|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Common Voice Dataset""" |
|
|
|
from datasets import AutomaticSpeechRecognition |
|
|
|
|
|
import datasets |
|
import os |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@misc{cahyawijaya2023crosslingual, |
|
title={Cross-Lingual Cross-Age Group Adaptation for Low-Resource Elderly Speech Emotion Recognition}, |
|
author={Samuel Cahyawijaya and Holy Lovenia and Willy Chung and Rita Frieske and Zihan Liu and Pascale Fung}, |
|
year={2023}, |
|
eprint={2306.14517}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
YueMotion is a Cantonese speech emotion dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/YueMotion" |
|
|
|
_URL = "https://huggingface.co/datasets/CAiRE/YueMotion/raw/main/" |
|
_URLS = { |
|
"train": _URL + "train_metadata.csv", |
|
"test": _URL + "test_metadata.csv", |
|
"validation": _URL + "validation_metadata.csv", |
|
"waves": "https://huggingface.co/datasets/CAiRE/YueMotion/resolve/main/data.tar.bz2", |
|
} |
|
|
|
|
|
class YueMotionConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for YueMotion.""" |
|
|
|
def __init__(self, name="main", **kwargs): |
|
""" |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(YueMotionConfig, self).__init__(name, **kwargs) |
|
|
|
|
|
class YueMotion(datasets.GeneratorBasedBuilder): |
|
"""YueMotion: Cantonese speech emotion recognition for both adults and elderly. Snapshot date: 28 June 2023.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
YueMotionConfig( |
|
name="main", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"split": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"gender": datasets.Value("string"), |
|
"age": datasets.Value("int64"), |
|
"sentence_id": datasets.Value("string"), |
|
"label_id": datasets.Value("int64"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="transcription")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"metadata_path": downloaded_files["train"], |
|
"wave_path": downloaded_files["waves"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"metadata_path": downloaded_files["test"], |
|
"wave_path": downloaded_files["waves"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"metadata_path": downloaded_files["validation"], |
|
"wave_path": downloaded_files["waves"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, metadata_path, wave_path): |
|
print(metadata_path) |
|
metadata_df = pd.read_csv(metadata_path) |
|
|
|
for index, row in metadata_df.iterrows(): |
|
example = { |
|
"split": row["split"], |
|
"speaker_id": row["speaker_id"], |
|
"path": os.path.join(wave_path, row["file_name"]), |
|
"audio": os.path.join(wave_path, row["file_name"]), |
|
"gender": row["gender"], |
|
"age": row["age"], |
|
"sentence_id": row["sentence_id"], |
|
"label_id": row["label_id"], |
|
"label": row["label"], |
|
} |
|
yield index, example |