Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
100
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.777, V2: -0.716, V3: 2.081, V4: -2.013, V5: -0.995, V6: 0.443, V7: -0.598, V8: 0.890, V9: -0.700, V10: -0.874, V11: 0.027, V12: 0.257, V13: -0.192, V14: -0.096, V15: -0.651, V16: -0.138, V17: -1.012, V18: 2.618, V19: -2.162, V20: -0.274, V21: 0.086, V22: 0.097, V23: 0.013, V24: 0.693, V25: 0.522, V26: -0.389, V27: -0.085, V28: -0.065, Amount: 142.190.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.777, V2: -0.716, V3: 2.081, V4: -2.013, V5: -0.995, V6: 0.443, V7: -0.598, V8: 0.890, V9: -0.700, V10: -0.874, V11: 0.027, V12: 0.257, V13: -0.192, V14: -0.096, V15: -0.651, V16: -0.138, V17: -1.012, V18: 2.618, V19: -2.162, V20: -0.274, V21: 0.086, V22: 0.097, V23: 0.013, V24: 0.693, V25: 0.522, V26: -0.389, V27: -0.085, V28: -0.065, Amount: 142.190.
101
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.016, V2: 0.211, V3: 1.856, V4: 2.610, V5: -0.994, V6: 0.209, V7: -0.742, V8: 0.241, V9: -0.182, V10: 0.568, V11: 0.126, V12: 0.362, V13: 0.559, V14: -0.241, V15: 1.266, V16: 0.840, V17: -0.486, V18: -0.209, V19: -1.989, V20: -0.115, V21: 0.309, V22: 0.912, V23: 0.052, V24: 0.619, V25: 0.115, V26: 0.105, V27: 0.063, V28: 0.047, Amount: 19.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.016, V2: 0.211, V3: 1.856, V4: 2.610, V5: -0.994, V6: 0.209, V7: -0.742, V8: 0.241, V9: -0.182, V10: 0.568, V11: 0.126, V12: 0.362, V13: 0.559, V14: -0.241, V15: 1.266, V16: 0.840, V17: -0.486, V18: -0.209, V19: -1.989, V20: -0.115, V21: 0.309, V22: 0.912, V23: 0.052, V24: 0.619, V25: 0.115, V26: 0.105, V27: 0.063, V28: 0.047, Amount: 19.360.
102
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.157, V2: 0.138, V3: 0.385, V4: 1.404, V5: -0.223, V6: -0.198, V7: 0.018, V8: 0.030, V9: 0.412, V10: -0.103, V11: -0.674, V12: 0.101, V13: -0.936, V14: 0.227, V15: -0.005, V16: -0.685, V17: 0.310, V18: -0.879, V19: -0.363, V20: -0.235, V21: -0.109, V22: -0.124, V23: -0.055, V24: 0.073, V25: 0.635, V26: -0.310, V27: 0.034, V28: 0.015, Amount: 11.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.157, V2: 0.138, V3: 0.385, V4: 1.404, V5: -0.223, V6: -0.198, V7: 0.018, V8: 0.030, V9: 0.412, V10: -0.103, V11: -0.674, V12: 0.101, V13: -0.936, V14: 0.227, V15: -0.005, V16: -0.685, V17: 0.310, V18: -0.879, V19: -0.363, V20: -0.235, V21: -0.109, V22: -0.124, V23: -0.055, V24: 0.073, V25: 0.635, V26: -0.310, V27: 0.034, V28: 0.015, Amount: 11.990.
103
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.234, V2: 0.325, V3: 0.215, V4: 0.721, V5: -0.338, V6: -1.343, V7: 0.404, V8: -0.382, V9: -0.254, V10: -0.050, V11: 0.122, V12: 0.747, V13: 0.811, V14: 0.273, V15: 0.678, V16: -0.132, V17: -0.216, V18: -0.692, V19: -0.245, V20: -0.040, V21: -0.018, V22: -0.011, V23: -0.042, V24: 0.771, V25: 0.549, V26: 0.343, V27: -0.049, V28: 0.013, Amount: 18.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.234, V2: 0.325, V3: 0.215, V4: 0.721, V5: -0.338, V6: -1.343, V7: 0.404, V8: -0.382, V9: -0.254, V10: -0.050, V11: 0.122, V12: 0.747, V13: 0.811, V14: 0.273, V15: 0.678, V16: -0.132, V17: -0.216, V18: -0.692, V19: -0.245, V20: -0.040, V21: -0.018, V22: -0.011, V23: -0.042, V24: 0.771, V25: 0.549, V26: 0.343, V27: -0.049, V28: 0.013, Amount: 18.490.
104
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.832, V2: -0.685, V3: -0.940, V4: 0.206, V5: 0.370, V6: 0.151, V7: 0.587, V8: -0.097, V9: -0.257, V10: -0.003, V11: -0.141, V12: 0.116, V13: -0.264, V14: 0.737, V15: 0.301, V16: 0.812, V17: -1.091, V18: 0.293, V19: 0.977, V20: 0.489, V21: -0.301, V22: -1.584, V23: -0.299, V24: -1.401, V25: 0.336, V26: 0.217, V27: -0.127, V28: 0.029, Amount: 280.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.832, V2: -0.685, V3: -0.940, V4: 0.206, V5: 0.370, V6: 0.151, V7: 0.587, V8: -0.097, V9: -0.257, V10: -0.003, V11: -0.141, V12: 0.116, V13: -0.264, V14: 0.737, V15: 0.301, V16: 0.812, V17: -1.091, V18: 0.293, V19: 0.977, V20: 0.489, V21: -0.301, V22: -1.584, V23: -0.299, V24: -1.401, V25: 0.336, V26: 0.217, V27: -0.127, V28: 0.029, Amount: 280.900.
105
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.724, V2: 1.171, V3: 1.275, V4: 0.611, V5: -0.556, V6: -0.919, V7: 1.273, V8: -0.295, V9: -0.375, V10: -0.064, V11: -0.020, V12: 0.046, V13: -0.120, V14: 0.180, V15: 0.711, V16: -0.181, V17: -0.256, V18: -0.183, V19: -0.457, V20: -0.070, V21: 0.084, V22: 0.383, V23: -0.086, V24: 0.926, V25: 0.242, V26: -0.403, V27: 0.090, V28: 0.046, Amount: 101.450.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.724, V2: 1.171, V3: 1.275, V4: 0.611, V5: -0.556, V6: -0.919, V7: 1.273, V8: -0.295, V9: -0.375, V10: -0.064, V11: -0.020, V12: 0.046, V13: -0.120, V14: 0.180, V15: 0.711, V16: -0.181, V17: -0.256, V18: -0.183, V19: -0.457, V20: -0.070, V21: 0.084, V22: 0.383, V23: -0.086, V24: 0.926, V25: 0.242, V26: -0.403, V27: 0.090, V28: 0.046, Amount: 101.450.
106
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.243, V2: 0.942, V3: -2.062, V4: -1.502, V5: 2.776, V6: 3.178, V7: 0.046, V8: 1.343, V9: -0.334, V10: -1.037, V11: -0.010, V12: 0.001, V13: -0.364, V14: -0.435, V15: 0.117, V16: 0.340, V17: 0.520, V18: -0.332, V19: -0.407, V20: -0.034, V21: -0.285, V22: -0.918, V23: 0.198, V24: 0.590, V25: -0.394, V26: 0.166, V27: 0.116, V28: 0.009, Amount: 15.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.243, V2: 0.942, V3: -2.062, V4: -1.502, V5: 2.776, V6: 3.178, V7: 0.046, V8: 1.343, V9: -0.334, V10: -1.037, V11: -0.010, V12: 0.001, V13: -0.364, V14: -0.435, V15: 0.117, V16: 0.340, V17: 0.520, V18: -0.332, V19: -0.407, V20: -0.034, V21: -0.285, V22: -0.918, V23: 0.198, V24: 0.590, V25: -0.394, V26: 0.166, V27: 0.116, V28: 0.009, Amount: 15.880.
107
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.310, V2: 0.771, V3: 0.679, V4: -1.070, V5: 1.414, V6: -0.380, V7: 1.316, V8: -0.450, V9: 1.163, V10: -1.106, V11: -0.866, V12: -2.866, V13: 1.707, V14: 1.323, V15: -1.277, V16: 0.206, V17: -0.265, V18: -0.266, V19: -0.373, V20: -0.087, V21: -0.463, V22: -0.944, V23: -0.200, V24: -1.130, V25: -0.171, V26: 0.087, V27: -0.149, V28: -0.106, Amount: 19.170.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.310, V2: 0.771, V3: 0.679, V4: -1.070, V5: 1.414, V6: -0.380, V7: 1.316, V8: -0.450, V9: 1.163, V10: -1.106, V11: -0.866, V12: -2.866, V13: 1.707, V14: 1.323, V15: -1.277, V16: 0.206, V17: -0.265, V18: -0.266, V19: -0.373, V20: -0.087, V21: -0.463, V22: -0.944, V23: -0.200, V24: -1.130, V25: -0.171, V26: 0.087, V27: -0.149, V28: -0.106, Amount: 19.170.
108
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.353, V2: 0.204, V3: -0.313, V4: 0.380, V5: 0.171, V6: -0.309, V7: -0.049, V8: -0.026, V9: 0.364, V10: -0.235, V11: -1.584, V12: -1.056, V13: -1.087, V14: -0.061, V15: 1.367, V16: 0.960, V17: -0.425, V18: 0.349, V19: 0.340, V20: -0.135, V21: -0.397, V22: -1.215, V23: -0.025, V24: -1.100, V25: 0.350, V26: 0.186, V27: -0.035, V28: 0.013, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.353, V2: 0.204, V3: -0.313, V4: 0.380, V5: 0.171, V6: -0.309, V7: -0.049, V8: -0.026, V9: 0.364, V10: -0.235, V11: -1.584, V12: -1.056, V13: -1.087, V14: -0.061, V15: 1.367, V16: 0.960, V17: -0.425, V18: 0.349, V19: 0.340, V20: -0.135, V21: -0.397, V22: -1.215, V23: -0.025, V24: -1.100, V25: 0.350, V26: 0.186, V27: -0.035, V28: 0.013, Amount: 1.980.
109
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.022, V2: -1.547, V3: -0.026, V4: -2.219, V5: -1.749, V6: -0.211, V7: -1.534, V8: 0.086, V9: 1.220, V10: -0.063, V11: 0.647, V12: 1.648, V13: 1.602, V14: -0.571, V15: 0.654, V16: -1.253, V17: -0.684, V18: 2.413, V19: -0.019, V20: -0.401, V21: -0.049, V22: 0.553, V23: 0.157, V24: -0.301, V25: -0.411, V26: -0.186, V27: 0.092, V28: -0.028, Amount: 50.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.022, V2: -1.547, V3: -0.026, V4: -2.219, V5: -1.749, V6: -0.211, V7: -1.534, V8: 0.086, V9: 1.220, V10: -0.063, V11: 0.647, V12: 1.648, V13: 1.602, V14: -0.571, V15: 0.654, V16: -1.253, V17: -0.684, V18: 2.413, V19: -0.019, V20: -0.401, V21: -0.049, V22: 0.553, V23: 0.157, V24: -0.301, V25: -0.411, V26: -0.186, V27: 0.092, V28: -0.028, Amount: 50.000.
110
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.101, V2: -1.610, V3: 0.165, V4: -1.414, V5: -1.296, V6: 0.227, V7: -0.969, V8: 0.158, V9: -2.067, V10: 1.483, V11: 1.565, V12: -0.423, V13: -0.362, V14: 0.172, V15: 0.492, V16: -0.756, V17: 0.869, V18: -0.344, V19: -0.724, V20: -0.123, V21: -0.020, V22: -0.018, V23: -0.049, V24: -0.322, V25: 0.149, V26: -0.172, V27: 0.022, V28: 0.028, Amount: 165.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.101, V2: -1.610, V3: 0.165, V4: -1.414, V5: -1.296, V6: 0.227, V7: -0.969, V8: 0.158, V9: -2.067, V10: 1.483, V11: 1.565, V12: -0.423, V13: -0.362, V14: 0.172, V15: 0.492, V16: -0.756, V17: 0.869, V18: -0.344, V19: -0.724, V20: -0.123, V21: -0.020, V22: -0.018, V23: -0.049, V24: -0.322, V25: 0.149, V26: -0.172, V27: 0.022, V28: 0.028, Amount: 165.000.
111
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.099, V2: -1.429, V3: 0.070, V4: -3.309, V5: 0.827, V6: 4.730, V7: 0.513, V8: 1.112, V9: -0.475, V10: -0.986, V11: -0.728, V12: -0.636, V13: -0.281, V14: -0.877, V15: -1.575, V16: 1.244, V17: -0.100, V18: -1.563, V19: -0.536, V20: 0.758, V21: 0.218, V22: -0.053, V23: 0.714, V24: 0.649, V25: 0.112, V26: -0.529, V27: 0.007, V28: 0.141, Amount: 369.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.099, V2: -1.429, V3: 0.070, V4: -3.309, V5: 0.827, V6: 4.730, V7: 0.513, V8: 1.112, V9: -0.475, V10: -0.986, V11: -0.728, V12: -0.636, V13: -0.281, V14: -0.877, V15: -1.575, V16: 1.244, V17: -0.100, V18: -1.563, V19: -0.536, V20: 0.758, V21: 0.218, V22: -0.053, V23: 0.714, V24: 0.649, V25: 0.112, V26: -0.529, V27: 0.007, V28: 0.141, Amount: 369.000.
