
162
-
163
- ## Dataset Structure
164
-
165
- ### Data Config
166
- The dataset is split into folders corresponding to the languages using the [2-letters ISO codes](https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes), one for each language. Within each folder, a split for each psuedo-labeled dataset is provided.
167
-
168
- ### Data Field
169
- `id`: alphanumeric identifier for the segment
170
-
171
- `language`: extended language (e.g., "english")
172
-
173
- `text`: the content of the psuedo label
174
-
175
- `hall_repeated_ngrams`: True/False - indicates the repetition of an *n*-gram in `text` for a minimum number of times; for *n* in 1 to 2, the threshold is 4, for *n* in 3 to 5, it is 3
176
-
177
- `hall_long_word`: True/False - indicates the presence of a word of at least 40 characters in `text`
178
-
179
- `hall_frequent_single_word`: True/False - indicates that `text` consists of only one word which is the most frequent inside the whole text
180
-
181
- ## Dataset Statistics (in hours)
182
-
183
- | Language (LangID) | Labeled | Unlabeled | Total |
184
- |--------|--------|--------|-------|
185
- | Bulgarian (bg) | 111 | 17609 | 17720 |
186
- | Croatian (hr) | 55 | 8106 | 8161 |
187
- | Czech (cs) | 591 | 18705 | 19296 |
188
- | Danish (da) | 20 | 13600 | 13620 |
189
- | Dutch (nl) | 3395 | 19014 | 22409 |
190
- | English (en) | 437239 | 84704 | 521943|
191
- | Estonian (et) | 60 | 10604 | 10664 |
192
- | Finnish (fi) | 64 | 14200 | 14264 |
193
- | French (fr) | 26984 | 22896 | 49880 |
194
- | German (de) | 9236 | 23228 | 32464 |
195
- | Greek (el) | 35 | 17703 | 17738 |
196
- | Hungarian (hu) | 189 | 17701 | 17890 |
197
- | Irish (ga) | 17 | 0 | 17 |
198
- | Italian (it) | 3756 | 21933 | 25689 |
199
- | Latvian (lv) | 173 | 13100 | 13273 |
200
- | Lithuanian (lt) | 36 | 14400 | 14436 |
201
- | Maltese (mt) | 19 | 9100 | 9119 |
202
- | Polish (pl) | 510 | 21207 | 21717 |
203
- | Portuguese (pt) | 5492 | 17526 | 23018 |
204
- | Romanian (ro) | 121 | 17906 | 18021 |
205
- | Slovak (sk) | 61 | 12100 | 12161 |
206
- | Slovenian (sl) | 32 | 11300 | 11332 |
207
- | Spanish (es) | 17471 | 21526 | 38997 |
208
- | Swedish (sv) | 58 | 16300 | 16358 |
209
- | Total | 505725 | 444467 | 950192|
210
-
211
-
212
- ## Dataset Creation
213
- To reproduce the dataset creation, please refer to the [MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository.
214
-
215
-
216
- ## Citation
217
- Release 1.0:
218
- ```
219
- @inproceedings{mosel,
220
- title = {{MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages}},
221
- author = {Marco Gaido and Sara Papi and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabihand Matteo Negri},
222
- booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
223
- month = nov,
224
- year = "2024",
225
- address = "Miami, United States",
226
- publisher = "Association for Computational Linguistics",
227
- }
228
- ```
229
-
230
- ## Dataset Card Contact
231
- [@spapi](https://huggingface.co/spapi)
 
1
+ ---
2
+ task_categories:
3
+ - automatic-speech-recognition
4
+ language:
5
+ - en
6
+ - bg
7
+ - hr
8
+ - cs
9
+ - da
10
+ - nl
11
+ - et
12
+ - fi
13
+ - fr
14
+ - de
15
+ - el
16
+ - hu
17
+ - ga
18
+ - it
19
+ - lv
20
+ - lt
21
+ - mt
22
+ - pl
23
+ - pt
24
+ - ro
25
+ - sk
26
+ - sl
27
+ - es
28
+ - sv
29
+ pretty_name: MOSEL
30
+ license: cc-by-4.0
31
+ ---
32
+
33
+ <img src="./mosel-logo-transparent.png" align="center" width="100%">
34
+
35
+ ### Dataset Description, Collection, and Source
36
+
37
+ The MOSEL corpus is a multilingual dataset collection including up to 950K hours of open-source speech recordings covering the 24 official languages of the European Union. We collect data by surveying labeled and unlabeled speech corpora under open-source compliant licenses.
