text
stringlengths
105
4.57k
label
int64
0
1
label_text
stringclasses
2 values
Cosmid vectors are plasmids that contain a small region of bacteriophage λ DNA called the cos sequence. This sequence allows the cosmid to be packaged into bacteriophage λ particles. These particles- containing a linearized cosmid- are introduced into the host cell by transduction. Once inside the host, the cosmids circularize with the aid of the host's DNA ligase and then function as plasmids. Cosmids are capable of carrying inserts up to 40kb in size.
1
Applied and Interdisciplinary Chemistry
Grid spectroscopy is an extension of force spectroscopy described above. In grid spectroscopy multiple force spectra are taken in a grid over a surface, to build up a three-dimensional force map above the surface. These experiments can take a considerable time, often over 24 hours, thus the microscope is usually cooled with liquid helium or an atom tracking method is employed to correct for drift.
0
Theoretical and Fundamental Chemistry
An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow (in the latter two cases it is often called a ).
1
Applied and Interdisciplinary Chemistry
Spontaneous deamination of 5-methylcytosine results in thymine and ammonia. This is the most common single nucleotide mutation. In DNA, this reaction, if detected prior to passage of the replication fork, can be corrected by the enzyme thymine-DNA glycosylase, which removes the thymine base in a G/T mismatch. This leaves an abasic site that is repaired by AP endonucleases and polymerase, as with uracil-DNA glycosylase.
1
Applied and Interdisciplinary Chemistry
PEMFCs have some advantages over other types of fuel cells such as solid oxide fuel cells (SOFC). PEMFCs operate at a lower temperature, are lighter and more compact, which makes them ideal for applications such as cars. However, some disadvantages are: the ~80 °C operating temperature is too low for cogeneration like in SOFCs, and that the electrolyte for PEMFCs must be water-saturated. However, some fuel-cell cars, including the Toyota Mirai, operate without humidifiers, relying on rapid water generation and the high rate of back-diffusion through thin membranes to maintain the hydration of the membrane, as well as the ionomer in the catalyst layers. High-temperature PEMFCs operate between 100 °C and 200 °C, potentially offering benefits in electrode kinetics and heat management, and better tolerance to fuel impurities, particularly CO in reformate. These improvements potentially could lead to higher overall system efficiencies. However, these gains have yet to be realized, as the gold-standard perfluorinated sulfonic acid (PFSA) membranes lose function rapidly at 100 °C and above if hydration drops below ~100%, and begin to creep in this temperature range, resulting in localized thinning and overall lower system lifetimes. As a result, new anhydrous proton conductors, such as protic organic ionic plastic crystals (POIPCs) and protic ionic liquids, are actively studied for the development of suitable PEMs. The fuel for the PEMFC is hydrogen, and the charge carrier is the hydrogen ion (proton). At the anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The hydrogen ions permeate across the electrolyte to the cathode, while the electrons flow through an external circuit and produce electric power. Oxygen, usually in the form of air, is supplied to the cathode and combines with the electrons and the hydrogen ions to produce water. The reactions at the electrodes are as follows: :Anode reaction: ::2H → 4H + 4e :Cathode reaction: ::O + 4H + 4e → 2HO :Overall cell reaction: ::2H + O → 2HO + heat + electrical energy The theoretical exothermic potential is +1.23 V overall.
0
Theoretical and Fundamental Chemistry
* Photosynthesis, a process whereby carbon dioxide and water are transformed into a number of organic molecules in plant cells. * Nitrogen fixation from the soil into organic molecules by symbiotic bacteria which live in the roots of certain plants, such as Leguminosae. * Magnesium supplements orotate, oxide, sulfate, citrate, and glycerate are all structurally similar. However, oxide and sulfate are not water-soluble and do not enter the bloodstream, while orotate and glycerate have normal exiguous liver conversion. Chlorophyll sources or magnesium citrate are highly bioassimilable. * The absorption of nutrients into the body after digestion in the intestine and its transformation in biological tissues and fluids.