112
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.047, V2: -0.797, V3: 0.893, V4: 0.074, V5: -1.060, V6: 0.551, V7: -0.931, V8: 0.480, V9: 1.316, V10: -0.281, V11: 0.432, V12: -0.011, V13: -2.425, V14: 0.132, V15: -0.463, V16: -0.004, V17: 0.190, V18: -0.187, V19: 0.519, V20: -0.135, V21: -0.172, V22: -0.466, V23: 0.039, V24: -0.296, V25: -0.022, V26: 0.978, V27: -0.047, V28: 0.001, Amount: 60.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.047, V2: -0.797, V3: 0.893, V4: 0.074, V5: -1.060, V6: 0.551, V7: -0.931, V8: 0.480, V9: 1.316, V10: -0.281, V11: 0.432, V12: -0.011, V13: -2.425, V14: 0.132, V15: -0.463, V16: -0.004, V17: 0.190, V18: -0.187, V19: 0.519, V20: -0.135, V21: -0.172, V22: -0.466, V23: 0.039, V24: -0.296, V25: -0.022, V26: 0.978, V27: -0.047, V28: 0.001, Amount: 60.000.
113
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.261, V2: 1.185, V3: -1.925, V4: 1.344, V5: 1.245, V6: -1.047, V7: 0.618, V8: -0.154, V9: -0.563, V10: -1.364, V11: 1.682, V12: -0.371, V13: -0.654, V14: -3.117, V15: 0.494, V16: 1.500, V17: 2.189, V18: 2.169, V19: -0.233, V20: -0.034, V21: -0.219, V22: -0.593, V23: -0.317, V24: -0.838, V25: 0.918, V26: -0.259, V27: 0.031, V28: 0.077, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.261, V2: 1.185, V3: -1.925, V4: 1.344, V5: 1.245, V6: -1.047, V7: 0.618, V8: -0.154, V9: -0.563, V10: -1.364, V11: 1.682, V12: -0.371, V13: -0.654, V14: -3.117, V15: 0.494, V16: 1.500, V17: 2.189, V18: 2.169, V19: -0.233, V20: -0.034, V21: -0.219, V22: -0.593, V23: -0.317, V24: -0.838, V25: 0.918, V26: -0.259, V27: 0.031, V28: 0.077, Amount: 1.790.
114
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.652, V2: 1.080, V3: -0.495, V4: 0.202, V5: 2.166, V6: 3.820, V7: -0.207, V8: 1.393, V9: -0.591, V10: -0.231, V11: -0.771, V12: 0.035, V13: -0.156, V14: 0.452, V15: 0.117, V16: -0.476, V17: 0.022, V18: 0.259, V19: 1.448, V20: 0.192, V21: -0.070, V22: -0.162, V23: -0.144, V24: 1.013, V25: 0.168, V26: -0.235, V27: 0.287, V28: 0.139, Amount: 18.230.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.652, V2: 1.080, V3: -0.495, V4: 0.202, V5: 2.166, V6: 3.820, V7: -0.207, V8: 1.393, V9: -0.591, V10: -0.231, V11: -0.771, V12: 0.035, V13: -0.156, V14: 0.452, V15: 0.117, V16: -0.476, V17: 0.022, V18: 0.259, V19: 1.448, V20: 0.192, V21: -0.070, V22: -0.162, V23: -0.144, V24: 1.013, V25: 0.168, V26: -0.235, V27: 0.287, V28: 0.139, Amount: 18.230.
115
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.932, V2: -0.430, V3: -0.117, V4: 0.393, V5: -0.739, V6: -0.225, V7: -0.703, V8: 0.052, V9: 0.853, V10: 0.141, V11: 1.008, V12: 1.610, V13: 1.004, V14: -0.246, V15: -0.419, V16: 0.383, V17: -0.699, V18: 0.253, V19: -0.089, V20: -0.131, V21: 0.235, V22: 0.923, V23: 0.159, V24: 0.103, V25: -0.305, V26: 0.546, V27: -0.013, V28: -0.055, Amount: 8.720.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.932, V2: -0.430, V3: -0.117, V4: 0.393, V5: -0.739, V6: -0.225, V7: -0.703, V8: 0.052, V9: 0.853, V10: 0.141, V11: 1.008, V12: 1.610, V13: 1.004, V14: -0.246, V15: -0.419, V16: 0.383, V17: -0.699, V18: 0.253, V19: -0.089, V20: -0.131, V21: 0.235, V22: 0.923, V23: 0.159, V24: 0.103, V25: -0.305, V26: 0.546, V27: -0.013, V28: -0.055, Amount: 8.720.
116
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.695, V2: 0.719, V3: 0.479, V4: -1.116, V5: 1.231, V6: 0.189, V7: 1.356, V8: -0.098, V9: -2.325, V10: 0.002, V11: 0.010, V12: 0.519, V13: 0.743, V14: 0.220, V15: -1.982, V16: -1.755, V17: -0.576, V18: 1.362, V19: -1.067, V20: -0.444, V21: -0.269, V22: -0.327, V23: -0.541, V24: 0.199, V25: 1.314, V26: -0.476, V27: 0.005, V28: 0.034, Amount: 39.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.695, V2: 0.719, V3: 0.479, V4: -1.116, V5: 1.231, V6: 0.189, V7: 1.356, V8: -0.098, V9: -2.325, V10: 0.002, V11: 0.010, V12: 0.519, V13: 0.743, V14: 0.220, V15: -1.982, V16: -1.755, V17: -0.576, V18: 1.362, V19: -1.067, V20: -0.444, V21: -0.269, V22: -0.327, V23: -0.541, V24: 0.199, V25: 1.314, V26: -0.476, V27: 0.005, V28: 0.034, Amount: 39.400.
117
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.701, V2: 3.776, V3: -1.105, V4: -1.717, V5: 1.273, V6: 2.438, V7: -3.256, V8: -11.637, V9: 0.276, V10: -0.239, V11: 0.059, V12: 1.156, V13: -0.177, V14: -0.481, V15: -1.205, V16: 0.997, V17: 0.667, V18: 0.642, V19: -0.122, V20: -2.763, V21: 10.993, V22: -5.070, V23: 1.015, V24: -0.688, V25: 0.956, V26: 0.361, V27: 0.619, V28: 0.103, Amount: 3.530.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.701, V2: 3.776, V3: -1.105, V4: -1.717, V5: 1.273, V6: 2.438, V7: -3.256, V8: -11.637, V9: 0.276, V10: -0.239, V11: 0.059, V12: 1.156, V13: -0.177, V14: -0.481, V15: -1.205, V16: 0.997, V17: 0.667, V18: 0.642, V19: -0.122, V20: -2.763, V21: 10.993, V22: -5.070, V23: 1.015, V24: -0.688, V25: 0.956, V26: 0.361, V27: 0.619, V28: 0.103, Amount: 3.530.
118
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.057, V2: 0.840, V3: 0.703, V4: 1.437, V5: -0.059, V6: 1.099, V7: -1.003, V8: -2.438, V9: -0.707, V10: -0.535, V11: 0.857, V12: 1.299, V13: -0.147, V14: 0.718, V15: -0.421, V16: -0.642, V17: 0.351, V18: -0.216, V19: 0.755, V20: 0.704, V21: -1.294, V22: 0.449, V23: -0.143, V24: -0.280, V25: 0.821, V26: -0.146, V27: 0.135, V28: 0.238, Amount: 33.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.057, V2: 0.840, V3: 0.703, V4: 1.437, V5: -0.059, V6: 1.099, V7: -1.003, V8: -2.438, V9: -0.707, V10: -0.535, V11: 0.857, V12: 1.299, V13: -0.147, V14: 0.718, V15: -0.421, V16: -0.642, V17: 0.351, V18: -0.216, V19: 0.755, V20: 0.704, V21: -1.294, V22: 0.449, V23: -0.143, V24: -0.280, V25: 0.821, V26: -0.146, V27: 0.135, V28: 0.238, Amount: 33.000.
119
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.007, V2: -1.171, V3: 2.488, V4: 3.072, V5: -0.660, V6: 1.309, V7: 0.650, V8: 0.537, V9: -0.880, V10: -0.006, V11: 0.798, V12: 0.222, V13: -0.947, V14: -0.066, V15: -0.806, V16: -0.209, V17: 0.357, V18: 0.123, V19: 0.349, V20: 1.114, V21: 0.261, V22: -0.093, V23: 0.979, V24: 0.145, V25: 0.155, V26: 0.079, V27: -0.059, V28: 0.126, Amount: 417.090.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.007, V2: -1.171, V3: 2.488, V4: 3.072, V5: -0.660, V6: 1.309, V7: 0.650, V8: 0.537, V9: -0.880, V10: -0.006, V11: 0.798, V12: 0.222, V13: -0.947, V14: -0.066, V15: -0.806, V16: -0.209, V17: 0.357, V18: 0.123, V19: 0.349, V20: 1.114, V21: 0.261, V22: -0.093, V23: 0.979, V24: 0.145, V25: 0.155, V26: 0.079, V27: -0.059, V28: 0.126, Amount: 417.090.
120
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.034, V2: -0.073, V3: -1.170, V4: 0.210, V5: 0.162, V6: -0.601, V7: 0.103, V8: -0.177, V9: 0.207, V10: 0.216, V11: 0.822, V12: 1.375, V13: 0.665, V14: 0.332, V15: -0.658, V16: 0.099, V17: -0.638, V18: -0.433, V19: 0.483, V20: -0.168, V21: -0.246, V22: -0.572, V23: 0.286, V24: -0.378, V25: -0.278, V26: 0.202, V27: -0.068, V28: -0.073, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.034, V2: -0.073, V3: -1.170, V4: 0.210, V5: 0.162, V6: -0.601, V7: 0.103, V8: -0.177, V9: 0.207, V10: 0.216, V11: 0.822, V12: 1.375, V13: 0.665, V14: 0.332, V15: -0.658, V16: 0.099, V17: -0.638, V18: -0.433, V19: 0.483, V20: -0.168, V21: -0.246, V22: -0.572, V23: 0.286, V24: -0.378, V25: -0.278, V26: 0.202, V27: -0.068, V28: -0.073, Amount: 1.980.
121
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.496, V2: 0.033, V3: 0.417, V4: -0.833, V5: 1.186, V6: -0.127, V7: -0.231, V8: 0.705, V9: -0.219, V10: -0.671, V11: -0.764, V12: 0.342, V13: -0.048, V14: 0.403, V15: -0.843, V16: 0.826, V17: -0.969, V18: 0.567, V19: 0.702, V20: 0.233, V21: -0.131, V22: -0.704, V23: -0.268, V24: -1.366, V25: -0.012, V26: 0.376, V27: 0.186, V28: -0.057, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.496, V2: 0.033, V3: 0.417, V4: -0.833, V5: 1.186, V6: -0.127, V7: -0.231, V8: 0.705, V9: -0.219, V10: -0.671, V11: -0.764, V12: 0.342, V13: -0.048, V14: 0.403, V15: -0.843, V16: 0.826, V17: -0.969, V18: 0.567, V19: 0.702, V20: 0.233, V21: -0.131, V22: -0.704, V23: -0.268, V24: -1.366, V25: -0.012, V26: 0.376, V27: 0.186, V28: -0.057, Amount: 1.000.
122
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.088, V2: -0.819, V3: 0.818, V4: -1.636, V5: 0.032, V6: -1.520, V7: 0.287, V8: -0.083, V9: -1.272, V10: 0.416, V11: 0.730, V12: -0.676, V13: -1.935, V14: 0.641, V15: -0.685, V16: -0.919, V17: -0.469, V18: 1.476, V19: -1.305, V20: -0.840, V21: -0.294, V22: -0.372, V23: 0.801, V24: 0.489, V25: -0.688, V26: 0.671, V27: 0.033, V28: 0.082, Amount: 25.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.088, V2: -0.819, V3: 0.818, V4: -1.636, V5: 0.032, V6: -1.520, V7: 0.287, V8: -0.083, V9: -1.272, V10: 0.416, V11: 0.730, V12: -0.676, V13: -1.935, V14: 0.641, V15: -0.685, V16: -0.919, V17: -0.469, V18: 1.476, V19: -1.305, V20: -0.840, V21: -0.294, V22: -0.372, V23: 0.801, V24: 0.489, V25: -0.688, V26: 0.671, V27: 0.033, V28: 0.082, Amount: 25.900.
123
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.985, V2: -7.322, V3: 2.284, V4: -1.460, V5: 4.268, V6: -3.726, V7: -5.262, V8: 0.564, V9: -0.655, V10: 1.952, V11: 0.232, V12: -0.936, V13: -0.556, V14: -0.533, V15: 0.457, V16: 0.952, V17: -0.475, V18: 1.414, V19: -0.704, V20: -0.898, V21: -0.253, V22: 0.176, V23: -0.992, V24: -0.276, V25: 0.281, V26: 0.023, V27: 1.262, V28: -0.017, Amount: 152.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.985, V2: -7.322, V3: 2.284, V4: -1.460, V5: 4.268, V6: -3.726, V7: -5.262, V8: 0.564, V9: -0.655, V10: 1.952, V11: 0.232, V12: -0.936, V13: -0.556, V14: -0.533, V15: 0.457, V16: 0.952, V17: -0.475, V18: 1.414, V19: -0.704, V20: -0.898, V21: -0.253, V22: 0.176, V23: -0.992, V24: -0.276, V25: 0.281, V26: 0.023, V27: 1.262, V28: -0.017, Amount: 152.650.
124
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.353, V2: -3.422, V3: -0.253, V4: -1.052, V5: -2.056, V6: -0.206, V7: 0.446, V8: -0.260, V9: 2.740, V10: -2.231, V11: -0.947, V12: 1.740, V13: 1.061, V14: -0.635, V15: 0.093, V16: -1.401, V17: 0.385, V18: 0.186, V19: 1.367, V20: 1.671, V21: 0.528, V22: 0.213, V23: -1.010, V24: 0.190, V25: 0.611, V26: -0.655, V27: -0.034, V28: 0.173, Amount: 850.150.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.353, V2: -3.422, V3: -0.253, V4: -1.052, V5: -2.056, V6: -0.206, V7: 0.446, V8: -0.260, V9: 2.740, V10: -2.231, V11: -0.947, V12: 1.740, V13: 1.061, V14: -0.635, V15: 0.093, V16: -1.401, V17: 0.385, V18: 0.186, V19: 1.367, V20: 1.671, V21: 0.528, V22: 0.213, V23: -1.010, V24: 0.190, V25: 0.611, V26: -0.655, V27: -0.034, V28: 0.173, Amount: 850.150.
