KG_RAG / division.py
Eleven's picture
Upload division.py
ece4c36 verified
raw
history blame
2.03 kB
import os
import json
from collections import defaultdict
from transformers import LlamaTokenizer
from tqdm import tqdm
input_json_file = '/Users/liyu/PycharmProjects/CoTKR/updated.json'
output_dir = '/Users/liyu/PycharmProjects/CoTKR/output'
os.makedirs(output_dir, exist_ok=True)
model_path = '/Users/liyu/PycharmProjects/CoTKR/Llama-2-7b-hf'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
with open(input_json_file, 'r') as f:
triples = json.load(f)
grouped_entity_triples = defaultdict(list)
for triple in triples:
subj, relation, obj = triple
grouped_entity_triples[subj].append(f"{relation}: {obj}")
# 根据Tokenizer的长度限制创建段落
def create_paragraphs(subj, relations, tokenizer, max_tokens=512):
paragraphs = []
current_chunk = []
current_tokens = 0
for relation in relations:
tokens_in_relation = len(tokenizer.encode(relation, add_special_tokens=False))
if current_tokens + tokens_in_relation + 1 > max_tokens: # +1考虑分隔符或空格
paragraphs.append({
"title": f"{subj}",
"contents": ", ".join(current_chunk).strip()
})
current_chunk = [relation]
current_tokens = tokens_in_relation
else:
current_chunk.append(relation)
current_tokens += tokens_in_relation + 1 # +1考虑分隔符或空格
if current_chunk:
paragraphs.append({
"title": f"{subj}",
"contents": ", ".join(current_chunk).strip()
})
return paragraphs
all_paragraphs = []
for subj, relations in tqdm(grouped_entity_triples.items(), desc="Processing subjects", unit="subject"):
paragraphs = create_paragraphs(subj, relations, tokenizer)
all_paragraphs.extend(paragraphs)
output_file = os.path.join(output_dir, 'new_triple_processed.json')
with open(output_file, 'w') as out_f:
json.dump(all_paragraphs, out_f, ensure_ascii=False, indent=4)
# print(f"Processed paragraphs saved to {output_file}")