Datasets:
File size: 7,113 Bytes
36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 94862e5 e05028c 36c1469 48c5e61 36c1469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
annotations_creators:
- machine-generated
task_categories:
- automatic-speech-recognition
- text-to-speech
language:
- en
- bg
- hr
- cs
- da
- nl
- et
- fi
- fr
- de
- el
- hu
- ga
- it
- lv
- lt
- mt
- pl
- pt
- ro
- sk
- sl
- es
- sv
language_creators:
- found
modality:
- text
- audio
multilinguality:
- multilingual
pretty_name: MOSEL
license: cc-by-4.0
tags:
- speech
- speech-to-text
- open-source
- whisper
configs:
- config_name: bg
data_files:
- split: train_voxpopuli
path: bg/voxpopuli*
- config_name: cs
data_files:
- split: train_voxpopuli
path: cs/voxpopuli*
- config_name: da
data_files:
- split: train_voxpopuli
path: da/voxpopuli*
- config_name: de
data_files:
- split: train_voxpopuli
path: de/voxpopuli*
- config_name: el
data_files:
- split: train_voxpopuli
path: el/voxpopuli*
- config_name: en
data_files:
- split: train_voxpopuli
path: en/voxpopuli*
- split: train_librilight
path: en/librilight*
- config_name: es
data_files:
- split: train_voxpopuli
path: es/voxpopuli*
- config_name: et
data_files:
- split: train_voxpopuli
path: et/voxpopuli*
- config_name: fi
data_files:
- split: train_voxpopuli
path: fi/voxpopuli*
- config_name: fr
data_files:
- split: train_voxpopuli
path: fr/voxpopuli*
- config_name: hr
data_files:
- split: train_voxpopuli
path: hr/voxpopuli*
- config_name: hu
data_files:
- split: train_voxpopuli
path: hu/voxpopuli*
- config_name: it
data_files:
- split: train_voxpopuli
path: it/voxpopuli*
- config_name: lt
data_files:
- split: train_voxpopuli
path: lt/voxpopuli*
- config_name: lv
data_files:
- split: train_voxpopuli
path: lv/voxpopuli*
- config_name: mt
data_files:
- split: train_voxpopuli
path: mt/voxpopuli*
- config_name: nl
data_files:
- split: train_voxpopuli
path: nl/voxpopuli*
- config_name: pl
data_files:
- split: train_voxpopuli
path: pl/voxpopuli*
- config_name: pt
data_files:
- split: train_voxpopuli
path: pt/voxpopuli*
- config_name: ro
data_files:
- split: train_voxpopuli
path: ro/voxpopuli*
- config_name: sk
data_files:
- split: train_voxpopuli
path: sk/voxpopuli*
- config_name: sl
data_files:
- split: train_voxpopuli
path: sl/voxpopuli*
- config_name: sv
data_files:
- split: train_voxpopuli
path: sv/voxpopuli*
---
<img src="./mosel-logo-transparent.png" align="center" width="100%">
### Dataset Description, Collection, and Source
The MOSEL corpus is a multilingual dataset collection including up to 950K hours of open-source speech recordings covering the 24 official languages of the European Union. We collect data by surveying labeled and unlabeled speech corpora under open-source compliant licenses.
In particular, MOSEL includes the automatic transcripts of 441k hours of unlabeled speech from VoxPopuli and LibriLight. The data is transcribed using [Whisper large v3](https://huggingface.co/openai/whisper-large-v3).
Whisper is released under the OS Apache 2.0 License which allows releasing the generated content under any license. Since LibriLight, differently from VoxPopuli, contains segments longer than Whisper's maximum duration limit of 30sec, we split them into chunks of up to 30sec.
- **Curated by:** Marco Gaido, Sara Papi, Luisa Bentivogli, Alessio Brutti, Mauro Cettolo, Roberto Gretter, Marco Matassoni, Mohamed Nabih, and Matteo Negri
- **Funded by:** FAIR, Meetween, and CINECA
- **Shared by:** Fondazione Bruno Kessler
### License
- CC-BY-4.0
### Dataset Sources
- **Collection Repository:** [MOSEL](https://github.com/hlt-mt/mosel)
- **Paper:** [MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages](http://arxiv.org/abs/2410.01036)
## Dataset Structure
### Data Config
The dataset is split into folders corresponding to the languages using the [2-letters ISO codes](https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes), one for each language. Within each folder, a split for each psuedo-labeled dataset is provided.
### Data Field
`id`: alphanumeric identifier for the segment
`language`: extended language (e.g., "english")
`text`: the content of the psuedo label
`hall_repeated_ngrams`: True/False - indicates the repetition of an *n*-gram in `text` for a minimum number of times; for *n* in 1 to 2, the threshold is 4, for *n* in 3 to 5, it is 3
`hall_long_word`: True/False - indicates the presence of a word of at least 40 characters in `text`
`hall_frequent_single_word`: True/False - indicates that `text` consists of only one word which is the most frequent inside the whole text
## Dataset Statistics (in hours)
| Language (LangID) | Labeled | Unlabeled | Total |
|--------|--------|--------|-------|
| Bulgarian (bg) | 111 | 17609 | 17720 |
| Croatian (hr) | 55 | 8106 | 8161 |
| Czech (cs) | 591 | 18705 | 19296 |
| Danish (da) | 20 | 13600 | 13620 |
| Dutch (nl) | 3395 | 19014 | 22409 |
| English (en) | 437239 | 84704 | 521943|
| Estonian (et) | 60 | 10604 | 10664 |
| Finnish (fi) | 64 | 14200 | 14264 |
| French (fr) | 26984 | 22896 | 49880 |
| German (de) | 9236 | 23228 | 32464 |
| Greek (el) | 35 | 17703 | 17738 |
| Hungarian (hu) | 189 | 17701 | 17890 |
| Irish (ga) | 17 | 0 | 17 |
| Italian (it) | 3756 | 21933 | 25689 |
| Latvian (lv) | 173 | 13100 | 13273 |
| Lithuanian (lt) | 36 | 14400 | 14436 |
| Maltese (mt) | 19 | 9100 | 9119 |
| Polish (pl) | 510 | 21207 | 21717 |
| Portuguese (pt) | 5492 | 17526 | 23018 |
| Romanian (ro) | 121 | 17906 | 18021 |
| Slovak (sk) | 61 | 12100 | 12161 |
| Slovenian (sl) | 32 | 11300 | 11332 |
| Spanish (es) | 17471 | 21526 | 38997 |
| Swedish (sv) | 58 | 16300 | 16358 |
| Total | 505725 | 444467 | 950192|
## Dataset Creation
To reproduce the dataset creation, please refer to the [MOSEL README in the fbk-llm](https://github.com/hlt-mt/fbk-llm) repository.
## Citation
Release 1.0:
```
@inproceedings{mosel,
title = {{MOSEL: 950,000 Hours of Speech Data for Open-Source Speech Foundation Model Training on EU Languages}},
author = {Marco Gaido and Sara Papi and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabihand Matteo Negri},
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, United States",
publisher = "Association for Computational Linguistics",
}
```
## Dataset Card Contact
[@spapi](https://huggingface.co/spapi) |