Datasets:

Languages:
English
ArXiv:
License:
zwq2018 commited on
Commit
6ed1c82
·
verified ·
1 Parent(s): 37309d8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -5
README.md CHANGED
@@ -13,7 +13,7 @@ size_categories:
13
  - 1M<n<10M
14
  ---
15
 
16
- # Multimodal-Textbook
17
  <img src="./src/logo.png" alt="Image" style="width: 900px;">
18
 
19
  [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2306.07209) [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multi-modal-self-instruct.github.io) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master)
@@ -23,7 +23,8 @@ size_categories:
23
 
24
  ## Overview
25
 
26
- This dataset is for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/pdf/2306.07209).
 
27
  - It contains **pre-training corpus using interleaved image-text format**. Specifically, our multimodal-textbook includes **6.5M keyframes** extracted from instructional videos, interleaving with 0.8B **ASR texts**.
28
  - All the images and text are extracted from online instructional videos (22,000 class hours), covering multiple fundamental subjects, e.g., mathematics, physics, and chemistry.
29
  - Our textbook corpus providing a more coherent context and richer knowledge for image-text aligning.
@@ -71,12 +72,16 @@ show_interleaved_dataset.ipynb
71
  In the notebook, you can see keyframes interleaving with text.
72
 
73
 
 
 
74
 
75
 
76
  ## Using Our Dataset
 
77
  We provide the json file and corresponding images folder for textbook:
78
- - json file: `multimodal_textbook.json` (610k samples ~ 11GB)
79
- - image_folder: `dataset_images_interval_7.tar.gz` (6.5M image ~ 700GB)
 
80
 
81
  Each sample has approximately 10.7 images and 1927 text tokens. After you download and unzip the folder, you need to replace the each image path in json file (`/mnt/workspace/zwq_data/interleaved_dataset/`) with your personal image folder path.
82
 
@@ -98,6 +103,7 @@ Each sample has approximately 10.7 images and 1927 text tokens. After you downlo
98
  ```
99
 
100
 
 
101
  ### Naming Format for keyframe
102
 
103
  For each keyframe, its naming format rule is:
@@ -110,6 +116,73 @@ This means that this image is extracted from the video (`-1uixJ1V-As`), more spe
110
 
111
 
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
 
114
 
115
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - 1M<n<10M
14
  ---
15
 
16
+ # Multimodal-Textbook-6.5M
17
  <img src="./src/logo.png" alt="Image" style="width: 900px;">
18
 
19
  [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2306.07209) [![Project](https://img.shields.io/badge/Project-Website-blue.svg)](https://multi-modal-self-instruct.github.io) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/DAMO-NLP-SG/multimodal_textbook/tree/master)
 
23
 
24
  ## Overview
25
 
26
+ This dataset is for ["2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining"](https://arxiv.org/pdf/2306.07209), containing 6.5M images interleaving with 0.8B text from instructional videos.
27
+
28
  - It contains **pre-training corpus using interleaved image-text format**. Specifically, our multimodal-textbook includes **6.5M keyframes** extracted from instructional videos, interleaving with 0.8B **ASR texts**.
29
  - All the images and text are extracted from online instructional videos (22,000 class hours), covering multiple fundamental subjects, e.g., mathematics, physics, and chemistry.
30
  - Our textbook corpus providing a more coherent context and richer knowledge for image-text aligning.
 
72
  In the notebook, you can see keyframes interleaving with text.
73
 
74
 
75
+ ## Dataset Statistics
76
+
77
 
78
 
79
  ## Using Our Dataset
80
+ ### Dataset
81
  We provide the json file and corresponding images folder for textbook:
82
+ - Dataset json-file: `./multimodal_textbook.json` (610k samples ~ 11GB)
83
+ - Dataset image_folder: `./dataset_images_interval_7.tar.gz` (6.5M image ~ 700GB)
84
+ - videometa_data: `video_meta_data/video_meta_data1.json` and `video_meta_data/video_meta_data2.json` represent the meta information of crawled videos, including video vid, title, description, duration, language, and searched knowledge points. `multimodal_textbook_meta_data.json.zip` records the textbook in its original format, not in the OBELICS format.
85
 
86
  Each sample has approximately 10.7 images and 1927 text tokens. After you download and unzip the folder, you need to replace the each image path in json file (`/mnt/workspace/zwq_data/interleaved_dataset/`) with your personal image folder path.
87
 
 
103
  ```
104
 
