Datasets:

File size: 1,409 Bytes
74d0bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aabcfc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# MiTC

## Introduction

[MiLMo](https://github.com/CMLI-NLP/MiLMo) constructs a minority multilingual text classification dataset named MiTC which contains five languages, including Mongolian, Tibetan, Uyghur, Kazakh and Korean.

We also use [MiLMo](https://github.com/CMLI-NLP/MiLMo) for the downstream experiment of text classification on MiTC.

## Hugging Face

https://huggingface.co/datasets/CMLI-NLP/MiTC

## Citation

Plain Text:  
J. Deng, H. Shi, X. Yu, W. Bao, Y. Sun and X. Zhao, "MiLMo:Minority Multilingual Pre-Trained Language Model," 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA, 2023, pp. 329-334, doi: 10.1109/SMC53992.2023.10393961.

BibTeX:
```
@INPROCEEDINGS{10393961,
  author={Deng, Junjie and Shi, Hanru and Yu, Xinhe and Bao, Wugedele and Sun, Yuan and Zhao, Xiaobing},
  booktitle={2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)}, 
  title={MiLMo:Minority Multilingual Pre-Trained Language Model}, 
  year={2023},
  volume={},
  number={},
  pages={329-334},
  keywords={Soft sensors;Text categorization;Social sciences;Government;Data acquisition;Morphology;Data models;Multilingual;Pre-trained language model;Datasets;Word2vec},
  doi={10.1109/SMC53992.2023.10393961}}
```

## Disclaimer

This dataset/model is for academic research purposes only. Prohibited for any commercial or unethical purposes.