125
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.210, V2: -0.071, V3: 1.069, V4: 0.461, V5: -1.200, V6: -1.168, V7: -0.511, V8: -0.165, V9: 1.888, V10: -0.484, V11: 0.906, V12: -2.851, V13: 0.457, V14: 1.753, V15: 0.677, V16: 0.390, V17: 0.558, V18: 0.134, V19: -0.595, V20: -0.179, V21: -0.046, V22: 0.066, V23: 0.067, V24: 0.914, V25: 0.095, V26: 1.002, V27: -0.097, V28: 0.008, Amount: 14.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.210, V2: -0.071, V3: 1.069, V4: 0.461, V5: -1.200, V6: -1.168, V7: -0.511, V8: -0.165, V9: 1.888, V10: -0.484, V11: 0.906, V12: -2.851, V13: 0.457, V14: 1.753, V15: 0.677, V16: 0.390, V17: 0.558, V18: 0.134, V19: -0.595, V20: -0.179, V21: -0.046, V22: 0.066, V23: 0.067, V24: 0.914, V25: 0.095, V26: 1.002, V27: -0.097, V28: 0.008, Amount: 14.950.
126
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.203, V2: -0.106, V3: 0.781, V4: 0.465, V5: -0.753, V6: -0.250, V7: -0.551, V8: 0.188, V9: 0.370, V10: 0.130, V11: 0.832, V12: 0.003, V13: -1.355, V14: 0.532, V15: 0.800, V16: 0.937, V17: -0.827, V18: 0.656, V19: 0.099, V20: -0.161, V21: -0.073, V22: -0.316, V23: 0.058, V24: -0.018, V25: 0.123, V26: 0.221, V27: -0.021, V28: 0.010, Amount: 6.440.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.203, V2: -0.106, V3: 0.781, V4: 0.465, V5: -0.753, V6: -0.250, V7: -0.551, V8: 0.188, V9: 0.370, V10: 0.130, V11: 0.832, V12: 0.003, V13: -1.355, V14: 0.532, V15: 0.800, V16: 0.937, V17: -0.827, V18: 0.656, V19: 0.099, V20: -0.161, V21: -0.073, V22: -0.316, V23: 0.058, V24: -0.018, V25: 0.123, V26: 0.221, V27: -0.021, V28: 0.010, Amount: 6.440.
127
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.463, V2: 0.997, V3: 1.638, V4: 0.930, V5: -0.208, V6: 0.453, V7: 0.126, V8: 0.702, V9: -0.625, V10: -0.375, V11: 1.073, V12: 1.260, V13: 0.252, V14: 0.288, V15: -0.419, V16: -0.641, V17: 0.393, V18: -0.254, V19: 0.832, V20: 0.111, V21: -0.106, V22: -0.260, V23: -0.145, V24: 0.013, V25: 0.313, V26: -0.395, V27: 0.105, V28: 0.057, Amount: 49.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.463, V2: 0.997, V3: 1.638, V4: 0.930, V5: -0.208, V6: 0.453, V7: 0.126, V8: 0.702, V9: -0.625, V10: -0.375, V11: 1.073, V12: 1.260, V13: 0.252, V14: 0.288, V15: -0.419, V16: -0.641, V17: 0.393, V18: -0.254, V19: 0.832, V20: 0.111, V21: -0.106, V22: -0.260, V23: -0.145, V24: 0.013, V25: 0.313, V26: -0.395, V27: 0.105, V28: 0.057, Amount: 49.990.
128
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.051, V2: -0.087, V3: -0.852, V4: -5.047, V5: 1.131, V6: 0.383, V7: 0.339, V8: 0.281, V9: 0.593, V10: -0.440, V11: 1.044, V12: 1.062, V13: 0.180, V14: 0.250, V15: 0.477, V16: -2.812, V17: -0.113, V18: 0.716, V19: -2.017, V20: -0.461, V21: 0.039, V22: 1.084, V23: -0.070, V24: -0.737, V25: -0.191, V26: -0.834, V27: 0.607, V28: 0.425, Amount: 1.630.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.051, V2: -0.087, V3: -0.852, V4: -5.047, V5: 1.131, V6: 0.383, V7: 0.339, V8: 0.281, V9: 0.593, V10: -0.440, V11: 1.044, V12: 1.062, V13: 0.180, V14: 0.250, V15: 0.477, V16: -2.812, V17: -0.113, V18: 0.716, V19: -2.017, V20: -0.461, V21: 0.039, V22: 1.084, V23: -0.070, V24: -0.737, V25: -0.191, V26: -0.834, V27: 0.607, V28: 0.425, Amount: 1.630.
129
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.228, V2: -1.409, V3: -0.771, V4: -1.643, V5: -1.211, V6: -0.350, V7: -1.194, V8: -0.119, V9: -1.491, V10: 1.686, V11: 0.617, V12: 0.389, V13: 1.447, V14: -0.519, V15: -0.869, V16: -0.317, V17: 0.100, V18: 0.336, V19: 0.142, V20: -0.330, V21: -0.102, V22: 0.232, V23: 0.183, V24: -0.386, V25: -0.225, V26: -0.177, V27: 0.024, V28: -0.056, Amount: 30.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.228, V2: -1.409, V3: -0.771, V4: -1.643, V5: -1.211, V6: -0.350, V7: -1.194, V8: -0.119, V9: -1.491, V10: 1.686, V11: 0.617, V12: 0.389, V13: 1.447, V14: -0.519, V15: -0.869, V16: -0.317, V17: 0.100, V18: 0.336, V19: 0.142, V20: -0.330, V21: -0.102, V22: 0.232, V23: 0.183, V24: -0.386, V25: -0.225, V26: -0.177, V27: 0.024, V28: -0.056, Amount: 30.000.
130
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.595, V2: -3.113, V3: 1.988, V4: 1.320, V5: 1.874, V6: -1.806, V7: -1.486, V8: 0.252, V9: 0.141, V10: -0.351, V11: 0.042, V12: 0.897, V13: 1.149, V14: -0.163, V15: 1.299, V16: 0.640, V17: -0.516, V18: -0.343, V19: -1.595, V20: -0.635, V21: 0.043, V22: 0.255, V23: -1.772, V24: 0.588, V25: -0.094, V26: -0.507, V27: 0.232, V28: -0.971, Amount: 45.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.595, V2: -3.113, V3: 1.988, V4: 1.320, V5: 1.874, V6: -1.806, V7: -1.486, V8: 0.252, V9: 0.141, V10: -0.351, V11: 0.042, V12: 0.897, V13: 1.149, V14: -0.163, V15: 1.299, V16: 0.640, V17: -0.516, V18: -0.343, V19: -1.595, V20: -0.635, V21: 0.043, V22: 0.255, V23: -1.772, V24: 0.588, V25: -0.094, V26: -0.507, V27: 0.232, V28: -0.971, Amount: 45.000.
131
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.271, V2: -2.110, V3: 0.349, V4: 0.613, V5: -0.931, V6: 2.067, V7: -0.744, V8: 0.698, V9: -0.515, V10: 0.532, V11: 1.450, V12: 0.209, V13: -1.479, V14: 0.478, V15: 0.935, V16: -2.387, V17: 0.997, V18: 0.262, V19: -2.495, V20: 0.061, V21: 0.158, V22: 0.198, V23: -0.280, V24: -1.051, V25: -0.027, V26: -0.150, V27: 0.057, V28: 0.077, Amount: 420.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.271, V2: -2.110, V3: 0.349, V4: 0.613, V5: -0.931, V6: 2.067, V7: -0.744, V8: 0.698, V9: -0.515, V10: 0.532, V11: 1.450, V12: 0.209, V13: -1.479, V14: 0.478, V15: 0.935, V16: -2.387, V17: 0.997, V18: 0.262, V19: -2.495, V20: 0.061, V21: 0.158, V22: 0.198, V23: -0.280, V24: -1.051, V25: -0.027, V26: -0.150, V27: 0.057, V28: 0.077, Amount: 420.000.
132
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.774, V2: 0.625, V3: 1.229, V4: -0.140, V5: 0.656, V6: 0.000, V7: 0.901, V8: 0.175, V9: -0.719, V10: -0.557, V11: 0.858, V12: 0.219, V13: -0.808, V14: 0.599, V15: -0.102, V16: 0.242, V17: -0.744, V18: 0.204, V19: -0.880, V20: -0.060, V21: 0.224, V22: 0.442, V23: -0.121, V24: -0.333, V25: 0.097, V26: -0.479, V27: 0.086, V28: 0.114, Amount: 61.720.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.774, V2: 0.625, V3: 1.229, V4: -0.140, V5: 0.656, V6: 0.000, V7: 0.901, V8: 0.175, V9: -0.719, V10: -0.557, V11: 0.858, V12: 0.219, V13: -0.808, V14: 0.599, V15: -0.102, V16: 0.242, V17: -0.744, V18: 0.204, V19: -0.880, V20: -0.060, V21: 0.224, V22: 0.442, V23: -0.121, V24: -0.333, V25: 0.097, V26: -0.479, V27: 0.086, V28: 0.114, Amount: 61.720.
133
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.110, V2: -0.010, V3: -1.820, V4: -0.179, V5: 0.858, V6: 0.003, V7: 0.129, V8: -0.158, V9: 0.363, V10: 0.033, V11: 0.286, V12: 1.344, V13: 1.449, V14: 0.352, V15: 0.130, V16: 0.161, V17: -1.238, V18: 0.773, V19: 0.473, V20: -0.100, V21: 0.266, V22: 0.945, V23: -0.138, V24: -0.239, V25: 0.500, V26: -0.414, V27: 0.007, V28: -0.064, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.110, V2: -0.010, V3: -1.820, V4: -0.179, V5: 0.858, V6: 0.003, V7: 0.129, V8: -0.158, V9: 0.363, V10: 0.033, V11: 0.286, V12: 1.344, V13: 1.449, V14: 0.352, V15: 0.130, V16: 0.161, V17: -1.238, V18: 0.773, V19: 0.473, V20: -0.100, V21: 0.266, V22: 0.945, V23: -0.138, V24: -0.239, V25: 0.500, V26: -0.414, V27: 0.007, V28: -0.064, Amount: 1.000.
134
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.290, V2: 1.058, V3: 1.478, V4: 2.221, V5: 0.855, V6: -0.132, V7: 0.954, V8: -0.176, V9: -1.289, V10: 0.683, V11: -0.501, V12: -0.834, V13: -0.820, V14: 0.358, V15: 0.760, V16: -0.256, V17: -0.065, V18: -0.556, V19: -0.461, V20: 0.007, V21: 0.062, V22: 0.285, V23: -0.094, V24: 0.058, V25: -0.457, V26: 0.003, V27: -0.025, V28: -0.066, Amount: 6.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.290, V2: 1.058, V3: 1.478, V4: 2.221, V5: 0.855, V6: -0.132, V7: 0.954, V8: -0.176, V9: -1.289, V10: 0.683, V11: -0.501, V12: -0.834, V13: -0.820, V14: 0.358, V15: 0.760, V16: -0.256, V17: -0.065, V18: -0.556, V19: -0.461, V20: 0.007, V21: 0.062, V22: 0.285, V23: -0.094, V24: 0.058, V25: -0.457, V26: 0.003, V27: -0.025, V28: -0.066, Amount: 6.650.
135
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.627, V2: -2.747, V3: -0.034, V4: -1.139, V5: -2.342, V6: 0.496, V7: -1.728, V8: 0.182, V9: -0.371, V10: 1.349, V11: -0.053, V12: 0.292, V13: 0.720, V14: -1.159, V15: -1.773, V16: -0.257, V17: 0.354, V18: 0.688, V19: 0.326, V20: 0.169, V21: -0.001, V22: 0.087, V23: 0.005, V24: -0.322, V25: -0.544, V26: -0.217, V27: 0.030, V28: 0.006, Amount: 299.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.627, V2: -2.747, V3: -0.034, V4: -1.139, V5: -2.342, V6: 0.496, V7: -1.728, V8: 0.182, V9: -0.371, V10: 1.349, V11: -0.053, V12: 0.292, V13: 0.720, V14: -1.159, V15: -1.773, V16: -0.257, V17: 0.354, V18: 0.688, V19: 0.326, V20: 0.169, V21: -0.001, V22: 0.087, V23: 0.005, V24: -0.322, V25: -0.544, V26: -0.217, V27: 0.030, V28: 0.006, Amount: 299.000.
136
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.800, V2: -2.901, V3: 1.782, V4: -0.494, V5: 0.681, V6: -1.292, V7: -1.811, V8: 0.342, V9: -0.403, V10: 0.310, V11: -0.739, V12: -0.955, V13: -0.176, V14: -0.499, V15: 0.886, V16: 0.972, V17: 0.482, V18: -0.568, V19: 1.223, V20: 1.076, V21: 0.637, V22: 0.910, V23: 0.772, V24: 1.133, V25: -0.691, V26: -0.169, V27: 0.096, V28: 0.257, Amount: 142.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.800, V2: -2.901, V3: 1.782, V4: -0.494, V5: 0.681, V6: -1.292, V7: -1.811, V8: 0.342, V9: -0.403, V10: 0.310, V11: -0.739, V12: -0.955, V13: -0.176, V14: -0.499, V15: 0.886, V16: 0.972, V17: 0.482, V18: -0.568, V19: 1.223, V20: 1.076, V21: 0.637, V22: 0.910, V23: 0.772, V24: 1.133, V25: -0.691, V26: -0.169, V27: 0.096, V28: 0.257, Amount: 142.500.