1
Applied and Interdisciplinary Chemistry
The first cast iron pipe was produced in horizontal moulds, the core of the mould would be supported on small iron rods which would become part of the pipe. Horizontal casting resulted in an uneven distribution of metal around the pipe circumference. Typically slag would collect at the crown of the pipe creating a much weaker section.
1
Applied and Interdisciplinary Chemistry
Pepper spray typically comes in canisters, which are often small enough to be carried or concealed in a pocket or purse. Pepper spray can also be purchased concealed in items such as rings. There are also pepper spray projectiles available, which can be fired from a paintball gun or similar platform. It has been used for years against demonstrators and aggressive animals like bears. There are also many types such as foam, gel, foggers, and spray.
1
Applied and Interdisciplinary Chemistry
The English word amber derives from the Arabic word (; ultimately from Middle Persian ambar, also ambergris), via Middle Latin ambar and Middle French ambre. The word "amber", in its sense of "ambergris", was adopted in Middle English in the 14th century. The word "ambergris" comes from the Old French ambre gris or "grey amber". The addition of "grey" came about when, in the Romance languages, the sense of the word "amber" was extended to Baltic amber (fossil resin), as white or yellow amber (ambre jaune), from as early as the late 13th century. This fossilized resin subsequently became the dominant (and now exclusive) sense of "amber", leaving "ambergris" as the word for the whale secretion. The archaic alternate spelling "ambergrease" arose as an eggcorn from the phonetic pronunciation of "ambergris," encouraged by the substance's waxy texture.
1
Applied and Interdisciplinary Chemistry
For deprotection (regeneration of the alcohol) * Aqueous base (pH >9) * Aqueous acid (pH <2), may have to be heated * Anhydrous base such as sodium methoxide in methanol. Very useful when a methyl ester of a carboxylic acid is also present in the molecule, as it will not hydrolyze it like an aqueous base would. (Same also holds with an ethoxide in ethanol with ethyl esters)
0
Theoretical and Fundamental Chemistry
Although untrue from an historical perspective (see the history of the steroid, cortisone), total synthesis in the modern age has largely been an academic endeavor (in terms of manpower applied to problems). Industrial chemical needs often differ from academic focuses. Typically, commercial entities may pick up particular avenues of total synthesis efforts and expend considerable resources on particular natural product targets, especially if semi-synthesis can be applied to complex, natural product-derived drugs. Even so, for decades there has been a continuing discussion regarding the value of total synthesis as an academic enterprise. While there are some outliers, the general opinions are that total synthesis has changed in recent decades, will continue to change, and will remain an integral part of chemical research. Within these changes, there has been increasing focus on improving the practicality and marketability of total synthesis methods. The Phil S. Baran group at Scripps, a notable pioneer of practical synthesis have endeavored to create scalable and high efficiency syntheses that would have more immediate uses outside of academia.
0
Theoretical and Fundamental Chemistry
Silvana Konermann is a Swiss-American biochemist whose research involves CRISPR, Cas9, and their use in genome editing. She is an assistant professor of biochemistry at Stanford University, as well as the Director and co-founder of the Arc Institute in Palo Alto.
1
Applied and Interdisciplinary Chemistry
On August 18, 1926, Otto Raubenheimer from the US, the Austrian Ludwig Winkler and the Germans Fritz Ferchl, Georg Urdang, Walther Zimmermann, founded the Gesellschaft für Geschichte der Pharmazie (Society for the History of Pharmacy) in Innsbruck, Austria The Second World War interrupted the societys activities but after that it reformed and in 1949 gave itself the name Internationale Gesellschaft für Geschichte der Pharmazie and also appears under equivalent English- or French-language names: International Society for the History of Pharmacy or Société Internationale dHistoire de la Pharmacie.