105
 
106
+
107
  ### Naming Format for keyframe
108
 
109
  For each keyframe, its naming format rule is:
 
116
 
117
 
118
 
119
+ ### MetaData of Instructional Video
120
+ The format of the `video_meta_data/video_meta_data1.json`:
121
+ ```
122
+ {
123
+ "file_path": xxx,
124
+ "file_size (MB)": 85.54160022735596,
125
+ "file_name": "-r7-s1z3lFY.mp4",
126
+ "video_duration": 0,
127
+ "unique": true,
128
+ "asr_path": xxxx,
129
+ "asr_len": 2990,
130
+ "caption_path": xxx,
131
+ "caption_len": 0,
132
+ "search_keyword": "1.3B parameter size models comparison",
133
+ "title": "DeepSeek Coder LLM | A Revolutionary Coder Model",
134
+ "desc": "In this video, we are going to test out Deepseek Coder, a coding LLM.....,
135
+ "llm_response": " The video appears to be a detailed and technical analysis of DeepSeek Coder LLM..... ###Score: 10###",
136
+ "language": "en",
137
+ "asr is repetive": false,
138
+ "deepseek_score": 10,
139
+ "llama_score": 2,
140
+ "deepseek_score long context": 10
141
+ },
142
+ ```
143
 
144
+ In addition, the `multimodal_textbook_meta_data.json.zip` records the textbook in its original format as follows.It is stored with "video clip" as a dict. Each sample includes multiple video clips:
145
 
146
+ ```
147
+ {'token_num': 1657,
148
+ 'conversations': [
149
+ {
150
+ 'vid': video id-1,
151
+ 'clip_path': the path of video clip,
152
+ 'asr': ASR transcribed from audio,
153
+ 'extracted_frames': Extract keyframe sequences according to time intervals.,
154
+ 'image_tokens': xxx,
155
+ 'token_num': xxx,
156
+ 'refined_asr': Refine the original ASR,
157
+ 'ocr_internvl_8b': OCR obtained using internvl_8b,
158
+ 'ocr_image': the image does OCR come from,
159
+ 'ocr_internvl_8b_deduplicates': xxx,
160
+ 'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
161
+ 'asr_token_num': xxx,
162
+ 'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
163
+ },
164
+ {
165
+ 'vid': 'End of a Video',
166
+ 'clip_path': xxxx,
167
+ 'image_tokens': 0,
168
+ 'token_num': 0
169
+ },
170
+ {
171
+ 'vid': video id-2,
172
+ 'clip_path': the path of video clip,
173
+ 'asr': ASR transcribed from audio,
174
+ 'extracted_frames': Extract keyframe sequences according to time intervals.,
175
+ 'image_tokens': xxx,
176
+ 'token_num': xxx,
177
+ 'refined_asr': Refine the original ASR,
178
+ 'ocr_internvl_8b': OCR obtained using internvl_8b,
179
+ 'ocr_image': the image does OCR come from,
180
+ 'ocr_internvl_8b_deduplicates': xxx,
181
+ 'keyframe_ssim': Keyframe sequence extracted according to SSIM algorithm.,
182
+ 'asr_token_num': xxx,
183
+ 'ocr_qwen2_vl_72b': 'OCR obtained using qwen2_vl_72b'
184
+ },
185
+ ....
186
+ ]
187
+ }
188
+ ```