|
|
|
|
|
import argparse |
|
import collections |
|
import datetime |
|
import glob |
|
import json |
|
import os |
|
import os.path as osp |
|
import sys |
|
import uuid |
|
|
|
import imgviz |
|
import numpy as np |
|
|
|
import labelme |
|
|
|
try: |
|
import pycocotools.mask |
|
except ImportError: |
|
print("Please install pycocotools:\n\n pip install pycocotools\n") |
|
sys.exit(1) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
parser.add_argument("input_dir", help="input annotated directory") |
|
parser.add_argument("output_dir", help="output dataset directory") |
|
parser.add_argument("--labels", help="labels file", required=True) |
|
parser.add_argument( |
|
"--noviz", help="no visualization", action="store_true" |
|
) |
|
args = parser.parse_args() |
|
|
|
if osp.exists(args.output_dir): |
|
print("Output directory already exists:", args.output_dir) |
|
sys.exit(1) |
|
os.makedirs(args.output_dir) |
|
os.makedirs(osp.join(args.output_dir, "JPEGImages")) |
|
if not args.noviz: |
|
os.makedirs(osp.join(args.output_dir, "Visualization")) |
|
print("Creating dataset:", args.output_dir) |
|
|
|
now = datetime.datetime.now() |
|
|
|
data = dict( |
|
info=dict( |
|
description=None, |
|
url=None, |
|
version=None, |
|
year=now.year, |
|
contributor=None, |
|
date_created=now.strftime("%Y-%m-%d %H:%M:%S.%f"), |
|
), |
|
licenses=[dict(url=None, id=0, name=None,)], |
|
images=[ |
|
|
|
], |
|
type="instances", |
|
annotations=[ |
|
|
|
], |
|
categories=[ |
|
|
|
], |
|
) |
|
|
|
class_name_to_id = {} |
|
for i, line in enumerate(open(args.labels).readlines()): |
|
class_id = i - 1 |
|
class_name = line.strip() |
|
if class_id == -1: |
|
assert class_name == "__ignore__" |
|
continue |
|
class_name_to_id[class_name] = class_id |
|
data["categories"].append( |
|
dict(supercategory=None, id=class_id, name=class_name,) |
|
) |
|
|
|
out_ann_file = osp.join(args.output_dir, "annotations.json") |
|
label_files = glob.glob(osp.join(args.input_dir, "*.json")) |
|
for image_id, filename in enumerate(label_files): |
|
print("Generating dataset from:", filename) |
|
|
|
label_file = labelme.LabelFile(filename=filename) |
|
|
|
base = osp.splitext(osp.basename(filename))[0] |
|
out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg") |
|
|
|
img = labelme.utils.img_data_to_arr(label_file.imageData) |
|
imgviz.io.imsave(out_img_file, img) |
|
data["images"].append( |
|
dict( |
|
license=0, |
|
url=None, |
|
file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)), |
|
height=img.shape[0], |
|
width=img.shape[1], |
|
date_captured=None, |
|
id=image_id, |
|
) |
|
) |
|
|
|
masks = {} |
|
segmentations = collections.defaultdict(list) |
|
for shape in label_file.shapes: |
|
points = shape["points"] |
|
label = shape["label"] |
|
group_id = shape.get("group_id") |
|
shape_type = shape.get("shape_type", "polygon") |
|
mask = labelme.utils.shape_to_mask( |
|
img.shape[:2], points, shape_type |
|
) |
|
|
|
if group_id is None: |
|
group_id = uuid.uuid1() |
|
|
|
instance = (label, group_id) |
|
|
|
if instance in masks: |
|
masks[instance] = masks[instance] | mask |
|
else: |
|
masks[instance] = mask |
|
|
|
if shape_type == "rectangle": |
|
(x1, y1), (x2, y2) = points |
|
x1, x2 = sorted([x1, x2]) |
|
y1, y2 = sorted([y1, y2]) |
|
points = [x1, y1, x2, y1, x2, y2, x1, y2] |
|
else: |
|
points = np.asarray(points).flatten().tolist() |
|
|
|
segmentations[instance].append(points) |
|
segmentations = dict(segmentations) |
|
|
|
for instance, mask in masks.items(): |
|
cls_name, group_id = instance |
|
if cls_name not in class_name_to_id: |
|
continue |
|
cls_id = class_name_to_id[cls_name] |
|
|
|
mask = np.asfortranarray(mask.astype(np.uint8)) |
|
mask = pycocotools.mask.encode(mask) |
|
area = float(pycocotools.mask.area(mask)) |
|
bbox = pycocotools.mask.toBbox(mask).flatten().tolist() |
|
|
|
data["annotations"].append( |
|
dict( |
|
id=len(data["annotations"]), |
|
image_id=image_id, |
|
category_id=cls_id, |
|
segmentation=segmentations[instance], |
|
area=area, |
|
bbox=bbox, |
|
iscrowd=0, |
|
) |
|
) |
|
|
|
if not args.noviz: |
|
labels, captions, masks = zip( |
|
*[ |
|
(class_name_to_id[cnm], cnm, msk) |
|
for (cnm, gid), msk in masks.items() |
|
if cnm in class_name_to_id |
|
] |
|
) |
|
viz = imgviz.instances2rgb( |
|
image=img, |
|
labels=labels, |
|
masks=masks, |
|
captions=captions, |
|
font_size=15, |
|
line_width=2, |
|
) |
|
out_viz_file = osp.join( |
|
args.output_dir, "Visualization", base + ".jpg" |
|
) |
|
imgviz.io.imsave(out_viz_file, viz) |
|
|
|
with open(out_ann_file, "w") as f: |
|
json.dump(data, f) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|