Datasets:
File size: 3,545 Bytes
6e14fe5 29ec917 6e14fe5 eab9784 6e14fe5 eab9784 09b176d eab9784 6e14fe5 29ec917 eab9784 4ee5d65 eab9784 4ee5d65 eab9784 4ee5d65 eab9784 4ee5d65 eab9784 4ee5d65 eab9784 4ee5d65 eab9784 6e14fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: apache-2.0
task_categories:
- feature-extraction
language:
- en
- ar
configs:
- config_name: default
data_files:
- split: train
path: table_extract.csv
tags:
- finance
---
# Table Extract Dataset
This dataset is designed to evaluate the ability of large language models (LLMs) to extract tables from text. It provides a collection of text snippets containing tables and their corresponding structured representations in JSON format.
## Source
The dataset is based on the [Table Fact Dataset](https://github.com/wenhuchen/Table-Fact-Checking/tree/master?tab=readme-ov-file), also known as TabFact, which contains 16,573 tables extracted from Wikipedia.
## Schema:
Each data point in the dataset consists of two elements:
* context: A string containing the text snippet with the embedded table.
* answer: A JSON object representing the extracted table structure.
The JSON object follows this format:
{
"column_1": { "row_id": "val1", "row_id": "val2", ... },
"column_2": { "row_id": "val1", "row_id": "val2", ... },
...
}
Each key in the JSON object represents a column header, and the corresponding value is another object containing key-value pairs for each row in that column.
## Examples:
### Example 1:
#### Context:
![example1](example1.png)
#### Answer:
```json
{
"date": {
"0": "1st",
"1": "3rd",
"2": "4th",
"3": "11th",
"4": "17th",
"5": "24th",
"6": "25th"
},
"opponent": {
"0": "bracknell bees",
"1": "slough jets",
"2": "slough jets",
"3": "wightlink raiders",
"4": "romford raiders",
"5": "swindon wildcats",
"6": "swindon wildcats"
},
"venue": {
"0": "home",
"1": "away",
"2": "home",
"3": "home",
"4": "home",
"5": "away",
"6": "home"
},
"result": {
"0": "won 4 - 1",
"1": "won 7 - 3",
"2": "lost 5 - 3",
"3": "won 7 - 2",
"4": "lost 3 - 4",
"5": "lost 2 - 4",
"6": "won 8 - 2"
},
"attendance": {
"0": 1753,
"1": 751,
"2": 1421,
"3": 1552,
"4": 1535,
"5": 902,
"6": 2124
},
"competition": {
"0": "league",
"1": "league",
"2": "league",
"3": "league",
"4": "league",
"5": "league",
"6": "league"
},
"man of the match": {
"0": "martin bouz",
"1": "joe watkins",
"2": "nick cross",
"3": "neil liddiard",
"4": "stuart potts",
"5": "lukas smital",
"6": "vaclav zavoral"
}
}
```
### Example 2:
#### Context:
![example2](example2.png)
#### Answer:
```json
{
"country": {
"exonym": {
"0": "iceland",
"1": "indonesia",
"2": "iran",
"3": "iraq",
"4": "ireland",
"5": "isle of man"
},
"endonym": {
"0": "ísland",
"1": "indonesia",
"2": "īrān ایران",
"3": "al - 'iraq العراق îraq",
"4": "éire ireland",
"5": "isle of man ellan vannin"
}
},
"capital": {
"exonym": {
"0": "reykjavík",
"1": "jakarta",
"2": "tehran",
"3": "baghdad",
"4": "dublin",
"5": "douglas"
},
"endonym": {
"0": "reykjavík",
"1": "jakarta",
"2": "tehrān تهران",
"3": "baghdad بغداد bexda",
"4": "baile átha cliath dublin",
"5": "douglas doolish"
}
},
"official or native language(s) (alphabet/script)": {
"0": "icelandic",
"1": "bahasa indonesia",
"2": "persian ( arabic script )",
"3": "arabic ( arabic script ) kurdish",
"4": "irish english",
"5": "english manx"
}
}
``` |