38
+ In particular, MOSEL includes the automatic transcripts of 441k hours of unlabeled speech from VoxPopuli and LibriLight. The data is transcribed using [Whisper large v3](https://huggingface.co/openai/whisper-large-v3).
39
+ Whisper is released under the OS Apache 2.0 License which allows releasing the generated content under any license. Since LibriLight, differently from VoxPopuli, contains segments longer than Whisper's maximum duration limit of 30sec, we split them into chunks of up to 30sec.
40
+
41
+ - **Curated by:** Marco Gaido, Sara Papi, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
42
+ - **Funded by:** FAIR, Meetween, and CINECA
43
+ - **Shared by:** Fondazione Bruno Kessler
44
+
45
+ ### License
46
+ - CC-BY-4.0
47
+
48
+ ### Dataset Sources
49
+
50
+ - **Collection Repository:** [MOSEL](https://github.com/hlt-mt/mosel)
51
+ - **Paper:** [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](https://arxiv.org/)
52
+
53
+ ## Dataset Structure
54
+
55
+ ### Data Config
56
+ The dataset is split into folders corresponding to the languages using the [2-letters ISO codes](https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes), one for each language. Within each folder, a split for each psuedo-labeled dataset is provided.
57
+
58
+ ### Data Field
59
+ `id`: alphanumeric identifier for the segment
60
+
61
+ `language`: extended language (e.g., "english")
62
+
63
+ `text`: the content of the psuedo label
64
+
65
+ `hall_repeated_ngrams`: True/False - indicates the repetition of an *n*-gram in `text` for a minimum number of times; for *n* in 1 to 2, the threshold is 4, for *n* in 3 to 5, it is 3
66
+
67
+ `hall_long_word`: True/False - indicates the presence of a word of at least 40 characters in `text`
68
+
69
+ `hall_frequent_single_word`: True/False - indicates that `text` consists of only one word which is the most frequent inside the whole text
70
+
71
+ ## Dataset Statistics (in hours)
72
+
73
+ | Language (LangID) | Labeled | Unlabeled | Total |
74
+ |--------|--------|--------|-------|
75
+ | Bulgarian (bg) | 111 | 17609 | 17720 |
76
+ | Croatian (hr) | 55 | 8106 | 8161 |
77
+ | Czech (cs) | 591 | 18705 | 19296 |
78
+ | Danish (da) | 20 | 13600 | 13620 |
79
+ | Dutch (nl) | 3395 | 19014 | 22409 |
80
+ | English (en) | 437239 | 84704 | 521943|
81
+ | Estonian (et) | 60 | 10604 | 10664 |
82
+ | Finnish (fi) | 64 | 14200 | 14264 |
83
+ | French (fr) | 26984 | 22896 | 49880 |
84
+ | German (de) | 9236 | 23228 | 32464 |
85
+ | Greek (el) | 35 | 17703 | 17738 |
86
+ | Hungarian (hu) | 189 | 17701 | 17890 |
87
+ | Irish (ga) | 17 | 0 | 17 |
88
+ | Italian (it) | 3756 | 21933 | 25689 |
89
+ | Latvian (lv) | 173 | 13100 | 13273 |
90
+ | Lithuanian (lt) | 36 | 14400 | 14436 |
91
+ | Maltese (mt) | 19 | 9100 | 9119 |
92
+ | Polish (pl) | 510 | 21207 | 21717 |
93
+ | Portuguese (pt) | 5492 | 17526 | 23018 |
94
+ | Romanian (ro) | 121 | 17906 | 18021 |
95
+ | Slovak (sk) | 61 | 12100 | 12161 |
96
+ | Slovenian (sl) | 32 | 11300 | 11332 |
97
+ | Spanish (es) | 17471 | 21526 | 38997 |
98
+ | Swedish (sv) | 58 | 16300 | 16358 |
99
+ | Total | 505725 | 444467 | 950192|
100
+
101
+
102
+ ## Dataset Creation
103
+ To reproduce the dataset creation, please refer to the [MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository.
