|
|
|
|
|
""" |
|
Created on Tue Apr 25 13:21:54 2023 |
|
|
|
@author: lin.kinwahedward |
|
""" |
|
|
|
|
|
import datasets |
|
import csv |
|
|
|
"""The Audio, Speech, and Vision Processing Lab - Emotional Sound Database (ASVP - ESD)""" |
|
|
|
_CITATION = """\ |
|
@article{poria2018meld, |
|
title={Meld: A multimodal multi-party dataset for emotion recognition in conversations}, |
|
author={Poria, Soujanya and Hazarika, Devamanyu and Majumder, Navonil and Naik, Gautam and Cambria, Erik and Mihalcea, Rada}, |
|
journal={arXiv preprint arXiv:1810.02508}, |
|
year={2018} |
|
} |
|
@article{chen2018emotionlines, |
|
title={Emotionlines: An emotion corpus of multi-party conversations}, |
|
author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others}, |
|
journal={arXiv preprint arXiv:1802.08379}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Multimodal EmotionLines Dataset (MELD) has been created by enhancing and extending EmotionLines dataset. |
|
MELD contains the same dialogue instances available in EmotionLines, but it also encompasses audio and |
|
visual modality along with text. MELD has more than 1400 dialogues and 13000 utterances from Friends TV series. |
|
Multiple speakers participated in the dialogues. Each utterance in a dialogue has been labeled by any of these |
|
seven emotions -- Anger, Disgust, Sadness, Joy, Neutral, Surprise and Fear. MELD also has sentiment (positive, |
|
negative and neutral) annotation for each utterance. |
|
|
|
This dataset is slightly modified, so that it concentrates on Emotion recognition in audio input only. |
|
""" |
|
|
|
_HOMEPAGE = "https://affective-meld.github.io/" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
|
|
_DATA_URL = "https://drive.google.com/uc?export=download&id=1J8wBcuXD-E98k3Ls3oE59xT7Qd6m1qjY" |
|
|
|
|
|
|
|
class DS_Config(datasets.BuilderConfig): |
|
|
|
def __init__(self, name, description, homepage, data_url): |
|
|
|
super(DS_Config, self).__init__( |
|
name = self.name, |
|
version = datasets.Version("1.0.0"), |
|
description = self.description, |
|
) |
|
self.name = name |
|
self.description = description |
|
self.homepage = homepage |
|
self.data_url = data_url |
|
|
|
|
|
class MELD_Audio_3Labels(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [DS_Config( |
|
name = "MELD_Audio_3Labels", |
|
description = _DESCRIPTION, |
|
homepage = _HOMEPAGE, |
|
data_url = _DATA_URL |
|
)] |
|
|
|
''' |
|
Define the "column header" (feature) of a datum. |
|
2 Features: |
|
1) audio samples |
|
2) emotion label |
|
''' |
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate = 16000), |
|
"label": datasets.ClassLabel( |
|
names = [ |
|
"neutral", |
|
"joy", |
|
"anger" |
|
]) |
|
} |
|
) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description = _DESCRIPTION, |
|
features = features, |
|
homepage = _HOMEPAGE, |
|
citation = _CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
''' |
|
Split the dataset into datasets.Split.{"TRAIN", "VALIDATION", "TEST", "ALL"} |
|
|
|
The dataset can be further modified, please see below link for details. |
|
https://huggingface.co/docs/datasets/process |
|
''' |
|
|
|
|
|
dataset_path = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TRAIN, |
|
gen_kwargs = {"audio_path": dataset_path + "/MELD_Audio_3Labels/train/", |
|
"csv_path": dataset_path + "/MELD_Audio_3Labels/train.csv" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs = {"audio_path": dataset_path + "/MELD_Audio_3Labels/dev/", |
|
"csv_path": dataset_path + "/MELD_Audio_3Labels/dev.csv" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs = {"audio_path": dataset_path + "/MELD_Audio_3Labels/test/", |
|
"csv_path": dataset_path + "/MELD_Audio_3Labels/test.csv" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_path, csv_path): |
|
''' |
|
Get the audio file and set the corresponding labels |
|
|
|
Must execute till yield, otherwise, error will occur! |
|
''' |
|
key = 0 |
|
with open(csv_path, encoding = "utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file, delimiter = ",", skipinitialspace=True) |
|
next(csv_reader) |
|
for row in csv_reader: |
|
_, _, _, emotion, _, dialogue_id, utterance_id, _, _, _, _ = row |
|
filename = "dia" + dialogue_id + "_utt" + utterance_id + ".mp3" |
|
yield key, { |
|
|
|
"audio": audio_path + filename, |
|
"label": emotion, |
|
} |
|
key += 1 |
|
|
|
|