Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 9,079 Bytes
43edbf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e22f7a
 
 
43edbf4
 
 
5e22f7a
 
43edbf4
5e22f7a
 
 
 
 
 
 
 
 
 
43edbf4
 
 
 
 
 
5e22f7a
43edbf4
5e22f7a
43edbf4
 
5e22f7a
43edbf4
 
 
 
5e22f7a
43edbf4
 
 
 
 
 
 
 
 
 
5e22f7a
43edbf4
 
 
 
 
 
 
 
5e22f7a
43edbf4
 
 
 
 
 
 
 
5e22f7a
43edbf4
 
5e22f7a
43edbf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CoQA dataset.

This `CoQA` adds the "additional_answers" feature that's missing in the original
datasets version:
https://github.com/huggingface/datasets/blob/master/datasets/coqa/coqa.py
"""


import json

import datasets


_CITATION = """\
@misc{reddy2018coqa,
    title={CoQA: A Conversational Question Answering Challenge},
    author={Siva Reddy and Danqi Chen and Christopher D. Manning},
    year={2018},
    eprint={1808.07042},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
CoQA is a large-scale dataset for building Conversational Question Answering
systems. The goal of the CoQA challenge is to measure the ability of machines to
understand a text passage and answer a series of interconnected questions that
appear in a conversation.
"""

_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URLS = {
    "train": "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json",
    "validation": "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json",
}

# `additional_answers` are not available in the train set so we fill them with
# empty dicts of the same form.
_EMPTY_ADDITIONAL_ANSWER = {
    "0": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
            "turn_id": -1,
        }
    ],
    "1": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
            "turn_id": -1,
        }
    ],
    "2": [
        {
            "span_start": -1,
            "span_end": -1,
            "span_text": "",
            "input_text": "",
            "turn_id": -1,
        }
    ],
}


class Coqa(datasets.GeneratorBasedBuilder):
    """CoQA is a large-scale dataset for building Conversational Question Answering systems."""

    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="coqa", version=VERSION, description="The CoQA dataset."
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "source": datasets.Value("string"),
                "story": datasets.Value("string"),
                "questions": datasets.features.Sequence(
                    {
                        "input_text": datasets.Value("string"),
                        "turn_id": datasets.Value("int32"),
                    }
                ),
                "answers": datasets.features.Sequence(
                    {
                        "span_start": datasets.Value("int32"),
                        "span_end": datasets.Value("int32"),
                        "span_text": datasets.Value("string"),
                        "input_text": datasets.Value("string"),
                        "turn_id": datasets.Value("int32"),
                    }
                ),
                "additional_answers": {
                    "0": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                    "1": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                    "2": datasets.features.Sequence(
                        {
                            "span_start": datasets.Value("int32"),
                            "span_end": datasets.Value("int32"),
                            "span_text": datasets.Value("string"),
                            "input_text": datasets.Value("string"),
                            "turn_id": datasets.Value("int32"),
                        }
                    ),
                },
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = {"train": _URLS["train"], "validation": _URLS["validation"]}
        data_dirs = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dirs["train"],
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dirs["validation"],
                    "split": datasets.Split.VALIDATION,
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            data = json.load(f)
            for row in data["data"]:
                id = row["id"]
                source = row["source"]
                story = row["story"]
                questions = [
                    {"input_text": q["input_text"], "turn_id": q["turn_id"]}
                    for q in row["questions"]
                ]
                answers = [
                    {
                        "span_start": a["span_start"],
                        "span_end": a["span_end"],
                        "span_text": a["span_text"],
                        "input_text": a["input_text"],
                        "turn_id": a["turn_id"],
                    }
                    for a in row["answers"]
                ]
                if split == datasets.Split.TRAIN:
                    additional_answers = _EMPTY_ADDITIONAL_ANSWER
                else:
                    additional_answers = {
                        "0": [
                            {
                                "span_start": a0["span_start"],
                                "span_end": a0["span_end"],
                                "span_text": a0["span_text"],
                                "input_text": a0["input_text"],
                                "turn_id": a0["turn_id"],
                            }
                            for a0 in row["additional_answers"]["0"]
                        ],
                        "1": [
                            {
                                "span_start": a1["span_start"],
                                "span_end": a1["span_end"],
                                "span_text": a1["span_text"],
                                "input_text": a1["input_text"],
                                "turn_id": a1["turn_id"],
                            }
                            for a1 in row["additional_answers"]["1"]
                        ],
                        "2": [
                            {
                                "span_start": a2["span_start"],
                                "span_end": a2["span_end"],
                                "span_text": a2["span_text"],
                                "input_text": a2["input_text"],
                                "turn_id": a2["turn_id"],
                            }
                            for a2 in row["additional_answers"]["2"]
                        ],
                    }
                yield row["id"], {
                    "id": id,
                    "story": story,
                    "source": source,
                    "questions": questions,
                    "answers": answers,
                    "additional_answers": additional_answers,
                }