104
+ The scripts used for hallucination detection are availabe in the `scripts` folder of this repository.
105
+
106
+ ## Citation
107
+ Release 1.0:
108
+ ```
109
+ @inproceedings{mosel,
110
+ title = {{MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages}},
111
+ author = {Marco Gaido and Sara Papi and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabihand Matteo Negri},
112
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
113
+ month = nov,
114
+ year = "2024",
115
+ address = "Miami, United States",
116
+ publisher = "Association for Computational Linguistics",
117
+ }
118
+ ```
119
+
120
+ ## Dataset Card Contact
121
+ [@spapi](https://huggingface.co/spapi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Mosel: scripts for flagging hallucinated text
2
+
3
+ #### Last update: 1 Oct 2024
4
+
5
+ ### Overview
6
+
7
+ In order to automatically decide whether transcriptions of audio documents generated automatically are reliable, and therefore useful for training, or not, and therefore to be discarded, we focused on the detection of *hallucinations*. In general, “Hallucination in the context of LLMs refers to the generation of text that is erroneous, nonsensical, or detached from reality”. Here, referring to surface hallucinations we consider the subset of the phenomenon which refer to anomalies of the text, disregarding hallucinations related to contents. In fact, it happens that pre-trained LLMs generate **anomalous repetitions** of the same pattern, like (real examples):
8
+
9
+ - Hey, hey, hey, here, hey.
10
+ - No, no, no, no, no, no, no, no.
11
+
12
+ or output **very long** and noisy **strings**:
13
+
14
+ - T-J-N-D-F-Z-3-2-8-W-M-L-G-0-Z-P-O-2-M-2-M-M-O-G-W.
15
+
16
+ or still produce **single word lines** using a common token but a suspiciously high number of times. For each of the three types of hallucinations a specific script has been designed, whose usage is listed in the following:
17
+
18
+ ```
19
+ flagHallucinations.py
20
+ -h, --help show this help message and exit
21
+ --tsv-InFile TSV_INFILE, -i TSV_INFILE
22
+ The input TSV file [Mandatory]
23
+ --tsv-OutFile TSV_OUTFILE, -o TSV_OUTFILE
24
+ The output TSV file [Mandatory. If equal to input TSV
25
+ file, the new column is added to the original file]
26
+ --column COLUMN, -c COLUMN
27
+ Column name of the text to process [Optional]
28
+ (default: source)
29
+ --thresh1grams THRESH1GRAMS, -u THRESH1GRAMS
30
+ Threshold for 1-2_word hallucinations [Optional]
31
+ (default: 4)
32
+ --threshNgrams THRESHNGRAMS, -n THRESHNGRAMS
33
+ Threshold for 3-5_word hallucinations [Optional]
34
+ (default: 2)
35
+ --quiet, -q Print only True/False, no explanation for True's
36
+ --version, -v Print version of the script and exit
37
+
38
+ ```
39
+ ```
40
+ flagAnomalousStrings.py
41
+ -h, --help show this help message and exit
42
+ --tsv-InFile TSV_INFILE, -i TSV_INFILE
43
+ The input TSV file [Mandatory]
44
+ --tsv-OutFile TSV_OUTFILE, -o TSV_OUTFILE
45
+ The output TSV file [Mandatory. If equal to input TSV
46
+ file, the new column is added to the original file]
47
+ --column COLUMN, -c COLUMN
48
+ Column name of the text to process [Optional]
49
+ (default: source)
50
+ --thresh THRESH, -t THRESH
51
+ Max number of chars of a string to be unflagged
52
+ [Optional] (default: 40)
53
+ --quiet, -q Print only True/False, no explanation for True's
54
+ --version, -v Print version of the script and exit
55
+ ```
56
+
57
+ ```
58
+ flagSuspiciousSingleWord.py
59
+ -h, --help show this help message and exit
60
+ --tsv-InFile TSV_INFILE, -i TSV_INFILE
61
+ The input TSV file [Mandatory]
62
+ --tsv-OutFile TSV_OUTFILE, -o TSV_OUTFILE
63
+ The output TSV file [Mandatory. If equal to input TSV
64
+ file, the new column ('suspicious single word') is
65
+ added to the original file]
66
+ --tsv-SuspiciousWordFiles TSV_SUSPICIOUSWORDFILES [TSV_SUSPICIOUSWORDFILES ...], -s TSV_SUSPICIOUSWORDFILES [TSV_SUSPICIOUSWORDFILES ...]
