File size: 3,631 Bytes
5680f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d185c42
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: label
    dtype: int64
  splits:
  - name: candle.train
    num_bytes: 106451773.0
    num_examples: 900
  - name: candle.test
    num_bytes: 23359449.0
    num_examples: 200
  - name: capsules.train
    num_bytes: 133021141.0
    num_examples: 542
  - name: capsules.test
    num_bytes: 39865980.0
    num_examples: 160
  - name: cashew.train
    num_bytes: 135528457.0
    num_examples: 450
  - name: cashew.test
    num_bytes: 48713873.0
    num_examples: 150
  - name: chewinggum.train
    num_bytes: 63491934.0
    num_examples: 453
  - name: chewinggum.test
    num_bytes: 21472874.0
    num_examples: 150
  - name: fryum.train
    num_bytes: 63780392.0
    num_examples: 450
  - name: fryum.test
    num_bytes: 21646212.0
    num_examples: 150
  - name: macaroni1.train
    num_bytes: 105415318.0
    num_examples: 900
  - name: macaroni1.test
    num_bytes: 24090768.0
    num_examples: 200
  - name: macaroni2.train
    num_bytes: 100349144.0
    num_examples: 900
  - name: macaroni2.test
    num_bytes: 22470288.0
    num_examples: 200
  - name: pcb1.train
    num_bytes: 244978923.0
    num_examples: 904
  - name: pcb1.test
    num_bytes: 53521326.0
    num_examples: 200
  - name: pcb2.train
    num_bytes: 224276308.0
    num_examples: 901
  - name: pcb2.test
    num_bytes: 51075179.0
    num_examples: 200
  - name: pcb3.train
    num_bytes: 127418394.0
    num_examples: 905
  - name: pcb3.test
    num_bytes: 28467534.0
    num_examples: 201
  - name: pcb4.train
    num_bytes: 192400641.0
    num_examples: 904
  - name: pcb4.test
    num_bytes: 44329307.0
    num_examples: 201
  - name: pipe_fryum.train
    num_bytes: 42230565.0
    num_examples: 450
  - name: pipe_fryum.test
    num_bytes: 14593580.0
    num_examples: 150
  download_size: 1917906073
  dataset_size: 1932949360.0
configs:
- config_name: default
  data_files:
  - split: candle.train
    path: data/candle.train-*
  - split: candle.test
    path: data/candle.test-*
  - split: capsules.train
    path: data/capsules.train-*
  - split: capsules.test
    path: data/capsules.test-*
  - split: cashew.train
    path: data/cashew.train-*
  - split: cashew.test
    path: data/cashew.test-*
  - split: chewinggum.train
    path: data/chewinggum.train-*
  - split: chewinggum.test
    path: data/chewinggum.test-*
  - split: fryum.train
    path: data/fryum.train-*
  - split: fryum.test
    path: data/fryum.test-*
  - split: macaroni1.train
    path: data/macaroni1.train-*
  - split: macaroni1.test
    path: data/macaroni1.test-*
  - split: macaroni2.train
    path: data/macaroni2.train-*
  - split: macaroni2.test
    path: data/macaroni2.test-*
  - split: pcb1.train
    path: data/pcb1.train-*
  - split: pcb1.test
    path: data/pcb1.test-*
  - split: pcb2.train
    path: data/pcb2.train-*
  - split: pcb2.test
    path: data/pcb2.test-*
  - split: pcb3.train
    path: data/pcb3.train-*
  - split: pcb3.test
    path: data/pcb3.test-*
  - split: pcb4.train
    path: data/pcb4.train-*
  - split: pcb4.test
    path: data/pcb4.test-*
  - split: pipe_fryum.train
    path: data/pipe_fryum.train-*
  - split: pipe_fryum.test
    path: data/pipe_fryum.test-*
---


Original dataset:

```
@inproceedings{zou2022spot,
  title={Spot-the-difference self-supervised pre-training for anomaly detection and segmentation},
  author={Zou, Yang and Jeong, Jongheon and Pemula, Latha and Zhang, Dongqing and Dabeer, Onkar},
  booktitle={European Conference on Computer Vision},
  pages={392--408},
  year={2022},
  organization={Springer}
}
```