1
Applied and Interdisciplinary Chemistry
The AR is defined as the collection all possible outcomes for all conceivable reactor combinations. Geometrically, the AR may (for instance) be represented as a convex region in state space representing all possible outlet compositions for all reactor combinations. A combination of reactors is often termed a reactor structure. An example of the reactors that are considered for this theory are Continuous flow stirred-tank reactor (CSTR) and a Plug flow reactor model (PFR). Knowledge of the AR helps to address two areas in chemical reactor design: # The reactor network synthesis problem: Given a system of reactions and feed point, construction of the AR assists with determining an optimal reactor structure that achieves a desired duty or objective function. That is, AR theory assists with understanding specifically what type and combination of the chemical reactors are best suited for a particular system and duty. # Performance targeting: Given an existing reactor design, knowledge of the AR assists with understanding if there are other reactor structures that could achieve superior performance, by comparison to its location in the AR. Seeing as the AR represents all reactor designs by definition, different proposed reactor designs must lie as a point in or on the AR in state space. The effectiveness of each design may then all be assessed by comparison the AR and their relation to objective functions if any.
1
Applied and Interdisciplinary Chemistry
Williams Haynes was born in Detroit, where his father, David Oliphant Haynes, was the publisher of The Pharmaceutical Era, as well as the president and the general manager of D. O. Haynes & Co. In 1896 D. O. Haynes established in New York City the New York Commercial as a daily newspaper on business. Williams Haynes worked as a reporter for the New York Sun and as an editor for Field and Fancy from 1906 to 1907. He enrolled in 1908 as a special student at Johns Hopkins University, where he studied economics, biology, and chemistry, but left in 1911 without a degree. He married his first wife in June 1911. From 1911 to 1916 he was a contributor to magazines and newspapers and at various times visited Canada and Europe as a journalist. From 1914 to 1915 he was editor-in-chief of the Northampton, Massachusetts Herald (a daily newspaper). In 1916 he became the editorial director of D. O. Haynes & Co. As editorial director he was responsible for the chemical industry journal Drug and Chemical Markets and in 1920 became the journals publisher. In 1926 he split the journal into two journals: Drugs and Cosmetics Industry and Chemical Industries (later called Chemical Week under the ownership of McGraw-Hill). In 1926 he also began publishing Plastic Products (renamed Modern Plastics, published from 1934 to 2004). In 1928 he established the book series Chemical Who’s Who' and was editor-in-chief of the series until 1951. In 1939 Haynes sold his interest in the trade journals in order to focus his efforts as an author and editor. He moved to a property near Stonington in eastern Connecticut. The property, which had been in his family for several generations, had a farmhouse built in 1750. As a journalist he contributed to The Outlook, The Nation, The Dial, Science, and Outing, among other publications. His extensive photo collection of chemists came to the Science History Institute through The Chemists' Club of New York. In 1950 Haynes was awarded the Honorable Cornelius Amory Pugsley Bronze Medal for his work in protecting the natural environment. In 1957 he received the Dexter Award for his work as a historian of the American chemical industry. He was married twice. There were two daughters from his second marriage.
