Datasets:

Languages:
English
ArXiv:
License:
zwq2018 commited on
Commit
d515a29
·
verified ·
1 Parent(s): e1333d2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -27
README.md CHANGED
@@ -18,43 +18,31 @@ size_categories:
18
 
19
  [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2306.07209)
20
  [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multi-modal-self-instruct.github.io)
 
21
 
22
 
23
 
24
 
25
  ## Overview
26
 
27
- This repository is the official code for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/pdf/2306.07209). It contains the implementation of pre-training LLaVA on our multimodal textbook (interleaved image-text corpora). Our dataset can be found in [Huggingface Dataset](https://huggingface.co/datasets/zwq2018/Multi-modal-Self-instruct).
 
 
 
 
 
28
 
29
- - Multimodal Textbook is a high-quality **pre-training corpus** that encompasses a wealth of foundational knowledge, which is presented in an **image-text interleaved format**.
30
- - This textbook is constructed from **2.5 years of instructional videos**, amounting to 22,000 class hours, covering six fundamental subjects, including mathematics, physics, and others.
31
- - In multimodal textbooks, text is transcribed from audio, and images are extracted from video's kekframe. They are closely aligned, and provide more coherent context.
32
 
33
 
34
 
35
  <img src="./src/page_fig.png" alt="Image" style="width: 900px;">
36
 
37
- ## 🛠️ Installation
38
-
39
- ```
40
- cd multimodal_textbook
41
- # create and activate an enviroment
42
- conda create -n interleaved_textbook python=3.10 -y
43
- conda activate interleaved_textbook
44
-
45
- # install package
46
- pip install --upgrade pip
47
- pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
48
- pip install -e .
49
- pip install open_flamingo --no-deps
50
- pip install flash-attn --no-build-isolation
51
- ```
52
 
53
 
54
 
55
  ## Visualize Our Textbook
56
 
57
- Due to the large size of the dataset (our complete textbook dataset is 13GB for JSON files and 0.7TB for images), we sampled 100 samples and the corresponding images and stored them in the `example_data` folder: `./example_data/textbook_sample_100.json`.
58
 
59
  Each sample is stored in dict format as follows:
60
  ```
@@ -87,18 +75,43 @@ In the notebook, you can see keyframes interleaving with text.
87
 
88
 
89
 
90
- ## Data Preparation
91
- - Training Corpus: `multimodal_textbook.json` (11GB) + images folder (700GB)
92
- - Benchmarks: OKVQA, TextVQA, scienceQ, Mathvista, mathvision, mathverse in `./playground/data/eval/`
93
-
94
- We provide a ``json file`` and corresponding images folder for textbook with 100 samples in the ``example_data`` folder, which is convenient for debugging. The full version of our dataset can be downloaded on our [Huggingface Dataset](https://huggingface.co/datasets/zwq2018/Multi-modal-Self-instruct).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
 
97
- ### Naming Format
98
 
99
  For each keyframe, its naming format rule is:
100
  `video id@start-time_end-time#keyframe-number.jpg`.
101
  For example, the path and file name of a keyframe is
102
  `-1uixJ1V-As/[email protected]_55.0#2.jpg`.
103
 
104
- This means that this image is extracted from the video (`-1uixJ1V-As`), more specifically, it is the second keyframe (#2) in the video clip from 10.0 to 55.0 seconds. You can access the original video through [https://www.youtube.com/watch?v=-1uixJ1V-As](https://www.youtube.com/watch?v=-1uixJ1V-As).
 
 
 
 
 
 
 
 
18
 
19
  [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2306.07209)
20
  [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multi-modal-self-instruct.github.io)
21
+ [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master)
22
 
23
 
24
 
25
 
26
  ## Overview
27
 
28
+ This dataset is for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/pdf/2306.07209).
29
+ - It contains **pre-training corpus using interleaved image-text format**. Specifically, our multimodal-textbook includes **6.5M keyframes** extracted from instructional videos, interleaving with 0.8B **ASR texts**.
30
+ - All the images and text are extracted from online instructional videos (22,000 class hours), covering multiple fundamental subjects, e.g., mathematics, physics, and chemistry.
31
+ - Our textbook corpus providing a more coherent context and richer knowledge for image-text aligning.
32
+ - Our code can be found in [Multimodal-Textbook](https://huggingface.co/datasets/zwq2018/Multi-modal-Self-instruct).
33
+
34
 
 
 
 
35
 
36
 
37
 
38
  <img src="./src/page_fig.png" alt="Image" style="width: 900px;">
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
 
42
 
43
  ## Visualize Our Textbook
44
 
45
+ Due to the large size of the dataset (our complete textbook dataset is 11GB for JSON files and 0.7TB for images), we sampled 100 samples and the corresponding images and stored them in the `example_data` folder: `./example_data/textbook_sample_100.json`.
46
 
47
  Each sample is stored in dict format as follows:
48
  ```
 
75
 
76
 
77
 
78
+ ## Using Our Dataset
79
+ We provide the json file and corresponding images folder for textbook:
80
+ - json file: `multimodal_textbook.json` (610k samples ~ 11GB)
81
+ - image_folder: `dataset_images_interval_7.tar.gz` (6.5M image ~ 700GB)
82
+
83
+ Each sample has approximately 10.7 images and 1927 text tokens. After you download and unzip the folder, you need to replace the each image path in json file (`/mnt/workspace/zwq_data/interleaved_dataset/`) with your personal image folder path.
84
+
85
+ ```
86
+ "images": [
87
+ "/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/[email protected]_10.0#1.jpg",
88
+ null,
89
+ "/mnt/workspace/zwq_data/interleaved_dataset/dataset_images_interval_7/-1uixJ1V-As/[email protected]_55.0#6.jpg",
90
+ null,
91
+ ......
92
+ ],
93
+ "texts": [
94
+ null,
95
+ " Hi everyone, and welcome to another lesson in our Eureka Tips for computers series.",
96
+ null,
97
+ " I'm actually trying to use the number line to find the sum for each. So to start I'm going to use the paint tool to demonstrate. Let's use the number line for four plus five. We're going to start at four then we're going to count up five. One two three four five. That equals nine. Now let's do three plus six for the next one.",
98
+ ....
99
+ ],
100
+ ```
101
 
102
 
103
+ ### Naming Format for keyframe
104
 
105
  For each keyframe, its naming format rule is:
106
  `video id@start-time_end-time#keyframe-number.jpg`.
107
  For example, the path and file name of a keyframe is
108
  `-1uixJ1V-As/[email protected]_55.0#2.jpg`.
109
 
110
+ This means that this image is extracted from the video (`-1uixJ1V-As`), more specifically, it is the second keyframe (#2) in the video clip from 10.0 to 55.0 seconds. You can access the original video through [https://www.youtube.com/watch?v=-1uixJ1V-As](https://www.youtube.com/watch?v=-1uixJ1V-As).
111
+
112
+
113
+
114
+
115
+
116
+
117
+