137
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.326, V2: -2.301, V3: -1.443, V4: -1.128, V5: 3.811, V6: 2.534, V7: -0.923, V8: 1.489, V9: 0.067, V10: -1.217, V11: -0.537, V12: 0.492, V13: -0.263, V14: 0.645, V15: -0.172, V16: -0.385, V17: -0.071, V18: -0.493, V19: -0.042, V20: 0.753, V21: 0.188, V22: -0.618, V23: 0.168, V24: 0.716, V25: 0.273, V26: -0.088, V27: -0.131, V28: -0.470, Amount: 123.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.326, V2: -2.301, V3: -1.443, V4: -1.128, V5: 3.811, V6: 2.534, V7: -0.923, V8: 1.489, V9: 0.067, V10: -1.217, V11: -0.537, V12: 0.492, V13: -0.263, V14: 0.645, V15: -0.172, V16: -0.385, V17: -0.071, V18: -0.493, V19: -0.042, V20: 0.753, V21: 0.188, V22: -0.618, V23: 0.168, V24: 0.716, V25: 0.273, V26: -0.088, V27: -0.131, V28: -0.470, Amount: 123.400.
138
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.934, V2: 1.311, V3: 1.055, V4: 0.658, V5: 0.185, V6: -0.230, V7: 0.410, V8: 0.175, V9: -0.705, V10: 0.314, V11: 1.041, V12: 1.142, V13: 1.146, V14: 0.226, V15: 0.306, V16: 0.040, V17: -0.610, V18: 0.571, V19: 0.816, V20: 0.139, V21: 0.102, V22: 0.442, V23: -0.104, V24: 0.032, V25: -0.293, V26: -0.459, V27: -0.124, V28: -0.064, Amount: 3.670.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.934, V2: 1.311, V3: 1.055, V4: 0.658, V5: 0.185, V6: -0.230, V7: 0.410, V8: 0.175, V9: -0.705, V10: 0.314, V11: 1.041, V12: 1.142, V13: 1.146, V14: 0.226, V15: 0.306, V16: 0.040, V17: -0.610, V18: 0.571, V19: 0.816, V20: 0.139, V21: 0.102, V22: 0.442, V23: -0.104, V24: 0.032, V25: -0.293, V26: -0.459, V27: -0.124, V28: -0.064, Amount: 3.670.
139
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.736, V2: 1.947, V3: 1.306, V4: 4.615, V5: -2.562, V6: 2.742, V7: 1.789, V8: -0.513, V9: -1.477, V10: 1.094, V11: -1.273, V12: 0.293, V13: 1.341, V14: -0.546, V15: -0.531, V16: -0.255, V17: 0.731, V18: -0.534, V19: 1.622, V20: -0.224, V21: 0.171, V22: -0.990, V23: 0.153, V24: 0.001, V25: 0.167, V26: 0.207, V27: 0.690, V28: -0.057, Amount: 489.280.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.736, V2: 1.947, V3: 1.306, V4: 4.615, V5: -2.562, V6: 2.742, V7: 1.789, V8: -0.513, V9: -1.477, V10: 1.094, V11: -1.273, V12: 0.293, V13: 1.341, V14: -0.546, V15: -0.531, V16: -0.255, V17: 0.731, V18: -0.534, V19: 1.622, V20: -0.224, V21: 0.171, V22: -0.990, V23: 0.153, V24: 0.001, V25: 0.167, V26: 0.207, V27: 0.690, V28: -0.057, Amount: 489.280.
140
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.013, V2: 0.185, V3: 1.857, V4: 2.626, V5: -0.814, V6: 0.741, V7: -1.051, V8: 0.411, V9: 1.078, V10: 0.411, V11: 2.238, V12: -2.311, V13: 0.771, V14: 1.647, V15: 0.006, V16: 1.168, V17: -0.045, V18: 0.838, V19: -1.766, V20: -0.240, V21: 0.168, V22: 0.665, V23: 0.034, V24: 0.149, V25: 0.061, V26: 0.074, V27: 0.025, V28: 0.023, Amount: 12.160.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.013, V2: 0.185, V3: 1.857, V4: 2.626, V5: -0.814, V6: 0.741, V7: -1.051, V8: 0.411, V9: 1.078, V10: 0.411, V11: 2.238, V12: -2.311, V13: 0.771, V14: 1.647, V15: 0.006, V16: 1.168, V17: -0.045, V18: 0.838, V19: -1.766, V20: -0.240, V21: 0.168, V22: 0.665, V23: 0.034, V24: 0.149, V25: 0.061, V26: 0.074, V27: 0.025, V28: 0.023, Amount: 12.160.
141
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.126, V2: 0.195, V3: 1.508, V4: 2.718, V5: -0.873, V6: 0.133, V7: -0.618, V8: 0.216, V9: 0.245, V10: 0.520, V11: -1.111, V12: -0.307, V13: -0.847, V14: -0.238, V15: -0.205, V16: 0.664, V17: -0.366, V18: -0.090, V19: -0.834, V20: -0.221, V21: -0.097, V22: -0.168, V23: 0.056, V24: 0.357, V25: 0.269, V26: -0.040, V27: 0.037, V28: 0.034, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.126, V2: 0.195, V3: 1.508, V4: 2.718, V5: -0.873, V6: 0.133, V7: -0.618, V8: 0.216, V9: 0.245, V10: 0.520, V11: -1.111, V12: -0.307, V13: -0.847, V14: -0.238, V15: -0.205, V16: 0.664, V17: -0.366, V18: -0.090, V19: -0.834, V20: -0.221, V21: -0.097, V22: -0.168, V23: 0.056, V24: 0.357, V25: 0.269, V26: -0.040, V27: 0.037, V28: 0.034, Amount: 0.000.
142
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.766, V2: -0.453, V3: 1.733, V4: -2.500, V5: -0.721, V6: 0.692, V7: -0.540, V8: 0.269, V9: -0.258, V10: 0.037, V11: -0.382, V12: -0.685, V13: 0.023, V14: -0.890, V15: -0.648, V16: 2.353, V17: -1.006, V18: 0.267, V19: 0.242, V20: -0.073, V21: 0.471, V22: 1.304, V23: -0.332, V24: -1.008, V25: -0.203, V26: -0.163, V27: -0.065, V28: 0.137, Amount: 75.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.766, V2: -0.453, V3: 1.733, V4: -2.500, V5: -0.721, V6: 0.692, V7: -0.540, V8: 0.269, V9: -0.258, V10: 0.037, V11: -0.382, V12: -0.685, V13: 0.023, V14: -0.890, V15: -0.648, V16: 2.353, V17: -1.006, V18: 0.267, V19: 0.242, V20: -0.073, V21: 0.471, V22: 1.304, V23: -0.332, V24: -1.008, V25: -0.203, V26: -0.163, V27: -0.065, V28: 0.137, Amount: 75.000.
143
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.362, V2: -0.563, V3: 0.599, V4: -0.288, V5: -0.960, V6: -0.342, V7: -0.815, V8: -0.037, V9: 1.034, V10: 0.117, V11: 0.357, V12: -3.441, V13: 0.371, V14: 1.252, V15: -0.834, V16: 0.314, V17: 1.765, V18: -1.789, V19: 0.387, V20: -0.122, V21: -0.162, V22: -0.143, V23: 0.028, V24: 0.004, V25: 0.419, V26: -0.248, V27: -0.004, V28: -0.000, Amount: 5.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.362, V2: -0.563, V3: 0.599, V4: -0.288, V5: -0.960, V6: -0.342, V7: -0.815, V8: -0.037, V9: 1.034, V10: 0.117, V11: 0.357, V12: -3.441, V13: 0.371, V14: 1.252, V15: -0.834, V16: 0.314, V17: 1.765, V18: -1.789, V19: 0.387, V20: -0.122, V21: -0.162, V22: -0.143, V23: 0.028, V24: 0.004, V25: 0.419, V26: -0.248, V27: -0.004, V28: -0.000, Amount: 5.000.
144
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.305, V2: 1.488, V3: 1.868, V4: 0.711, V5: -0.913, V6: 0.053, V7: 0.202, V8: -0.203, V9: -0.114, V10: 1.107, V11: 1.702, V12: 0.680, V13: 0.433, V14: -0.165, V15: 1.363, V16: -0.182, V17: -0.202, V18: 0.562, V19: 1.714, V20: 0.104, V21: 0.156, V22: 0.304, V23: -0.041, V24: 0.564, V25: -0.739, V26: 0.233, V27: -1.391, V28: -0.398, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.305, V2: 1.488, V3: 1.868, V4: 0.711, V5: -0.913, V6: 0.053, V7: 0.202, V8: -0.203, V9: -0.114, V10: 1.107, V11: 1.702, V12: 0.680, V13: 0.433, V14: -0.165, V15: 1.363, V16: -0.182, V17: -0.202, V18: 0.562, V19: 1.714, V20: 0.104, V21: 0.156, V22: 0.304, V23: -0.041, V24: 0.564, V25: -0.739, V26: 0.233, V27: -1.391, V28: -0.398, Amount: 39.000.
145
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.851, V2: 1.087, V3: 1.904, V4: -0.096, V5: 0.773, V6: -0.395, V7: 1.219, V8: -0.302, V9: -0.612, V10: -0.504, V11: -0.149, V12: 0.279, V13: 0.632, V14: -0.138, V15: 0.559, V16: -0.239, V17: -0.510, V18: -0.638, V19: -1.182, V20: -0.071, V21: 0.074, V22: 0.385, V23: -0.366, V24: 0.097, V25: 0.625, V26: -0.419, V27: -0.236, V28: -0.174, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.851, V2: 1.087, V3: 1.904, V4: -0.096, V5: 0.773, V6: -0.395, V7: 1.219, V8: -0.302, V9: -0.612, V10: -0.504, V11: -0.149, V12: 0.279, V13: 0.632, V14: -0.138, V15: 0.559, V16: -0.239, V17: -0.510, V18: -0.638, V19: -1.182, V20: -0.071, V21: 0.074, V22: 0.385, V23: -0.366, V24: 0.097, V25: 0.625, V26: -0.419, V27: -0.236, V28: -0.174, Amount: 0.990.
146
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.176, V2: 0.359, V3: 0.512, V4: 0.763, V5: -0.396, V6: -0.894, V7: 0.057, V8: -0.130, V9: -0.089, V10: -0.343, V11: 0.722, V12: 0.782, V13: 0.651, V14: -0.334, V15: 1.248, V16: 0.006, V17: 0.436, V18: -0.987, V19: -0.761, V20: -0.095, V21: -0.219, V22: -0.574, V23: 0.218, V24: 0.581, V25: 0.090, V26: 0.089, V27: -0.002, V28: 0.034, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.176, V2: 0.359, V3: 0.512, V4: 0.763, V5: -0.396, V6: -0.894, V7: 0.057, V8: -0.130, V9: -0.089, V10: -0.343, V11: 0.722, V12: 0.782, V13: 0.651, V14: -0.334, V15: 1.248, V16: 0.006, V17: 0.436, V18: -0.987, V19: -0.761, V20: -0.095, V21: -0.219, V22: -0.574, V23: 0.218, V24: 0.581, V25: 0.090, V26: 0.089, V27: -0.002, V28: 0.034, Amount: 1.980.
147
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.089, V2: -0.827, V3: 0.868, V4: -1.264, V5: -1.524, V6: -0.715, V7: -0.731, V8: 0.101, V9: 1.778, V10: -0.997, V11: 1.348, V12: 1.075, V13: -0.832, V14: 0.145, V15: 0.709, V16: -0.241, V17: -0.207, V18: 0.731, V19: 0.872, V20: 0.003, V21: 0.209, V22: 0.651, V23: -0.140, V24: 0.593, V25: 0.378, V26: 0.080, V27: 0.025, V28: 0.025, Amount: 68.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.089, V2: -0.827, V3: 0.868, V4: -1.264, V5: -1.524, V6: -0.715, V7: -0.731, V8: 0.101, V9: 1.778, V10: -0.997, V11: 1.348, V12: 1.075, V13: -0.832, V14: 0.145, V15: 0.709, V16: -0.241, V17: -0.207, V18: 0.731, V19: 0.872, V20: 0.003, V21: 0.209, V22: 0.651, V23: -0.140, V24: 0.593, V25: 0.378, V26: 0.080, V27: 0.025, V28: 0.025, Amount: 68.000.
148
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.186, V2: 0.274, V3: 0.785, V4: 1.699, V5: -0.212, V6: 0.169, V7: -0.175, V8: 0.077, V9: -0.539, V10: 0.540, V11: 0.793, V12: 1.291, V13: 0.924, V14: -0.197, V15: -1.344, V16: 0.575, V17: -0.553, V18: -0.423, V19: 0.121, V20: -0.046, V21: -0.288, V22: -0.703, V23: 0.068, V24: 0.064, V25: 0.224, V26: 0.752, V27: -0.059, V28: 0.000, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.186, V2: 0.274, V3: 0.785, V4: 1.699, V5: -0.212, V6: 0.169, V7: -0.175, V8: 0.077, V9: -0.539, V10: 0.540, V11: 0.793, V12: 1.291, V13: 0.924, V14: -0.197, V15: -1.344, V16: 0.575, V17: -0.553, V18: -0.423, V19: 0.121, V20: -0.046, V21: -0.288, V22: -0.703, V23: 0.068, V24: 0.064, V25: 0.224, V26: 0.752, V27: -0.059, V28: 0.000, Amount: 0.000.
149
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.073, V2: -2.614, V3: 1.160, V4: -1.367, V5: 2.406, V6: -1.792, V7: -1.643, V8: 0.374, V9: -1.130, V10: 0.458, V11: -0.294, V12: -0.561, V13: -0.956, V14: 0.483, V15: -0.115, V16: -0.428, V17: -0.896, V18: 1.820, V19: -0.447, V20: 0.130, V21: -0.444, V22: -1.799, V23: 0.567, V24: -0.922, V25: -0.667, V26: 0.482, V27: -0.048, V28: 0.170, Amount: 7.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.073, V2: -2.614, V3: 1.160, V4: -1.367, V5: 2.406, V6: -1.792, V7: -1.643, V8: 0.374, V9: -1.130, V10: 0.458, V11: -0.294, V12: -0.561, V13: -0.956, V14: 0.483, V15: -0.115, V16: -0.428, V17: -0.896, V18: 1.820, V19: -0.447, V20: 0.130, V21: -0.444, V22: -1.799, V23: 0.567, V24: -0.922, V25: -0.667, V26: 0.482, V27: -0.048, V28: 0.170, Amount: 7.920.