67
+ The TSV file(s) used to look for the suspicious word
68
+ [Optional. If not present, the input TSV file is used
69
+ instead]
70
+ --column COLUMN, -c COLUMN
71
+ Column name of the text to process [Optional]
72
+ (default: source)
73
+ --suspiciousWord SUSPICIOUSWORD, -w SUSPICIOUSWORD
74
+ suspicious word [if not specified, found in other TSV
75
+ files passed as parameters]
76
+ --quiet, -q Print only True/False, no explanation for True's
77
+ --version, -v Print version of the script and exit
78
+ ```
79
+
80
+ All of them read a TSV file from input (-i) which is expected to include a column (-c) with the text to process; they output a TSV file (-o) with an additional column flagging the specific hallucination each script looks for. If input and output files are the same, the former is replaced by the latter. The -q option suppresses the verbosity on hallucinations that have been found.<br>
81
+ Here the processing carried out by the three scripts:
82
+ - **flagHallucinations.py** It flags (by setting True the corresponding entry of the *hall_repeated_ngrams* column) those sentences where a pattern (*n*-gram, that is a sequence of *n* words) is repeated at least a given number of times; for patterns of size 1 to 2, the minimum number of times for flagging it is set by the thresh1grams parameter (default value: 4), for those of size 3-5 by threshNgrams (2).
83
+ - **flagAnomalousStrings.py** It flags (by setting True the corresponding entry of the *hall_long_word* column) those sentences where at least one word is abnormally long; the abnormality is set through the thresh parameter, whose default value is 40.
84
+ - **flagSuspiciousSingleWord.py** It flags (by setting True the corresponding entry of the *hall_frequent_single_word*) those sentences which consists of only one single suspicious word. This word can be either passed as a parameter (*suspiciousWord* option) or found inside the TSV input files. In the latter case, it is set as the most frequent word in the text included in files to be inspected. The TSV files to inspect can be passed through the *tsv-SuspiciousWordFiles* option. If no explicit *suspiciousWord* nor *tsv-SuspiciousWordFiles* is passed, the *tsv-InFile* is inspected.
85
+
scripts/flagAnomalousStrings.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 FBK
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License
14
+
15
+ try:
16
+ import pandas as pd
17
+ except ImportError:
18
+ print("Please install the pandas package with 'pip install pandas' and try again.")
19
+ exit(1)
20
+
21
+ import argparse
22
+
23
+ _VERSION = "1.01"
24
+
25
+ class ExplicitDefaultsHelpFormatter(argparse.ArgumentDefaultsHelpFormatter):
26
+ def _get_help_string(self, action):
27
+ if action.default is None or action.default is False:
28
+ return action.help
29
+ return super()._get_help_string(action)
30
+
31
+ def main(args):
32
+ """
33
+ This script flags (by setting True the corresponding entry of
34
+ the hall_long_word column) those sentences where at least one
35
+ word is abnormally long; the abnormality is set through the
36
+ thresh parameter, whose default value is 40.