1
Applied and Interdisciplinary Chemistry
Organic solar cells and polymer solar cells are built from thin films (typically 100 nm) of organic semiconductors including polymers, such as polyphenylene vinylene and small-molecule compounds like copper phthalocyanine (a blue or green organic pigment) and carbon fullerenes and fullerene derivatives such as PCBM. They can be processed from liquid solution, offering the possibility of a simple roll-to-roll printing process, potentially leading to inexpensive, large-scale production. In addition, these cells could be beneficial for some applications where mechanical flexibility and disposability are important. Current cell efficiencies are, however, very low, and practical devices are essentially non-existent. Energy conversion efficiencies achieved to date using conductive polymers are very low compared to inorganic materials. However, Konarka Power Plastic reached efficiency of 8.3% and organic tandem cells in 2012 reached 11.1%. The active region of an organic device consists of two materials, one electron donor and one electron acceptor. When a photon is converted into an electron hole pair, typically in the donor material, the charges tend to remain bound in the form of an exciton, separating when the exciton diffuses to the donor-acceptor interface, unlike most other solar cell types. The short exciton diffusion lengths of most polymer systems tend to limit the efficiency of such devices. Nanostructured interfaces, sometimes in the form of bulk heterojunctions, can improve performance. In 2011, MIT and Michigan State researchers developed solar cells with a power efficiency close to 2% with a transparency to the human eye greater than 65%, achieved by selectively absorbing the ultraviolet and near-infrared parts of the spectrum with small-molecule compounds. Researchers at UCLA more recently developed an analogous polymer solar cell, following the same approach, that is 70% transparent and has a 4% power conversion efficiency. These lightweight, flexible cells can be produced in bulk at a low cost and could be used to create power generating windows. In 2013, researchers announced polymer cells with some 3% efficiency. They used block copolymers, self-assembling organic materials that arrange themselves into distinct layers. The research focused on P3HT-b-PFTBT that separates into bands some 16 nanometers wide.
0
Theoretical and Fundamental Chemistry
Carboxylation of benzyl halides has been reported. The reaction mechanism is proposed to involve oxidative addition of benzyl chloride to Ni(0). The Ni(II) benzyl complex is reduced to Ni(I), e.g., by zinc, which inserts CO delivering the nickel carboxylate. Reduction of the Ni(I) carboxylate to Ni(0) releases the zinc carboxylate (Scheme 6). Similarly, such carboxylation has been achieved on aryl and benzyl pivalate, alkyl halides, and allyl esters.
0
Theoretical and Fundamental Chemistry
Vomiting agents are chemical weapon agents causing vomiting. Prolonged exposure can be lethal. They were used for the first time during WWI.
1
Applied and Interdisciplinary Chemistry
Over more than a ten-year span, engineers in former Yugoslavian Institute of Thermal and Nuclear Technology (ITEN), Energoinvest Co., Sarajevo, had built the first experimental Magneto-Hydrodynamic facility power generator in 1989. It was here it was first patented.
1
Applied and Interdisciplinary Chemistry
The formation evaluation gamma ray log is a record of the variation with depth of the natural radioactivity of earth materials in a wellbore. Measurement of natural emission of gamma rays in oil and gas wells are useful because shales and sandstones typically have different gamma ray levels. Shales and clays are responsible for most natural radioactivity, so gamma ray log often is a good indicator of such rocks. In addition, the log is also used for correlation between wells, for depth correlation between open and cased holes, and for depth correlation between logging runs.
0
Theoretical and Fundamental Chemistry
* Hoffman-La Roche Award from the Canadian Society for Chemistry (1997) * Ottawa Life Sciences Council Achievement Award (2001) * Rotary International Paul Harris Fellowship (2001) * National Research Council of Canada Royalty Sharing Award (2001) * Melville L. Wolfrom Award from the American Chemical Society Division of Carbohydrate Chemistry (2003) * Gold Medal from the World Intellectual Property Organization (WIPO) (2005) * Tech Museum Award – Technology Benefiting Humanity the Hib Vaccine team (2005) * Probst Memorial Lecturer – Southern Illinois University (2006) * Award of Excellence in research from the Foundation of Stars - Montreal Children’s Hospital (2008) * Médaille (medal) de l’Université du Québec À Montréal (UQAM) (2009) * Léo-Pariseau Prize of the Association francophone pour le savoir (2010) * "Prix Cercle d’Excellence” of the Université du Québec (2011) * Canada Research Chair in Medicinal Chemistry (2004-2017)
0
Theoretical and Fundamental Chemistry
The possum belly is used to slow the flow of returning drilling fluid before it hits the shale shakers. This enables the shale shaker to clean the cuttings out of the drilling fluid before it is returned to the pits for circulation.