150
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.267, V2: 0.411, V3: 0.092, V4: -0.888, V5: 1.380, V6: -0.213, V7: 1.070, V8: -0.158, V9: -0.138, V10: -0.072, V11: 0.264, V12: 0.469, V13: -0.207, V14: 0.119, V15: -1.301, V16: -0.035, V17: -0.842, V18: -0.051, V19: 0.507, V20: 0.208, V21: -0.159, V22: -0.249, V23: 0.089, V24: 0.285, V25: -0.789, V26: 0.099, V27: 0.202, V28: 0.048, Amount: 30.310.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.267, V2: 0.411, V3: 0.092, V4: -0.888, V5: 1.380, V6: -0.213, V7: 1.070, V8: -0.158, V9: -0.138, V10: -0.072, V11: 0.264, V12: 0.469, V13: -0.207, V14: 0.119, V15: -1.301, V16: -0.035, V17: -0.842, V18: -0.051, V19: 0.507, V20: 0.208, V21: -0.159, V22: -0.249, V23: 0.089, V24: 0.285, V25: -0.789, V26: 0.099, V27: 0.202, V28: 0.048, Amount: 30.310.
151
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.306, V2: 1.392, V3: -1.057, V4: 0.223, V5: -0.587, V6: -1.976, V7: 0.073, V8: 0.568, V9: -0.049, V10: -1.186, V11: -0.258, V12: -0.539, V13: -1.843, V14: 0.170, V15: 0.791, V16: 0.080, V17: 1.230, V18: 0.579, V19: -0.645, V20: -0.533, V21: 0.428, V22: 0.977, V23: 0.085, V24: 0.753, V25: -0.454, V26: -0.206, V27: -0.336, V28: -0.106, Amount: 1.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.306, V2: 1.392, V3: -1.057, V4: 0.223, V5: -0.587, V6: -1.976, V7: 0.073, V8: 0.568, V9: -0.049, V10: -1.186, V11: -0.258, V12: -0.539, V13: -1.843, V14: 0.170, V15: 0.791, V16: 0.080, V17: 1.230, V18: 0.579, V19: -0.645, V20: -0.533, V21: 0.428, V22: 0.977, V23: 0.085, V24: 0.753, V25: -0.454, V26: -0.206, V27: -0.336, V28: -0.106, Amount: 1.500.
152
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.114, V2: -0.251, V3: 1.104, V4: 0.619, V5: -0.658, V6: 0.689, V7: -0.786, V8: 0.360, V9: 0.638, V10: -0.126, V11: 0.952, V12: 1.289, V13: 0.341, V14: -0.270, V15: -0.262, V16: 0.147, V17: -0.286, V18: -0.124, V19: 0.011, V20: -0.083, V21: -0.029, V22: 0.123, V23: 0.002, V24: -0.250, V25: 0.206, V26: 0.348, V27: 0.031, V28: 0.012, Amount: 11.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.114, V2: -0.251, V3: 1.104, V4: 0.619, V5: -0.658, V6: 0.689, V7: -0.786, V8: 0.360, V9: 0.638, V10: -0.126, V11: 0.952, V12: 1.289, V13: 0.341, V14: -0.270, V15: -0.262, V16: 0.147, V17: -0.286, V18: -0.124, V19: 0.011, V20: -0.083, V21: -0.029, V22: 0.123, V23: 0.002, V24: -0.250, V25: 0.206, V26: 0.348, V27: 0.031, V28: 0.012, Amount: 11.500.
153
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.819, V2: 1.347, V3: 0.820, V4: -0.581, V5: 0.628, V6: 0.187, V7: 0.607, V8: 0.144, V9: -0.298, V10: 0.452, V11: 0.261, V12: 0.622, V13: 0.961, V14: -0.038, V15: 0.193, V16: 0.714, V17: -1.201, V18: 0.459, V19: 0.750, V20: 0.456, V21: -0.318, V22: -0.714, V23: -0.190, V24: -1.036, V25: 0.087, V26: 0.145, V27: 0.476, V28: 0.226, Amount: 5.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.819, V2: 1.347, V3: 0.820, V4: -0.581, V5: 0.628, V6: 0.187, V7: 0.607, V8: 0.144, V9: -0.298, V10: 0.452, V11: 0.261, V12: 0.622, V13: 0.961, V14: -0.038, V15: 0.193, V16: 0.714, V17: -1.201, V18: 0.459, V19: 0.750, V20: 0.456, V21: -0.318, V22: -0.714, V23: -0.190, V24: -1.036, V25: 0.087, V26: 0.145, V27: 0.476, V28: 0.226, Amount: 5.350.
154
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.991, V2: 0.912, V3: 1.611, V4: -1.330, V5: 0.050, V6: -0.592, V7: 0.651, V8: -0.185, V9: 0.492, V10: 0.039, V11: -0.159, V12: -0.155, V13: -0.248, V14: -0.318, V15: 0.927, V16: 0.130, V17: -0.456, V18: -0.813, V19: -0.912, V20: 0.150, V21: -0.103, V22: -0.059, V23: -0.061, V24: 0.101, V25: -0.512, V26: 0.713, V27: -0.036, V28: 0.018, Amount: 4.530.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.991, V2: 0.912, V3: 1.611, V4: -1.330, V5: 0.050, V6: -0.592, V7: 0.651, V8: -0.185, V9: 0.492, V10: 0.039, V11: -0.159, V12: -0.155, V13: -0.248, V14: -0.318, V15: 0.927, V16: 0.130, V17: -0.456, V18: -0.813, V19: -0.912, V20: 0.150, V21: -0.103, V22: -0.059, V23: -0.061, V24: 0.101, V25: -0.512, V26: 0.713, V27: -0.036, V28: 0.018, Amount: 4.530.
155
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.218, V2: 1.528, V3: -0.285, V4: -1.086, V5: 0.439, V6: -0.668, V7: 1.059, V8: -0.178, V9: 1.080, V10: 1.737, V11: 0.561, V12: 0.200, V13: -0.873, V14: -0.206, V15: -0.850, V16: 0.022, V17: -0.926, V18: -0.165, V19: 0.199, V20: 0.645, V21: -0.516, V22: -0.639, V23: -0.012, V24: -0.407, V25: -0.304, V26: 0.085, V27: 0.158, V28: -0.335, Amount: 14.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.218, V2: 1.528, V3: -0.285, V4: -1.086, V5: 0.439, V6: -0.668, V7: 1.059, V8: -0.178, V9: 1.080, V10: 1.737, V11: 0.561, V12: 0.200, V13: -0.873, V14: -0.206, V15: -0.850, V16: 0.022, V17: -0.926, V18: -0.165, V19: 0.199, V20: 0.645, V21: -0.516, V22: -0.639, V23: -0.012, V24: -0.407, V25: -0.304, V26: 0.085, V27: 0.158, V28: -0.335, Amount: 14.780.
156
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.891, V2: -0.528, V3: -0.679, V4: 0.169, V5: -0.141, V6: -1.037, V7: 0.787, V8: -0.463, V9: -0.231, V10: -0.211, V11: -0.580, V12: 0.321, V13: 0.740, V14: 0.386, V15: 0.760, V16: 0.056, V17: -0.366, V18: -0.553, V19: 0.226, V20: 0.469, V21: 0.072, V22: -0.284, V23: -0.368, V24: -0.004, V25: 0.548, V26: 1.074, V27: -0.156, V28: 0.029, Amount: 249.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.891, V2: -0.528, V3: -0.679, V4: 0.169, V5: -0.141, V6: -1.037, V7: 0.787, V8: -0.463, V9: -0.231, V10: -0.211, V11: -0.580, V12: 0.321, V13: 0.740, V14: 0.386, V15: 0.760, V16: 0.056, V17: -0.366, V18: -0.553, V19: 0.226, V20: 0.469, V21: 0.072, V22: -0.284, V23: -0.368, V24: -0.004, V25: 0.548, V26: 1.074, V27: -0.156, V28: 0.029, Amount: 249.000.
157
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.617, V2: -0.646, V3: 0.058, V4: 1.693, V5: -0.412, V6: -0.088, V7: 0.255, V8: 0.012, V9: 1.367, V10: -0.312, V11: 2.032, V12: -2.527, V13: -0.808, V14: 2.426, V15: -0.933, V16: -0.421, V17: 0.857, V18: 0.144, V19: -0.550, V20: 0.173, V21: 0.046, V22: -0.187, V23: -0.305, V24: 0.145, V25: 0.511, V26: -0.322, V27: -0.070, V28: 0.038, Amount: 274.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.617, V2: -0.646, V3: 0.058, V4: 1.693, V5: -0.412, V6: -0.088, V7: 0.255, V8: 0.012, V9: 1.367, V10: -0.312, V11: 2.032, V12: -2.527, V13: -0.808, V14: 2.426, V15: -0.933, V16: -0.421, V17: 0.857, V18: 0.144, V19: -0.550, V20: 0.173, V21: 0.046, V22: -0.187, V23: -0.305, V24: 0.145, V25: 0.511, V26: -0.322, V27: -0.070, V28: 0.038, Amount: 274.960.
158
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.757, V2: -1.827, V3: 0.171, V4: -0.582, V5: -2.065, V6: -0.365, V7: -1.443, V8: 0.053, V9: 0.697, V10: 0.614, V11: -0.950, V12: -0.717, V13: -0.089, V14: -0.735, V15: 0.702, V16: 1.702, V17: -0.062, V18: -0.585, V19: 0.121, V20: 0.326, V21: 0.532, V22: 1.199, V23: 0.041, V24: 0.077, V25: -0.506, V26: -0.112, V27: 0.018, V28: -0.000, Amount: 194.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.757, V2: -1.827, V3: 0.171, V4: -0.582, V5: -2.065, V6: -0.365, V7: -1.443, V8: 0.053, V9: 0.697, V10: 0.614, V11: -0.950, V12: -0.717, V13: -0.089, V14: -0.735, V15: 0.702, V16: 1.702, V17: -0.062, V18: -0.585, V19: 0.121, V20: 0.326, V21: 0.532, V22: 1.199, V23: 0.041, V24: 0.077, V25: -0.506, V26: -0.112, V27: 0.018, V28: -0.000, Amount: 194.000.
159
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.475, V2: -0.502, V3: 1.385, V4: -0.492, V5: 1.801, V6: -0.721, V7: -0.445, V8: 0.016, V9: 1.875, V10: -1.227, V11: -0.803, V12: -2.498, V13: 2.130, V14: 1.293, V15: 0.100, V16: 0.388, V17: -0.334, V18: 0.657, V19: -0.084, V20: -0.102, V21: -0.240, V22: -0.528, V23: -0.168, V24: -1.158, V25: -0.105, V26: -0.903, V27: 0.004, V28: 0.278, Amount: 2.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.475, V2: -0.502, V3: 1.385, V4: -0.492, V5: 1.801, V6: -0.721, V7: -0.445, V8: 0.016, V9: 1.875, V10: -1.227, V11: -0.803, V12: -2.498, V13: 2.130, V14: 1.293, V15: 0.100, V16: 0.388, V17: -0.334, V18: 0.657, V19: -0.084, V20: -0.102, V21: -0.240, V22: -0.528, V23: -0.168, V24: -1.158, V25: -0.105, V26: -0.903, V27: 0.004, V28: 0.278, Amount: 2.120.
160
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.116, V2: 0.155, V3: 0.803, V4: 1.124, V5: -0.447, V6: -0.071, V7: -0.303, V8: 0.204, V9: -0.033, V10: 0.177, V11: 1.590, V12: 0.668, V13: -0.793, V14: 0.602, V15: 0.714, V16: 0.244, V17: -0.408, V18: -0.027, V19: -0.609, V20: -0.215, V21: 0.004, V22: -0.004, V23: 0.087, V24: 0.187, V25: 0.259, V26: -0.477, V27: 0.043, V28: 0.018, Amount: 1.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.116, V2: 0.155, V3: 0.803, V4: 1.124, V5: -0.447, V6: -0.071, V7: -0.303, V8: 0.204, V9: -0.033, V10: 0.177, V11: 1.590, V12: 0.668, V13: -0.793, V14: 0.602, V15: 0.714, V16: 0.244, V17: -0.408, V18: -0.027, V19: -0.609, V20: -0.215, V21: 0.004, V22: -0.004, V23: 0.087, V24: 0.187, V25: 0.259, V26: -0.477, V27: 0.043, V28: 0.018, Amount: 1.700.
161
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.924, V2: 0.017, V3: -1.585, V4: 0.511, V5: 0.073, V6: -1.272, V7: 0.289, V8: -0.384, V9: 0.807, V10: -0.900, V11: -0.237, V12: 1.065, V13: 1.269, V14: -1.714, V15: -0.281, V16: -0.085, V17: 1.006, V18: -0.155, V19: 0.095, V20: 0.005, V21: -0.199, V22: -0.350, V23: 0.127, V24: -0.028, V25: -0.036, V26: -0.101, V27: -0.007, V28: -0.009, Amount: 60.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.924, V2: 0.017, V3: -1.585, V4: 0.511, V5: 0.073, V6: -1.272, V7: 0.289, V8: -0.384, V9: 0.807, V10: -0.900, V11: -0.237, V12: 1.065, V13: 1.269, V14: -1.714, V15: -0.281, V16: -0.085, V17: 1.006, V18: -0.155, V19: 0.095, V20: 0.005, V21: -0.199, V22: -0.350, V23: 0.127, V24: -0.028, V25: -0.036, V26: -0.101, V27: -0.007, V28: -0.009, Amount: 60.000.
