Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 4,238 Bytes
bd5af0c
9c76e8d
bd5af0c
 
 
 
 
 
 
 
 
 
 
bb80189
 
 
 
 
 
ffe27aa
ab2e99e
ffe27aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb80189
 
 
 
ffe27aa
 
bb80189
ffe27aa
 
bb80189
ffe27aa
 
bd5af0c
bfe44a0
bd5af0c
 
 
bfe44a0
 
bb80189
e090673
748bed8
e090673
 
 
bfe44a0
e090673
bfe44a0
 
 
 
 
 
580465b
bfe44a0
580465b
f565002
c868d12
bfe44a0
f1385f8
cd0dd1f
fb752e9
4275025
cd0dd1f
 
45aa035
4275025
 
 
cd0dd1f
 
bfe44a0
 
 
 
e090673
0859fd5
 
 
 
 
 
b3c12c3
 
0859fd5
 
 
728aa7e
0859fd5
265304e
 
73d6b54
265304e
 
 
 
 
 
0859fd5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: mit
task_categories:
- text-classification
language:
- en
pretty_name: sst2_cognitive-bias
size_categories:
- 100K<n<1M
source_datasets:
- sst2
dataset_info:
  features:
  - name: idx
    dtype: string
  - name: sentence
    dtype: string
  - name: label
    dtype: int64
  - name: dist
    dtype: string
  - name: shot1_idx
    dtype: string
  - name: shot1_sent
    dtype: string
  - name: shot1_label
    dtype: int64
  - name: shot2_idx
    dtype: string
  - name: shot2_sent
    dtype: string
  - name: shot2_label
    dtype: int64
  - name: shot3_idx
    dtype: string
  - name: shot3_sent
    dtype: string
  - name: shot3_label
    dtype: int64
  - name: shot4_idx
    dtype: string
  - name: shot4_sent
    dtype: string
  - name: shot4_label
    dtype: int64
  - name: few_shot_string
    dtype: string
  - name: few_shot_hard_string
    dtype: string
  - name: id
    dtype: int64
  splits:
  - name: train
    num_bytes: 286790625
    num_examples: 250000
  download_size: 47727501
  dataset_size: 286790625
splits:
- name: train
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for cobie_sst2

This dataset is a modification of the original [SST-2](https://huggingface.co/datasets/stanfordnlp/sst2) dataset for LLM cognitive bias evaluation.

## Language(s)

- English (`en`)

## Dataset Summary

The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language. 
The corpus is based on the dataset introduced by Pang and Lee (2005) and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges.

## Dataset Structure

The modifications carried out in the dataset are thought to evaluate cognitive biases in a few-shot setting and with two different task complexities. 
We make use of 25,000 instances from the original dataset, while the remaining ones serve as few-shot examples.
Each instance is prompted with all possible unbalanced 4-shot distributions.
To increase the original task complexity, we also introduce an additional neutral example between the first and last two examples.

**Dataset Fields**
- `idx`: original sentence id, in the format `<original_partition>_<original_id>`.
- `sentence`: test sentence.
- `label`: sentiment of the test sentence, either "negative" (`0`) or "positive" (`1`).
- `dist`: few-shot distribution (`0000`, `1111`, `0001`, `0010`, `0100`, `1000`, `1110`, `1101`, `1011`, `0111`).
- `shot<n>_idx`: original id of the example sentence, in the format `<original_partition>_<original_id>`.
- `shot<n>_sent`: example sentence.
- `shot<n>_label`: sentiment of the example sentence.
- `few_shot_string`: string with all 4 shots the sentence is prompted with.
- `few_shot_hard_string`: string with the same 4 shots and an additional neutral example between the first and last two to increase task complexity.

## Supported Tasks and Leaderboards

- `sentiment-classification`

## Additional Information

**Dataset Curators**

Language Technologies Unit (LangTech) at the Barcelona Supercomputing Center.

This work has been promoted and financed by the Generalitat de Catalunya through the [Aina](https://projecteaina.cat/) project. 
This work is also funded by the Ministerio para la Transformación Digital y de la Función Pública and Plan de Recuperación, Transformación y Resiliencia - Funded by EU – NextGenerationEU within the framework of the project Desarrollo Modelos ALIA.

**Licensing Information**

This work is licensed under a [MIT License](https://github.com/YJiangcm/Movielens1M-Movie-Recommendation-System/blob/main/LICENSE) (same as original).

## Citation Information

```
@inproceedings{cobie,
  title={Cognitive Biases, Task Complexity, and Result Intepretability in Large Language Models},
  author={Mario Mina and Valle Ruiz-Fernández and Júlia Falcão and Luis Vasquez-Reina and Aitor Gonzalez-Agirre},
  booktitle={Proceedings of The 31st International Conference on Computational Linguistics (COLING)},
  year={2025 (to appear)}
}
```