1
Applied and Interdisciplinary Chemistry
Tetrakis(hydroxymethyl)phosphonium chloride has industrial importance in the production of crease-resistant and flame-retardant finishes on cotton textiles and other cellulosic fabrics. A flame-retardant finish can be prepared from THPC by the Proban Process, in which THPC is treated with urea. The urea condenses with the hydroxymethyl groups on THPC. The phosphonium structure is converted to phosphine oxide as the result of this reaction.
0
Theoretical and Fundamental Chemistry
Cos sequences are ~200 base pairs long and essential for packaging. They contain a cosN site where DNA is nicked at each strand, 12 bp apart, by terminase. This causes linearization of the circular cosmid with two "cohesive" or "sticky ends" of 12bp. (The DNA must be linear to fit into a phage head.) The cosB site holds the terminase while it is nicking and separating the strands. The cosQ site of next cosmid (as rolling circle replication often results in linear concatemers) is held by the terminase after the previous cosmid has been packaged, to prevent degradation by cellular DNases.
1
Applied and Interdisciplinary Chemistry
After the fall of the Roman Empire, the focus of alchemical development moved to the Islamic World. Much more is known about Islamic alchemy because it was better documented: indeed, most of the earlier writings that have come down through the years were preserved as Arabic translations. The word alchemy itself was derived from the Arabic word al-kīmiyā (الكيمياء). The early Islamic world was a melting pot for alchemy. Platonic and Aristotelian thought, which had already been somewhat appropriated into hermetical science, continued to be assimilated during the late 7th and early 8th centuries through Syriac translations and scholarship. In the late ninth and early tenth centuries, the Arabic works attributed to Jābir ibn Hayyān (Latinized as "Geber" or "Geberus") introduced a new approach to alchemy. Paul Kraus, who wrote the standard reference work on Jabir, put it as follows: Islamic philosophers also made great contributions to alchemical hermeticism. The most influential author in this regard was arguably Jabir. Jabirs ultimate goal was Takwin, the artificial creation of life in the alchemical laboratory, up to, and including, human life. He analysed each Aristotelian element in terms of four basic qualities of hotness, coldness, dryness, and moistness. According to Jabir, in each metal two of these qualities were interior and two were exterior. For example, lead was externally cold and dry, while gold was hot and moist. Thus, Jabir theorized, by rearranging the qualities of one metal, a different metal would result. By this reasoning, the search for the philosophers stone was introduced to Western alchemy. Jabir developed an elaborate numerology whereby the root letters of a substances name in Arabic, when treated with various transformations, held correspondences to the elements physical properties. The elemental system used in medieval alchemy also originated with Jabir. His original system consisted of seven elements, which included the five classical elements (aether, air, earth, fire, and water) in addition to two chemical elements representing the metals: sulphur, "the stone which burns", which characterized the principle of combustibility, and mercury, which contained the idealized principle of metallic properties. Shortly thereafter, this evolved into eight elements, with the Arabic concept of the three metallic principles: sulphur giving flammability or combustion, mercury giving volatility and stability, and salt giving solidity. The atomic theory of corpuscularianism, where all physical bodies possess an inner and outer layer of minute particles or corpuscles, also has its origins in the work of Jabir. From the 9th to 14th centuries, alchemical theories faced criticism from a variety of practical Muslim chemists, including Alkindus, Abū al-Rayhān al-Bīrūnī, Avicenna and Ibn Khaldun. In particular, they wrote refutations against the idea of the transmutation of metals. From the 14th century onwards, many materials and practices originally belonging to Indian alchemy (Rasayana) were assimilated in the Persian texts written by Muslim scholars.
1
Applied and Interdisciplinary Chemistry
VMAT1 also has effects on the modulation of gastrin processing in G cells. These intestinal endocrine cells process amine precursors, and VMAT1 pulls them into vesicles for storage. The activity of VMAT1 in these cells has a seemingly inhibitory effect on the processing of gastrin. Essentially, this means that certain compounds in the gut can be taken into these G cells and either amplify or inhibit the function of VMAT1, which will impact gastrin processing (conversion from G34 to G17). Additionally, VMAT1 is known to play a role in the uptake and secretion of serotonin in the gut. Enterochromaffin cells in the intestines will secrete serotonin in response to the activation of certain mechanosensors. The regulation of serotonin in the gut is critically important, as it modulates appetite and controls intestinal contraction.