37
+ """
38
+
39
+ if (parsed_args.version):
40
+ print(f"Version {_VERSION} of anomalous string detector")
41
+ exit(1)
42
+
43
+ if not (tsv_files_specified):
44
+ print("--tsv-InFile and --tsv-OutFile are both required")
45
+ parser.print_usage()
46
+ exit(1)
47
+
48
+ inDF = pd.read_csv(args.tsv_InFile, sep='\t', dtype=str, low_memory=False, na_filter=False, quoting=3)
49
+ try:
50
+ txt = inDF[parsed_args.column]
51
+ except KeyError:
52
+ print("Error in reading column <"+parsed_args.column+"> in TSV file")
53
+ exit(1)
54
+
55
+ flag = []
56
+ for line in txt:
57
+ anomal = False
58
+ try:
59
+ words = line.split()
60
+ except TabError:
61
+ words = []
62
+ for w in words:
63
+ lw=len(w.strip())
64
+ if lw > parsed_args.thresh:
65
+ if args.quiet:
66
+ flag.append("True")
67
+ else:
68
+ flag.append("True ("+str(lw)+"): "+w.strip())
69
+ anomal = True
70
+ break
71
+ if not anomal:
72
+ flag.append("False")
73
+
74
+ inDF['hall_long_word'] = flag
75
+ inDF.to_csv(args.tsv_OutFile, sep="\t", index=False, quoting=3)
76
+
77
+
78
+ if __name__ == '__main__':
79
+ parser = argparse.ArgumentParser(formatter_class=ExplicitDefaultsHelpFormatter)
80
+
81
+ # I/O related arguments
82
+ parser.add_argument(
83
+ '--tsv-InFile', '-i', type=str,
84
+ help="The input TSV file [Mandatory]")
85
+
86
+ parser.add_argument(
87
+ '--tsv-OutFile', '-o', type=str,
88
+ help="The output TSV file [Mandatory. If equal to input TSV file, the new column is added to the original file]")
89
+
90
+ # Processing arguments:
91
+ parser.add_argument(
92
+ '--column', '-c', default='source',
93
+ help="Column name of the text to process [Optional]")
94
+
95
+ parser.add_argument(
96
+ '--thresh', '-t', type=int, default=40,
97
+ help="Max number of chars of a string to be unflagged [Optional]")
98
+
99
+ # Reporting related arguments
100
+ parser.add_argument(
101
+ '--quiet', '-q', default=False, action='store_true',
102
+ help='Print only True/False, no explanation for True\'s')
103
+
104
+ # Get version information:
105
+ parser.add_argument(
106
+ '--version', '-v', action='store_true', default=False,
107
+ help="Print version of the script and exit")
108
+
109
+
110
+ parsed_args = parser.parse_args()
111
+ tsv_files_specified = \
112
+ getattr(parsed_args, 'tsv_InFile') is not None \
113
+ and len(parsed_args.tsv_InFile) > 0 \
114
+ and getattr(parsed_args, 'tsv_OutFile') is not None \
115
+ and len(parsed_args.tsv_OutFile) > 0
116
+
117
+ main(parsed_args)
scripts/flagHallucinations.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 FBK
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License
14
+
15
+ try:
16
+ import pandas as pd
17
+ except ImportError:
18
+ print("Please install the pandas package with 'pip install pandas' and try again.")