162
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.842, V2: -1.849, V3: -0.998, V4: -2.521, V5: 2.704, V6: 3.158, V7: -0.564, V8: 0.959, V9: -1.023, V10: 0.014, V11: -0.254, V12: -0.793, V13: -0.064, V14: -0.141, V15: -0.026, V16: 0.825, V17: 0.077, V18: -1.264, V19: 0.249, V20: 0.734, V21: 0.541, V22: 0.846, V23: 0.444, V24: 0.715, V25: 0.003, V26: -0.106, V27: -0.013, V28: 0.076, Amount: 180.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.842, V2: -1.849, V3: -0.998, V4: -2.521, V5: 2.704, V6: 3.158, V7: -0.564, V8: 0.959, V9: -1.023, V10: 0.014, V11: -0.254, V12: -0.793, V13: -0.064, V14: -0.141, V15: -0.026, V16: 0.825, V17: 0.077, V18: -1.264, V19: 0.249, V20: 0.734, V21: 0.541, V22: 0.846, V23: 0.444, V24: 0.715, V25: 0.003, V26: -0.106, V27: -0.013, V28: 0.076, Amount: 180.000.
163
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.993, V2: -0.433, V3: -0.228, V4: 0.534, V5: -0.894, V6: -0.650, V7: -0.665, V8: -0.017, V9: 1.592, V10: -0.137, V11: -1.117, V12: 0.060, V13: -0.695, V14: -0.039, V15: 0.560, V16: 0.106, V17: -0.448, V18: 0.290, V19: -0.229, V20: -0.294, V21: 0.179, V22: 0.760, V23: 0.139, V24: 0.049, V25: -0.122, V26: -0.212, V27: 0.038, V28: -0.040, Amount: 0.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.993, V2: -0.433, V3: -0.228, V4: 0.534, V5: -0.894, V6: -0.650, V7: -0.665, V8: -0.017, V9: 1.592, V10: -0.137, V11: -1.117, V12: 0.060, V13: -0.695, V14: -0.039, V15: 0.560, V16: 0.106, V17: -0.448, V18: 0.290, V19: -0.229, V20: -0.294, V21: 0.179, V22: 0.760, V23: 0.139, V24: 0.049, V25: -0.122, V26: -0.212, V27: 0.038, V28: -0.040, Amount: 0.010.
164
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.824, V2: -1.015, V3: -1.400, V4: -0.630, V5: 1.387, V6: 4.063, V7: -1.441, V8: 1.126, V9: 1.195, V10: -0.016, V11: -0.107, V12: 0.387, V13: 0.102, V14: -0.114, V15: 1.210, V16: 0.605, V17: -0.747, V18: -0.047, V19: -0.508, V20: 0.037, V21: 0.086, V22: 0.134, V23: 0.292, V24: 0.728, V25: -0.560, V26: 0.385, V27: 0.004, V28: -0.030, Amount: 76.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.824, V2: -1.015, V3: -1.400, V4: -0.630, V5: 1.387, V6: 4.063, V7: -1.441, V8: 1.126, V9: 1.195, V10: -0.016, V11: -0.107, V12: 0.387, V13: 0.102, V14: -0.114, V15: 1.210, V16: 0.605, V17: -0.747, V18: -0.047, V19: -0.508, V20: 0.037, V21: 0.086, V22: 0.134, V23: 0.292, V24: 0.728, V25: -0.560, V26: 0.385, V27: 0.004, V28: -0.030, Amount: 76.900.
165
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.473, V2: 0.755, V3: 1.264, V4: -0.720, V5: -0.053, V6: -0.455, V7: 0.471, V8: -0.027, V9: -0.403, V10: -0.165, V11: 0.973, V12: 0.273, V13: -0.345, V14: 0.284, V15: 0.282, V16: 0.521, V17: -0.685, V18: 0.299, V19: 0.564, V20: -0.050, V21: 0.004, V22: -0.176, V23: -0.112, V24: 0.050, V25: -0.247, V26: 0.841, V27: -0.334, V28: 0.004, Amount: 12.540.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.473, V2: 0.755, V3: 1.264, V4: -0.720, V5: -0.053, V6: -0.455, V7: 0.471, V8: -0.027, V9: -0.403, V10: -0.165, V11: 0.973, V12: 0.273, V13: -0.345, V14: 0.284, V15: 0.282, V16: 0.521, V17: -0.685, V18: 0.299, V19: 0.564, V20: -0.050, V21: 0.004, V22: -0.176, V23: -0.112, V24: 0.050, V25: -0.247, V26: 0.841, V27: -0.334, V28: 0.004, Amount: 12.540.
166
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.176, V2: -0.090, V3: 0.350, V4: -2.024, V5: 0.523, V6: -0.402, V7: 0.925, V8: -0.371, V9: -1.541, V10: 0.350, V11: 0.783, V12: -0.279, V13: 0.156, V14: -0.225, V15: -1.391, V16: 0.544, V17: -0.039, V18: -0.693, V19: 0.812, V20: 0.308, V21: 0.674, V22: 2.005, V23: -0.428, V24: 0.870, V25: 0.395, V26: 0.181, V27: -0.092, V28: -0.092, Amount: 63.730.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.176, V2: -0.090, V3: 0.350, V4: -2.024, V5: 0.523, V6: -0.402, V7: 0.925, V8: -0.371, V9: -1.541, V10: 0.350, V11: 0.783, V12: -0.279, V13: 0.156, V14: -0.225, V15: -1.391, V16: 0.544, V17: -0.039, V18: -0.693, V19: 0.812, V20: 0.308, V21: 0.674, V22: 2.005, V23: -0.428, V24: 0.870, V25: 0.395, V26: 0.181, V27: -0.092, V28: -0.092, Amount: 63.730.
167
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.990, V2: -0.763, V3: -0.914, V4: -1.013, V5: 0.052, V6: -0.241, V7: 0.387, V8: -0.151, V9: 1.014, V10: -0.914, V11: 0.089, V12: 0.911, V13: -0.128, V14: 0.505, V15: 0.120, V16: -0.504, V17: -0.572, V18: 0.692, V19: 1.558, V20: 0.295, V21: 0.061, V22: -0.040, V23: -0.541, V24: -0.947, V25: 1.031, V26: -0.505, V27: -0.007, V28: 0.021, Amount: 196.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.990, V2: -0.763, V3: -0.914, V4: -1.013, V5: 0.052, V6: -0.241, V7: 0.387, V8: -0.151, V9: 1.014, V10: -0.914, V11: 0.089, V12: 0.911, V13: -0.128, V14: 0.505, V15: 0.120, V16: -0.504, V17: -0.572, V18: 0.692, V19: 1.558, V20: 0.295, V21: 0.061, V22: -0.040, V23: -0.541, V24: -0.947, V25: 1.031, V26: -0.505, V27: -0.007, V28: 0.021, Amount: 196.500.
168
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.377, V2: 2.844, V3: -1.826, V4: -1.871, V5: 0.844, V6: -1.340, V7: 1.653, V8: -0.362, V9: 1.733, V10: 3.304, V11: 0.724, V12: -0.008, V13: -1.285, V14: 0.113, V15: -0.518, V16: -0.709, V17: -0.859, V18: 0.042, V19: -0.120, V20: 1.381, V21: -0.101, V22: 0.713, V23: -0.184, V24: -0.413, V25: 0.199, V26: 0.118, V27: 1.372, V28: 0.705, Amount: 3.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.377, V2: 2.844, V3: -1.826, V4: -1.871, V5: 0.844, V6: -1.340, V7: 1.653, V8: -0.362, V9: 1.733, V10: 3.304, V11: 0.724, V12: -0.008, V13: -1.285, V14: 0.113, V15: -0.518, V16: -0.709, V17: -0.859, V18: 0.042, V19: -0.120, V20: 1.381, V21: -0.101, V22: 0.713, V23: -0.184, V24: -0.413, V25: 0.199, V26: 0.118, V27: 1.372, V28: 0.705, Amount: 3.850.
169
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.347, V2: -0.398, V3: -0.045, V4: -0.606, V5: -0.664, V6: -1.071, V7: -0.128, V8: -0.287, V9: -1.142, V10: 0.626, V11: 0.279, V12: -0.364, V13: 0.170, V14: 0.099, V15: 0.641, V16: 0.351, V17: 0.792, V18: -2.097, V19: 0.116, V20: 0.064, V21: 0.298, V22: 0.811, V23: -0.135, V24: 0.455, V25: 0.695, V26: -0.032, V27: -0.011, V28: 0.005, Amount: 29.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.347, V2: -0.398, V3: -0.045, V4: -0.606, V5: -0.664, V6: -1.071, V7: -0.128, V8: -0.287, V9: -1.142, V10: 0.626, V11: 0.279, V12: -0.364, V13: 0.170, V14: 0.099, V15: 0.641, V16: 0.351, V17: 0.792, V18: -2.097, V19: 0.116, V20: 0.064, V21: 0.298, V22: 0.811, V23: -0.135, V24: 0.455, V25: 0.695, V26: -0.032, V27: -0.011, V28: 0.005, Amount: 29.950.
170
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.308, V2: 0.072, V3: 0.293, V4: -0.062, V5: -0.553, V6: -1.165, V7: 0.025, V8: -0.280, V9: 0.183, V10: -0.189, V11: -0.187, V12: 0.407, V13: 0.527, V14: 0.151, V15: 1.043, V16: 0.170, V17: -0.312, V18: -0.445, V19: 0.022, V20: -0.047, V21: 0.019, V22: 0.126, V23: -0.051, V24: 0.476, V25: 0.394, V26: 1.102, V27: -0.083, V28: 0.000, Amount: 0.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.308, V2: 0.072, V3: 0.293, V4: -0.062, V5: -0.553, V6: -1.165, V7: 0.025, V8: -0.280, V9: 0.183, V10: -0.189, V11: -0.187, V12: 0.407, V13: 0.527, V14: 0.151, V15: 1.043, V16: 0.170, V17: -0.312, V18: -0.445, V19: 0.022, V20: -0.047, V21: 0.019, V22: 0.126, V23: -0.051, V24: 0.476, V25: 0.394, V26: 1.102, V27: -0.083, V28: 0.000, Amount: 0.760.
171
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.249, V2: -0.581, V3: -0.389, V4: -1.307, V5: 0.753, V6: -0.725, V7: 0.501, V8: -0.527, V9: -1.108, V10: 0.764, V11: -1.600, V12: -1.193, V13: 0.805, V14: -0.313, V15: 0.497, V16: 0.663, V17: -0.113, V18: -0.651, V19: 1.698, V20: 0.518, V21: 0.593, V22: 1.721, V23: -0.005, V24: -0.928, V25: -0.932, V26: 0.058, V27: 0.080, V28: 0.052, Amount: 79.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.249, V2: -0.581, V3: -0.389, V4: -1.307, V5: 0.753, V6: -0.725, V7: 0.501, V8: -0.527, V9: -1.108, V10: 0.764, V11: -1.600, V12: -1.193, V13: 0.805, V14: -0.313, V15: 0.497, V16: 0.663, V17: -0.113, V18: -0.651, V19: 1.698, V20: 0.518, V21: 0.593, V22: 1.721, V23: -0.005, V24: -0.928, V25: -0.932, V26: 0.058, V27: 0.080, V28: 0.052, Amount: 79.500.
172
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.542, V2: -0.985, V3: 0.131, V4: -1.637, V5: -1.062, V6: -0.228, V7: -1.013, V8: -0.068, V9: -2.095, V10: 1.604, V11: 0.535, V12: -0.297, V13: 0.868, V14: -0.223, V15: -0.108, V16: 0.021, V17: -0.060, V18: 0.684, V19: 0.355, V20: -0.279, V21: -0.216, V22: -0.235, V23: -0.081, V24: -0.512, V25: 0.479, V26: -0.173, V27: 0.028, V28: 0.002, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.542, V2: -0.985, V3: 0.131, V4: -1.637, V5: -1.062, V6: -0.228, V7: -1.013, V8: -0.068, V9: -2.095, V10: 1.604, V11: 0.535, V12: -0.297, V13: 0.868, V14: -0.223, V15: -0.108, V16: 0.021, V17: -0.060, V18: 0.684, V19: 0.355, V20: -0.279, V21: -0.216, V22: -0.235, V23: -0.081, V24: -0.512, V25: 0.479, V26: -0.173, V27: 0.028, V28: 0.002, Amount: 10.000.
173
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.223, V2: 1.337, V3: 1.401, V4: 0.799, V5: -1.716, V6: 1.485, V7: -3.411, V8: -6.442, V9: -0.021, V10: -1.096, V11: 0.756, V12: 0.891, V13: -1.961, V14: 1.020, V15: -0.230, V16: 0.458, V17: 0.373, V18: 0.572, V19: 0.437, V20: 0.883, V21: -1.049, V22: 0.170, V23: 0.346, V24: 0.500, V25: 0.594, V26: 0.461, V27: 0.112, V28: 0.254, Amount: 28.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.223, V2: 1.337, V3: 1.401, V4: 0.799, V5: -1.716, V6: 1.485, V7: -3.411, V8: -6.442, V9: -0.021, V10: -1.096, V11: 0.756, V12: 0.891, V13: -1.961, V14: 1.020, V15: -0.230, V16: 0.458, V17: 0.373, V18: 0.572, V19: 0.437, V20: 0.883, V21: -1.049, V22: 0.170, V23: 0.346, V24: 0.500, V25: 0.594, V26: 0.461, V27: 0.112, V28: 0.254, Amount: 28.750.
174
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.143, V2: 0.287, V3: 1.180, V4: 2.453, V5: -0.085, V6: 1.126, V7: -0.560, V8: 0.278, V9: -0.041, V10: 0.411, V11: -1.251, V12: 0.699, V13: 1.526, V14: -0.707, V15: -0.140, V16: 0.509, V17: -0.519, V18: -0.543, V19: -0.894, V20: -0.082, V21: -0.098, V22: -0.022, V23: -0.045, V24: -0.740, V25: 0.383, V26: 0.034, V27: 0.067, V28: 0.027, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.143, V2: 0.287, V3: 1.180, V4: 2.453, V5: -0.085, V6: 1.126, V7: -0.560, V8: 0.278, V9: -0.041, V10: 0.411, V11: -1.251, V12: 0.699, V13: 1.526, V14: -0.707, V15: -0.140, V16: 0.509, V17: -0.519, V18: -0.543, V19: -0.894, V20: -0.082, V21: -0.098, V22: -0.022, V23: -0.045, V24: -0.740, V25: 0.383, V26: 0.034, V27: 0.067, V28: 0.027, Amount: 0.000.