19
+ exit(1)
20
+
21
+ import argparse
22
+
23
+ _VERSION = "1.01"
24
+
25
+ class ExplicitDefaultsHelpFormatter(argparse.ArgumentDefaultsHelpFormatter):
26
+ def _get_help_string(self, action):
27
+ if action.default is None or action.default is False:
28
+ return action.help
29
+ return super()._get_help_string(action)
30
+
31
+ # max size of pattern (seq of words) that,
32
+ # if repeated at least thresh1grams/threshNgrams times,
33
+ # risesflags the hallucination:
34
+ maxN = 5
35
+
36
+ def findHall(wrd):
37
+ for N in range(maxN, 0, -1):
38
+ count = 0
39
+ for idx in range(0,len(wrd)-2*N+2): # the max idx value must be leave
40
+ # room for at least one repetition
41
+ # of the N_sized pattern
42
+ count += hallLen(idx,N,wrd)
43
+ if ( N<3 and count+1>=parsed_args.thresh1grams ) or \
44
+ ( N>=3 and count+1>=parsed_args.threshNgrams ):
45
+ return [N, idx, count]
46
+ else:
47
+ count = 0 # reset
48
+
49
+ return [0,0,0]
50
+
51
+ def hallLen(startIdx,N,wrd):
52
+ hallLen = 0
53
+ startRep = startIdx + N # first index after the end of the current pattern
54
+ while startRep < len(wrd)-N+1:
55
+ if isHall(startIdx,startRep,N,wrd):
56
+ hallLen+=1
57
+ startRep+=N
58
+ else:
59
+ break
60
+ return hallLen
61
+
62
+ def isHall(s1,s2,N,wrd):
63
+ i = 0
64
+ while i<N and wrd[s1+i] == wrd[s2+i]:
65
+ i+=1
66
+ return i == N
67
+
68
+ def main(args):
69
+ """
70
+ This script flags (by setting True the corresponding entry
71
+ of the hall_repeated_ngrams column) those sentences where a
72
+ pattern (n-gram, that is a sequence of n words) is repeated
73
+ at least a given number of times; for patterns of size 1 to 2,
74
+ the minimum number of times for flagging it is set by the
75
+ thresh1grams parameter (default value: 4), for those of size
76
+ 3-5 by threshNgrams (2)
77
+ """
78
+
79
+ if (parsed_args.version):
80
+ print(f"Version {_VERSION} of anomalous string detector")
81
+ exit(1)
82
+
83
+ if not (tsv_files_specified):
84
+ print("--tsv-InFile and --tsv-OutFile are both required")
85
+ parser.print_usage()
86
+ exit(1)
87
+
88
+ if not (wrong_thresh_values):
89
+ print("--thresh1grams and --threshNgrams must both be positive integers")
90
+ parser.print_usage()
91
+ exit(1)
92
+
93
+ try:
94
+ inDF = pd.read_csv(args.tsv_InFile, sep='\t', dtype=str, low_memory=False, na_filter=False, quoting=3)
95
+ except IOError:
96
+ print("Error in opening "+args.tsv_InFile+" file")
97
+
98
+ try:
99
+ txt = inDF[parsed_args.column]
100
+ except KeyError:
101
+ print("Error in reading column <"+parsed_args.column+"> in TSV file")
102
+ exit(1)
103
+
104
+ flag = []
105
+ for line in txt:
106
+ words = line.split()
107
+ [size, idx, count] = findHall(words)
108
+ if size>0:
109
+ if args.quiet:
110
+ flag.append("True")
111
+ else:
112
+ flag.append("True (pattern of length " + str(size) + \
113
+ " from index " + str(idx) + \
114
+ ", repeated at least " + str(count+1) + " times)")
115
+ else:
116
+ flag.append("False")
117
+
118
+ inDF['hall_repeated_ngrams'] = flag
119
+ inDF.to_csv(args.tsv_OutFile, sep="\t", index=False, quoting=3)
120
+
121
+
122
+ if __name__ == '__main__':
123
+ parser = argparse.ArgumentParser(formatter_class=ExplicitDefaultsHelpFormatter)
124
+
125
+ # I/O related arguments
126
+ parser.add_argument(
127
+ '--tsv-InFile', '-i', type=str,
128
+ help="The input TSV file [Mandatory]")
129
+
130
+ parser.add_argument(
131
+ '--tsv-OutFile', '-o', type=str,
132
+ help="The output TSV file [Mandatory. If equal to input TSV file, the new column is added to the original file]")
133
+
134
+ # Processing arguments:
135
+ parser.add_argument(
136
+ '--column', '-c', default='source',
137
+ help="Column name of the text to process [Optional]")
138
+
139
+ parser.add_argument(
140
+ '--thresh1grams', '-u', type=int, default=4,
141
+ help="Threshold for 1-2_word hallucinations [Optional]")
142
+
143
+ parser.add_argument(
144
+ '--threshNgrams', '-n', type=int, default=2,
145
+ help="Threshold for 3-5_word hallucinations [Optional]")
146
+
147
+ # Reporting related arguments
148
+ parser.add_argument(
149
+ '--quiet', '-q', default=False, action='store_true',
150
+ help='Print only True/False, no explanation for True\'s')
151
+
152
+ # Get version information:
153
+ parser.add_argument(
154
+ '--version', '-v', action='store_true', default=False,
155
+ help="Print version of the script and exit")
156
+
157
+
158
+ parsed_args = parser.parse_args()
159
+ tsv_files_specified = \
160
+ getattr(parsed_args, 'tsv_InFile') is not None \
161
+ and len(parsed_args.tsv_InFile) > 0 \
162
+ and getattr(parsed_args, 'tsv_OutFile') is not None \
163
+ and len(parsed_args.tsv_OutFile) > 0
164
+
165
+ wrong_thresh_values = parsed_args.thresh1grams > 0 \
166
+ and parsed_args.threshNgrams > 0
167
+
168
+
169
+ main(parsed_args)
scripts/flagSuspiciousSingleWord.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 FBK
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License
14
+
15
+ try:
16
+ import pandas as pd
17
+ except ImportError:
18
+ print("Please install the pandas package with 'pip install pandas' and try again.")
19
+ exit(1)
20
+
21
+ import argparse
22
+
23
+ _VERSION = "1.01"
24
+
25
+ class ExplicitDefaultsHelpFormatter(argparse.ArgumentDefaultsHelpFormatter):
26
+ def _get_help_string(self, action):
27
+ if action.default is None or action.default is False:
28
+ return action.help
29
+ return super()._get_help_string(action)
30
+
31
+ def processColumn(col, dict):
32
+ # compute the counts of words that appear alone in the lines
33
+ for line in col:
34
+ if len(line.split()) == 1:
35
+ key=line.strip()
36
+ if key in dict:
37
+ dict[key]+=1
38
+ else:
39
+ dict[key]=1
40
+
41
+ def processTSVfiles(files, dict):
42
+ # open and process textual content of each TSV file in the input list;
43
+ # return the word with the greatest count
44
+ for tsv in files:
45
+ try:
46
+ inDF = pd.read_csv(tsv, sep='\t', dtype=str, low_memory=False, na_filter=False, quoting=3)
47
+ except IOError:
48
+ print("Error in opening "+tsv+" file")
49
+ try:
50
+ col = inDF[parsed_args.column]
51
+ except KeyError:
52
+ print("Error in reading column <"+parsed_args.column+"> in TSV file")
53
+ exit(1)
54
+ processColumn(col, dict)
55
+ return findSuspiciousWord(dict)
56
+
57
+ def findSuspiciousWord(dict):
58
+ # look for the word in dict with the greatest count
59
+ argmax = ""
60
+ max = -1
61
+ for w,c in list(dict.items()):
62
+ if c > max:
63
+ max = c
64
+ argmax = w
65
+ return argmax
66
+
67
+
68
+
69
+ def main(args):
70
+ """
71
+ This script flags (by setting True the corresponding entry of
72
+ the hall_frequent_single_word) those sentences which consists
73
+ of only one single suspicious word. This word can be either passed
74
+ as a parameter (suspiciousWord option) or found inside the TSV
75
+ input files. In the latter case, it is set as the most frequent
76
+ word in the text included in files to be inspected.
77
+ The TSV files to inspect can be passed through the
78
+ tsv-SuspiciousWordFiles option. If no explicit suspiciousWord nor
79
+ tsv-SuspiciousWordFiles is passed, the tsv-InFile is inspected.