175
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.091, V2: -0.734, V3: 0.613, V4: -2.057, V5: -0.404, V6: 0.387, V7: 0.267, V8: -0.177, V9: -0.546, V10: 0.505, V11: -0.064, V12: -0.703, V13: 0.212, V14: -0.703, V15: -0.411, V16: 1.865, V17: -0.892, V18: 0.010, V19: 0.777, V20: 0.074, V21: 0.389, V22: 1.325, V23: 0.070, V24: -1.010, V25: -0.300, V26: -0.123, V27: -0.121, V28: -0.259, Amount: 133.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.091, V2: -0.734, V3: 0.613, V4: -2.057, V5: -0.404, V6: 0.387, V7: 0.267, V8: -0.177, V9: -0.546, V10: 0.505, V11: -0.064, V12: -0.703, V13: 0.212, V14: -0.703, V15: -0.411, V16: 1.865, V17: -0.892, V18: 0.010, V19: 0.777, V20: 0.074, V21: 0.389, V22: 1.325, V23: 0.070, V24: -1.010, V25: -0.300, V26: -0.123, V27: -0.121, V28: -0.259, Amount: 133.000.
176
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.967, V2: -0.306, V3: -1.729, V4: 0.076, V5: 0.641, V6: 0.127, V7: 0.065, V8: -0.092, V9: 0.147, V10: 0.306, V11: 0.174, V12: 0.823, V13: 0.824, V14: 0.398, V15: 0.047, V16: 0.636, V17: -1.230, V18: 0.569, V19: 0.340, V20: 0.037, V21: 0.169, V22: 0.400, V23: -0.060, V24: -0.237, V25: 0.102, V26: 0.386, V27: -0.078, V28: -0.061, Amount: 73.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.967, V2: -0.306, V3: -1.729, V4: 0.076, V5: 0.641, V6: 0.127, V7: 0.065, V8: -0.092, V9: 0.147, V10: 0.306, V11: 0.174, V12: 0.823, V13: 0.824, V14: 0.398, V15: 0.047, V16: 0.636, V17: -1.230, V18: 0.569, V19: 0.340, V20: 0.037, V21: 0.169, V22: 0.400, V23: -0.060, V24: -0.237, V25: 0.102, V26: 0.386, V27: -0.078, V28: -0.061, Amount: 73.550.
177
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.904, V2: -0.552, V3: -0.094, V4: -0.616, V5: -0.593, V6: -0.387, V7: -0.194, V8: 0.096, V9: 1.268, V10: -1.472, V11: 1.844, V12: 1.271, V13: -0.268, V14: -0.906, V15: 0.750, V16: -0.388, V17: 0.914, V18: 0.620, V19: 0.359, V20: 0.166, V21: 0.095, V22: 0.216, V23: -0.227, V24: -0.054, V25: 0.522, V26: -0.628, V27: 0.073, V28: 0.063, Amount: 142.730.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.904, V2: -0.552, V3: -0.094, V4: -0.616, V5: -0.593, V6: -0.387, V7: -0.194, V8: 0.096, V9: 1.268, V10: -1.472, V11: 1.844, V12: 1.271, V13: -0.268, V14: -0.906, V15: 0.750, V16: -0.388, V17: 0.914, V18: 0.620, V19: 0.359, V20: 0.166, V21: 0.095, V22: 0.216, V23: -0.227, V24: -0.054, V25: 0.522, V26: -0.628, V27: 0.073, V28: 0.063, Amount: 142.730.
178
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.761, V2: 0.842, V3: -0.368, V4: -1.515, V5: 2.768, V6: 1.006, V7: 2.021, V8: -0.068, V9: -1.307, V10: -0.678, V11: 0.741, V12: 0.113, V13: -0.634, V14: 0.769, V15: -0.647, V16: -1.156, V17: -0.106, V18: -1.168, V19: -1.051, V20: -0.054, V21: 0.319, V22: 1.068, V23: -0.767, V24: -0.855, V25: 1.402, V26: 0.814, V27: -0.254, V28: -0.238, Amount: 40.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.761, V2: 0.842, V3: -0.368, V4: -1.515, V5: 2.768, V6: 1.006, V7: 2.021, V8: -0.068, V9: -1.307, V10: -0.678, V11: 0.741, V12: 0.113, V13: -0.634, V14: 0.769, V15: -0.647, V16: -1.156, V17: -0.106, V18: -1.168, V19: -1.051, V20: -0.054, V21: 0.319, V22: 1.068, V23: -0.767, V24: -0.855, V25: 1.402, V26: 0.814, V27: -0.254, V28: -0.238, Amount: 40.500.
179
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -6.349, V2: 3.465, V3: -1.020, V4: 3.217, V5: -2.810, V6: 2.464, V7: -2.485, V8: -6.078, V9: -1.330, V10: 0.548, V11: -1.955, V12: 0.053, V13: -1.008, V14: 1.512, V15: -0.298, V16: 1.904, V17: 0.405, V18: -0.080, V19: -1.319, V20: -1.977, V21: 3.076, V22: -2.216, V23: -0.175, V24: -0.107, V25: -0.095, V26: -0.309, V27: -1.073, V28: -0.500, Amount: 296.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -6.349, V2: 3.465, V3: -1.020, V4: 3.217, V5: -2.810, V6: 2.464, V7: -2.485, V8: -6.078, V9: -1.330, V10: 0.548, V11: -1.955, V12: 0.053, V13: -1.008, V14: 1.512, V15: -0.298, V16: 1.904, V17: 0.405, V18: -0.080, V19: -1.319, V20: -1.977, V21: 3.076, V22: -2.216, V23: -0.175, V24: -0.107, V25: -0.095, V26: -0.309, V27: -1.073, V28: -0.500, Amount: 296.600.
180
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.258, V2: -0.692, V3: -1.666, V4: -1.098, V5: -0.086, V6: -0.666, V7: -0.365, V8: -0.299, V9: -0.555, V10: 0.857, V11: -0.960, V12: -0.654, V13: 0.563, V14: -0.060, V15: 0.422, V16: 0.972, V17: -0.003, V18: -1.238, V19: 0.536, V20: 0.024, V21: 0.406, V22: 1.177, V23: -0.032, V24: 0.335, V25: 0.278, V26: 0.065, V27: -0.040, V28: -0.063, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.258, V2: -0.692, V3: -1.666, V4: -1.098, V5: -0.086, V6: -0.666, V7: -0.365, V8: -0.299, V9: -0.555, V10: 0.857, V11: -0.960, V12: -0.654, V13: 0.563, V14: -0.060, V15: 0.422, V16: 0.972, V17: -0.003, V18: -1.238, V19: 0.536, V20: 0.024, V21: 0.406, V22: 1.177, V23: -0.032, V24: 0.335, V25: 0.278, V26: 0.065, V27: -0.040, V28: -0.063, Amount: 15.000.
181
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.715, V2: 0.094, V3: -0.334, V4: 3.883, V5: -0.077, V6: 0.004, V7: -0.012, V8: -0.019, V9: -0.553, V10: 1.393, V11: -1.496, V12: -0.580, V13: -0.558, V14: 0.172, V15: -0.531, V16: 1.110, V17: -0.870, V18: -0.176, V19: -1.564, V20: -0.124, V21: 0.043, V22: -0.077, V23: 0.149, V24: -0.170, V25: -0.257, V26: -0.117, V27: -0.035, V28: -0.023, Amount: 104.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.715, V2: 0.094, V3: -0.334, V4: 3.883, V5: -0.077, V6: 0.004, V7: -0.012, V8: -0.019, V9: -0.553, V10: 1.393, V11: -1.496, V12: -0.580, V13: -0.558, V14: 0.172, V15: -0.531, V16: 1.110, V17: -0.870, V18: -0.176, V19: -1.564, V20: -0.124, V21: 0.043, V22: -0.077, V23: 0.149, V24: -0.170, V25: -0.257, V26: -0.117, V27: -0.035, V28: -0.023, Amount: 104.990.
182
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.880, V2: -0.089, V3: -1.809, V4: 1.226, V5: 0.584, V6: -0.422, V7: 0.493, V8: -0.135, V9: 0.076, V10: 0.422, V11: 0.558, V12: 0.436, V13: -1.347, V14: 0.935, V15: -1.057, V16: -0.467, V17: -0.332, V18: 0.001, V19: 0.056, V20: -0.207, V21: 0.121, V22: 0.319, V23: -0.015, V24: 0.684, V25: 0.387, V26: -0.546, V27: -0.041, V28: -0.057, Amount: 67.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.880, V2: -0.089, V3: -1.809, V4: 1.226, V5: 0.584, V6: -0.422, V7: 0.493, V8: -0.135, V9: 0.076, V10: 0.422, V11: 0.558, V12: 0.436, V13: -1.347, V14: 0.935, V15: -1.057, V16: -0.467, V17: -0.332, V18: 0.001, V19: 0.056, V20: -0.207, V21: 0.121, V22: 0.319, V23: -0.015, V24: 0.684, V25: 0.387, V26: -0.546, V27: -0.041, V28: -0.057, Amount: 67.400.
183
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.410, V2: 1.269, V3: -0.621, V4: -1.067, V5: 1.124, V6: -0.832, V7: 0.821, V8: 0.065, V9: -0.074, V10: -0.252, V11: 1.114, V12: 1.081, V13: 0.619, V14: -0.997, V15: -1.369, V16: 0.601, V17: -0.056, V18: 0.086, V19: -0.492, V20: -0.005, V21: -0.221, V22: -0.507, V23: -0.019, V24: 0.692, V25: -0.834, V26: -0.132, V27: -0.189, V28: 0.089, Amount: 2.670.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.410, V2: 1.269, V3: -0.621, V4: -1.067, V5: 1.124, V6: -0.832, V7: 0.821, V8: 0.065, V9: -0.074, V10: -0.252, V11: 1.114, V12: 1.081, V13: 0.619, V14: -0.997, V15: -1.369, V16: 0.601, V17: -0.056, V18: 0.086, V19: -0.492, V20: -0.005, V21: -0.221, V22: -0.507, V23: -0.019, V24: 0.692, V25: -0.834, V26: -0.132, V27: -0.189, V28: 0.089, Amount: 2.670.
184
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.865, V2: -0.138, V3: -0.827, V4: 1.297, V5: -0.142, V6: -0.508, V7: -0.014, V8: -0.070, V9: 0.341, V10: 0.385, V11: 0.818, V12: 0.911, V13: -0.398, V14: 0.510, V15: -0.522, V16: 0.048, V17: -0.639, V18: 0.254, V19: -0.255, V20: -0.211, V21: 0.157, V22: 0.510, V23: 0.084, V24: -0.003, V25: 0.045, V26: -0.617, V27: 0.013, V28: -0.048, Amount: 44.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.865, V2: -0.138, V3: -0.827, V4: 1.297, V5: -0.142, V6: -0.508, V7: -0.014, V8: -0.070, V9: 0.341, V10: 0.385, V11: 0.818, V12: 0.911, V13: -0.398, V14: 0.510, V15: -0.522, V16: 0.048, V17: -0.639, V18: 0.254, V19: -0.255, V20: -0.211, V21: 0.157, V22: 0.510, V23: 0.084, V24: -0.003, V25: 0.045, V26: -0.617, V27: 0.013, V28: -0.048, Amount: 44.130.
185
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -9.774, V2: 7.831, V3: -8.154, V4: 0.766, V5: -5.515, V6: -1.801, V7: -5.394, V8: 7.385, V9: -0.865, V10: 0.560, V11: -3.539, V12: 2.906, V13: 1.713, V14: 4.997, V15: 0.245, V16: 1.576, V17: 2.408, V18: 0.543, V19: 0.310, V20: -0.504, V21: 0.445, V22: 0.056, V23: 1.020, V24: -0.482, V25: 0.426, V26: -0.305, V27: -0.733, V28: -0.319, Amount: 14.230.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -9.774, V2: 7.831, V3: -8.154, V4: 0.766, V5: -5.515, V6: -1.801, V7: -5.394, V8: 7.385, V9: -0.865, V10: 0.560, V11: -3.539, V12: 2.906, V13: 1.713, V14: 4.997, V15: 0.245, V16: 1.576, V17: 2.408, V18: 0.543, V19: 0.310, V20: -0.504, V21: 0.445, V22: 0.056, V23: 1.020, V24: -0.482, V25: 0.426, V26: -0.305, V27: -0.733, V28: -0.319, Amount: 14.230.
186
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.082, V2: -0.143, V3: 0.277, V4: -0.550, V5: 1.799, V6: -0.858, V7: 1.101, V8: -0.307, V9: 0.041, V10: -1.578, V11: -0.496, V12: 0.395, V13: 0.969, V14: -1.951, V15: -0.495, V16: -0.180, V17: 0.832, V18: 0.056, V19: -0.009, V20: 0.550, V21: -0.096, V22: -0.355, V23: 0.126, V24: 0.504, V25: 0.189, V26: -0.147, V27: -0.120, V28: -0.034, Amount: 116.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.082, V2: -0.143, V3: 0.277, V4: -0.550, V5: 1.799, V6: -0.858, V7: 1.101, V8: -0.307, V9: 0.041, V10: -1.578, V11: -0.496, V12: 0.395, V13: 0.969, V14: -1.951, V15: -0.495, V16: -0.180, V17: 0.832, V18: 0.056, V19: -0.009, V20: 0.550, V21: -0.096, V22: -0.355, V23: 0.126, V24: 0.504, V25: 0.189, V26: -0.147, V27: -0.120, V28: -0.034, Amount: 116.000.