80
+ """
81
+
82
+ # Support structure:
83
+ dict = {}
84
+
85
+ if (parsed_args.version):
86
+ print(f"Version {_VERSION} of anomalous string detector")
87
+ exit(1)
88
+
89
+ if not (tsv_files_specified):
90
+ print("--tsv-InFile and --tsv-OutFile are both required")
91
+ parser.print_usage()
92
+ exit(1)
93
+
94
+ if (contrastive_options):
95
+ print("Either specify SuspiciousWord or SuspiciousWordFiles, both cannot be passed")
96
+ parser.print_usage()
97
+ exit(1)
98
+
99
+ """
100
+ Get the suspiciousWord:
101
+ """
102
+ if getattr(parsed_args, 'suspiciousWord') is not None:
103
+ # passed as parameter
104
+ suspiciousWord = parsed_args.suspiciousWord.strip()
105
+ elif getattr(parsed_args, 'tsv_SuspiciousWordFiles') is not None:
106
+ # to be searched in TSV files passed for that
107
+ suspiciousWord = processTSVfiles(parsed_args.tsv_SuspiciousWordFiles, dict)
108
+ else:
109
+ # to be searched in the input TSV file to process
110
+ suspiciousWord = processTSVfiles([parsed_args.tsv_InFile], dict)
111
+
112
+
113
+ # open input TSV file and get the text to process
114
+ try:
115
+ inDF = pd.read_csv(args.tsv_InFile, sep='\t', dtype=str, low_memory=False, na_filter=False, quoting=3)
116
+
117
+ except IOError:
118
+ print("Error in opening "+tsv+" file")
119
+
120
+ try:
121
+ txt = inDF[parsed_args.column]
122
+ except KeyError:
123
+ print("Error in reading column <"+parsed_args.column+"> in TSV file")
124
+ exit(1)
125
+
126
+ # scan each input line and check if it consists of
127
+ # only the suspicious word
128
+ flag = []
129
+ for line in txt:
130
+ if suspiciousWord == line.strip():
131
+ if args.quiet:
132
+ flag.append("True")
133
+ else:
134
+ flag.append("True ("+suspiciousWord+")")
135
+ else:
136
+ flag.append("False")
137
+
138
+ # add the column to the original Data Frame read from the input TSV file
139
+ # and store the updated Data Frame in the output TSV file:
140
+ inDF['hall_frequent_single_word'] = flag
141
+ inDF.to_csv(args.tsv_OutFile, sep="\t", index=False, quoting=3)
142
+
143
+
144
+
145
+ if __name__ == '__main__':
146
+ parser = argparse.ArgumentParser(formatter_class=ExplicitDefaultsHelpFormatter)
147
+
148
+ # I/O related arguments
149
+ parser.add_argument(
150
+ '--tsv-InFile', '-i', type=str,
151
+ help="The input TSV file [Mandatory]")
152
+
153
+ parser.add_argument(
154
+ '--tsv-OutFile', '-o', type=str,
155
+ help="The output TSV file [Mandatory. If equal to input TSV file, the new column ('suspicious single word') is added to the original file]")
156
+
157
+ parser.add_argument(
158
+ '--tsv-SuspiciousWordFiles', '-s', type=str, nargs='+',
159
+ help="The TSV file(s) used to look for the suspicious word [Optional. If not present, the input TSV file is used instead]")
160
+
161
+ # Processing arguments:
162
+ parser.add_argument(
163
+ '--column', '-c', default='source',
164
+ help="Column name of the text to process [Optional]")
165
+
166
+ parser.add_argument(
167
+ '--suspiciousWord', '-w', type=str,
168
+ help="suspicious word [if not specified, found in other TSV files passed as parameters]")
169
+
170
+ # Reporting related arguments
171
+ parser.add_argument(
172
+ '--quiet', '-q', default=False, action='store_true',
173
+ help='Print only True/False, no explanation for True\'s')
174
+
175
+ # Get version information:
176
+ parser.add_argument(
177
+ '--version', '-v', action='store_true', default=False,
178
+ help="Print version of the script and exit")
179
+
180
+
181
+ parsed_args = parser.parse_args()
182
+ tsv_files_specified = \
183
+ getattr(parsed_args, 'tsv_InFile') is not None \
184
+ and len(parsed_args.tsv_InFile) > 0 \
185
+ and getattr(parsed_args, 'tsv_OutFile') is not None \
186
+ and len(parsed_args.tsv_OutFile) > 0
187
+
188
+ contrastive_options = \
189
+ getattr(parsed_args, 'tsv_SuspiciousWordFiles') is not None \
190
+ and getattr(parsed_args, 'suspiciousWord') is not None
191
+
192
+ main(parsed_args)