187
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.125, V2: -1.069, V3: -0.765, V4: -1.144, V5: -0.652, V6: 0.226, V7: -1.102, V8: 0.147, V9: -0.119, V10: 0.869, V11: 0.366, V12: -0.041, V13: 0.089, V14: -0.261, V15: -0.372, V16: 1.676, V17: -0.371, V18: -0.752, V19: 1.155, V20: 0.062, V21: -0.028, V22: -0.196, V23: 0.314, V24: 0.058, V25: -0.440, V26: -0.501, V27: -0.002, V28: -0.046, Amount: 34.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.125, V2: -1.069, V3: -0.765, V4: -1.144, V5: -0.652, V6: 0.226, V7: -1.102, V8: 0.147, V9: -0.119, V10: 0.869, V11: 0.366, V12: -0.041, V13: 0.089, V14: -0.261, V15: -0.372, V16: 1.676, V17: -0.371, V18: -0.752, V19: 1.155, V20: 0.062, V21: -0.028, V22: -0.196, V23: 0.314, V24: 0.058, V25: -0.440, V26: -0.501, V27: -0.002, V28: -0.046, Amount: 34.000.
188
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.761, V2: -0.517, V3: 0.622, V4: 1.370, V5: -0.715, V6: -0.075, V7: -0.078, V8: 0.039, V9: 0.290, V10: -0.099, V11: -0.271, V12: 0.109, V13: -0.148, V14: 0.244, V15: 1.529, V16: 0.206, V17: -0.315, V18: -0.176, V19: -1.044, V20: 0.241, V21: 0.264, V22: 0.363, V23: -0.214, V24: 0.082, V25: 0.343, V26: -0.292, V27: 0.020, V28: 0.064, Amount: 211.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.761, V2: -0.517, V3: 0.622, V4: 1.370, V5: -0.715, V6: -0.075, V7: -0.078, V8: 0.039, V9: 0.290, V10: -0.099, V11: -0.271, V12: 0.109, V13: -0.148, V14: 0.244, V15: 1.529, V16: 0.206, V17: -0.315, V18: -0.176, V19: -1.044, V20: 0.241, V21: 0.264, V22: 0.363, V23: -0.214, V24: 0.082, V25: 0.343, V26: -0.292, V27: 0.020, V28: 0.064, Amount: 211.000.
189
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.143, V2: 0.492, V3: 1.423, V4: -2.166, V5: 0.303, V6: 0.028, V7: 0.934, V8: -0.440, V9: 1.597, V10: -0.559, V11: 0.966, V12: 0.645, V13: -1.163, V14: -0.393, V15: -0.421, V16: -1.018, V17: -0.387, V18: -0.164, V19: 0.467, V20: -0.221, V21: -0.110, V22: -0.065, V23: -0.266, V24: -0.333, V25: -0.098, V26: -1.083, V27: -1.007, V28: -0.262, Amount: 26.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.143, V2: 0.492, V3: 1.423, V4: -2.166, V5: 0.303, V6: 0.028, V7: 0.934, V8: -0.440, V9: 1.597, V10: -0.559, V11: 0.966, V12: 0.645, V13: -1.163, V14: -0.393, V15: -0.421, V16: -1.018, V17: -0.387, V18: -0.164, V19: 0.467, V20: -0.221, V21: -0.110, V22: -0.065, V23: -0.266, V24: -0.333, V25: -0.098, V26: -1.083, V27: -1.007, V28: -0.262, Amount: 26.000.
190
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.353, V2: -0.562, V3: 0.507, V4: -0.370, V5: -1.148, V6: -0.781, V7: -0.461, V8: -0.194, V9: -0.541, V10: 0.517, V11: -0.775, V12: 0.320, V13: 0.559, V14: -0.318, V15: -0.340, V16: -1.762, V17: 0.353, V18: 0.445, V19: -0.345, V20: -0.455, V21: -0.610, V22: -1.120, V23: 0.112, V24: 0.418, V25: 0.210, V26: 0.910, V27: -0.045, V28: 0.010, Amount: 16.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.353, V2: -0.562, V3: 0.507, V4: -0.370, V5: -1.148, V6: -0.781, V7: -0.461, V8: -0.194, V9: -0.541, V10: 0.517, V11: -0.775, V12: 0.320, V13: 0.559, V14: -0.318, V15: -0.340, V16: -1.762, V17: 0.353, V18: 0.445, V19: -0.345, V20: -0.455, V21: -0.610, V22: -1.120, V23: 0.112, V24: 0.418, V25: 0.210, V26: 0.910, V27: -0.045, V28: 0.010, Amount: 16.970.
191
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.181, V2: -0.663, V3: -1.421, V4: -1.108, V5: -0.186, V6: -0.599, V7: -0.396, V8: -0.235, V9: -0.985, V10: 0.998, V11: 1.330, V12: 0.678, V13: 1.299, V14: -0.014, V15: -0.414, V16: 0.983, V17: -0.127, V18: -1.013, V19: 0.635, V20: 0.077, V21: 0.500, V22: 1.453, V23: 0.005, V24: 0.797, V25: 0.213, V26: 0.014, V27: -0.037, V28: -0.066, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.181, V2: -0.663, V3: -1.421, V4: -1.108, V5: -0.186, V6: -0.599, V7: -0.396, V8: -0.235, V9: -0.985, V10: 0.998, V11: 1.330, V12: 0.678, V13: 1.299, V14: -0.014, V15: -0.414, V16: 0.983, V17: -0.127, V18: -1.013, V19: 0.635, V20: 0.077, V21: 0.500, V22: 1.453, V23: 0.005, V24: 0.797, V25: 0.213, V26: 0.014, V27: -0.037, V28: -0.066, Amount: 15.000.
192
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.388, V2: -0.395, V3: -0.109, V4: -0.716, V5: -0.749, V6: -1.211, V7: -0.181, V8: -0.229, V9: -1.301, V10: 0.879, V11: 1.510, V12: -0.303, V13: -0.833, V14: 0.489, V15: -0.201, V16: 0.903, V17: 0.278, V18: -1.070, V19: 0.853, V20: 0.019, V21: 0.247, V22: 0.565, V23: -0.142, V24: 0.568, V25: 0.707, V26: -0.113, V27: -0.038, V28: -0.008, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.388, V2: -0.395, V3: -0.109, V4: -0.716, V5: -0.749, V6: -1.211, V7: -0.181, V8: -0.229, V9: -1.301, V10: 0.879, V11: 1.510, V12: -0.303, V13: -0.833, V14: 0.489, V15: -0.201, V16: 0.903, V17: 0.278, V18: -1.070, V19: 0.853, V20: 0.019, V21: 0.247, V22: 0.565, V23: -0.142, V24: 0.568, V25: 0.707, V26: -0.113, V27: -0.038, V28: -0.008, Amount: 15.000.
193
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.143, V2: 0.195, V3: 0.302, V4: 1.194, V5: 0.131, V6: 0.350, V7: 0.006, V8: 0.114, V9: -0.051, V10: 0.024, V11: 0.986, V12: 1.476, V13: 0.530, V14: 0.106, V15: -0.846, V16: -0.463, V17: -0.146, V18: -0.460, V19: 0.041, V20: -0.122, V21: -0.063, V22: 0.051, V23: -0.124, V24: -0.269, V25: 0.700, V26: -0.312, V27: 0.040, V28: 0.004, Amount: 9.460.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.143, V2: 0.195, V3: 0.302, V4: 1.194, V5: 0.131, V6: 0.350, V7: 0.006, V8: 0.114, V9: -0.051, V10: 0.024, V11: 0.986, V12: 1.476, V13: 0.530, V14: 0.106, V15: -0.846, V16: -0.463, V17: -0.146, V18: -0.460, V19: 0.041, V20: -0.122, V21: -0.063, V22: 0.051, V23: -0.124, V24: -0.269, V25: 0.700, V26: -0.312, V27: 0.040, V28: 0.004, Amount: 9.460.
194
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.137, V2: -0.479, V3: 1.026, V4: -0.613, V5: -1.419, V6: -0.976, V7: -0.521, V8: -0.067, V9: 1.789, V10: -1.106, V11: -0.124, V12: 0.933, V13: 0.076, V14: -0.166, V15: 1.252, V16: -0.525, V17: -0.042, V18: 0.100, V19: 0.402, V20: -0.036, V21: 0.054, V22: 0.315, V23: -0.043, V24: 0.745, V25: 0.449, V26: -0.698, V27: 0.088, V28: 0.047, Amount: 45.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.137, V2: -0.479, V3: 1.026, V4: -0.613, V5: -1.419, V6: -0.976, V7: -0.521, V8: -0.067, V9: 1.789, V10: -1.106, V11: -0.124, V12: 0.933, V13: 0.076, V14: -0.166, V15: 1.252, V16: -0.525, V17: -0.042, V18: 0.100, V19: 0.402, V20: -0.036, V21: 0.054, V22: 0.315, V23: -0.043, V24: 0.745, V25: 0.449, V26: -0.698, V27: 0.088, V28: 0.047, Amount: 45.000.
195
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.189, V2: 2.514, V3: -2.408, V4: 0.057, V5: 5.789, V6: -4.343, V7: -7.874, V8: -3.840, V9: -1.498, V10: -2.116, V11: 0.564, V12: 2.147, V13: -0.403, V14: 0.898, V15: -0.883, V16: 0.353, V17: 2.623, V18: 0.960, V19: -0.287, V20: 0.302, V21: -2.027, V22: 0.128, V23: -9.890, V24: 0.008, V25: -0.668, V26: -0.344, V27: -0.497, V28: 0.162, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.189, V2: 2.514, V3: -2.408, V4: 0.057, V5: 5.789, V6: -4.343, V7: -7.874, V8: -3.840, V9: -1.498, V10: -2.116, V11: 0.564, V12: 2.147, V13: -0.403, V14: 0.898, V15: -0.883, V16: 0.353, V17: 2.623, V18: 0.960, V19: -0.287, V20: 0.302, V21: -2.027, V22: 0.128, V23: -9.890, V24: 0.008, V25: -0.668, V26: -0.344, V27: -0.497, V28: 0.162, Amount: 15.000.
196
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.184, V2: 0.984, V3: -1.589, V4: -0.670, V5: 1.687, V6: -0.880, V7: 1.312, V8: -0.144, V9: -0.482, V10: -0.512, V11: 0.490, V12: -0.132, V13: -1.044, V14: -0.424, V15: -1.295, V16: 0.104, V17: 0.304, V18: 0.624, V19: 0.124, V20: -0.030, V21: 0.137, V22: 0.552, V23: -0.178, V24: 0.303, V25: -0.352, V26: 0.531, V27: 0.291, V28: 0.178, Amount: 4.440.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.184, V2: 0.984, V3: -1.589, V4: -0.670, V5: 1.687, V6: -0.880, V7: 1.312, V8: -0.144, V9: -0.482, V10: -0.512, V11: 0.490, V12: -0.132, V13: -1.044, V14: -0.424, V15: -1.295, V16: 0.104, V17: 0.304, V18: 0.624, V19: 0.124, V20: -0.030, V21: 0.137, V22: 0.552, V23: -0.178, V24: 0.303, V25: -0.352, V26: 0.531, V27: 0.291, V28: 0.178, Amount: 4.440.
197
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.934, V2: -0.526, V3: -1.171, V4: 0.127, V5: -0.265, V6: -0.583, V7: -0.113, V8: -0.042, V9: 1.063, V10: -0.019, V11: 0.226, V12: 0.422, V13: -1.521, V14: 0.563, V15: -0.803, V16: -0.153, V17: -0.385, V18: 0.124, V19: 0.759, V20: -0.221, V21: -0.124, V22: -0.299, V23: 0.141, V24: -0.357, V25: -0.116, V26: -0.089, V27: -0.046, V28: -0.064, Amount: 50.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.934, V2: -0.526, V3: -1.171, V4: 0.127, V5: -0.265, V6: -0.583, V7: -0.113, V8: -0.042, V9: 1.063, V10: -0.019, V11: 0.226, V12: 0.422, V13: -1.521, V14: 0.563, V15: -0.803, V16: -0.153, V17: -0.385, V18: 0.124, V19: 0.759, V20: -0.221, V21: -0.124, V22: -0.299, V23: 0.141, V24: -0.357, V25: -0.116, V26: -0.089, V27: -0.046, V28: -0.064, Amount: 50.000.
198
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.582, V2: -1.198, V3: -1.147, V4: -2.504, V5: 0.985, V6: 3.234, V7: -1.492, V8: 0.748, V9: -1.984, V10: 1.502, V11: -0.243, V12: -1.027, V13: 0.498, V14: -0.177, V15: 0.749, V16: -0.078, V17: 0.006, V18: 0.397, V19: 0.129, V20: -0.209, V21: -0.269, V22: -0.523, V23: 0.002, V24: 0.982, V25: 0.550, V26: -0.191, V27: 0.033, V28: 0.014, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.582, V2: -1.198, V3: -1.147, V4: -2.504, V5: 0.985, V6: 3.234, V7: -1.492, V8: 0.748, V9: -1.984, V10: 1.502, V11: -0.243, V12: -1.027, V13: 0.498, V14: -0.177, V15: 0.749, V16: -0.078, V17: 0.006, V18: 0.397, V19: 0.129, V20: -0.209, V21: -0.269, V22: -0.523, V23: 0.002, V24: 0.982, V25: 0.550, V26: -0.191, V27: 0.033, V28: 0.014, Amount: 10.000.
199
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.916, V2: -0.458, V3: 0.337, V4: 0.481, V5: -1.008, V6: -0.193, V7: -1.056, V8: 0.069, V9: 2.372, V10: -0.228, V11: 1.889, V12: -1.328, V13: 1.945, V14: 1.271, V15: -0.701, V16: 0.792, V17: -0.130, V18: 0.737, V19: -0.264, V20: -0.188, V21: -0.053, V22: 0.214, V23: 0.323, V24: 0.050, V25: -0.659, V26: 0.416, V27: -0.042, V28: -0.052, Amount: 14.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.916, V2: -0.458, V3: 0.337, V4: 0.481, V5: -1.008, V6: -0.193, V7: -1.056, V8: 0.069, V9: 2.372, V10: -0.228, V11: 1.889, V12: -1.328, V13: 1.945, V14: 1.271, V15: -0.701, V16: 0.792, V17: -0.130, V18: 0.737, V19: -0.264, V20: -0.188, V21: -0.053, V22: 0.214, V23: 0.323, V24: 0.050, V25: -0.659, V26: 0.416, V27: -0.042, V28: -0.052, Amount: 14.950.