1
Applied and Interdisciplinary Chemistry
UV curing is used for converting or curing inks, adhesives, and coatings. UV-cured adhesive has become a high speed replacement for two-part adhesives, eliminating the need for solvent removal, ratio mixing, and potential life concern. It is used in flexographic, offset, pad, and screen printing processes; where UV curing systems are used to polymerize images on screen-printed products, ranging from T-shirts to 3D and cylindrical parts. It is used in fine instrument finishing (guitars, violins, ukuleles, etc.), pool cue manufacturing and other wood craft industries. Printing with UV curable inks provides the ability to print on a very wide variety of substrates such as plastics, paper, canvas, glass, metal, foam boards, tile, films, and many other materials. Industries that use UV curing include medicine, automobiles, cosmetics (for example artificial fingernails and gel nail polish), food, science, education, and art. UV curable inks have successfully met the demands of the publication sector in terms of print quality, durability, and compatibility with different substrates, making them a suitable choice for printing applications in this industry.
0
Theoretical and Fundamental Chemistry
The first Empowering Women in Organic Chemistry Conference took place on Friday, June 28, 2019, at the University of Pennsylvania, Philadelphia, PA. 2019 Career Panel featured Sarah Wengryniuk (Temple University), Emily McLaughlin (Bard College), Nikki Goodwin (GlaxoSmithKline), Jamie McCabe Dunn (Merck), Zhenzhen Dong (Adesis), Nicole Camasso (JACS).
0
Theoretical and Fundamental Chemistry
Reactions used in DCvC must generate thermodynamically stable products to overcome the entropic cost of self-assembly. The reactions must form covalent linkages between building blocks. Finally, all possible intermediates must be reversible, and the reaction ideally proceeds under conditions that are tolerant of functional groups elsewhere in the molecule. Reactions that can be used in DCvC are diverse and can be placed into two general categories. Exchange reactions involve the substitution of one reaction partner in an intermolecular reaction for another with an identical type of bonding. Some examples of this are shown in schemes 5 and 8, in an ester exchange, and disulfide exchange reactions. The second type, formation reactions, rely on the formation of new covalent bonds. Some examples include Diels–Alder and aldol reactions. In some cases, a reaction can pertain to both categories. For example, Schiff base formation can be categorized as a forming new covalent bonds between a carbonyl and primary amine. However, in the presence of two different amines the reaction becomes an exchange reaction where the two imine derivatives compete in equilibrium. Exchange and formation reactions can be further broken down into three categories: # Bonding between carbon–carbon # Bonding between carbon–heteroatom # Bonding between heteroatom–heteroatom
0
Theoretical and Fundamental Chemistry
The following outline is provided as an overview of and topical guide to air pollution dispersion: In environmental science, air pollution dispersion is the distribution of air pollution into the atmosphere. Air pollution is the introduction of particulates, biological molecules, or other harmful materials into Earths atmosphere, causing disease, death to humans, damage to other living organisms such as food crops, and the natural or built environment. Air pollution may come from anthropogenic or natural sources. Dispersion' refers to what happens to the pollution during and after its introduction; understanding this may help in identifying and controlling it. Air pollution dispersion has become the focus of environmental conservationists and governmental environmental protection agencies (local, state, province and national) of many countries (which have adopted and used much of the terminology of this field in their laws and regulations) regarding air pollution control.
1
Applied and Interdisciplinary Chemistry
Features, Events, and Processes (FEP) are terms used in the fields of radioactive waste management, carbon capture and storage, and hydraulic fracturing to define relevant scenarios for safety assessment studies. For a radioactive waste repository, features would include the characteristics of the site, such as the type of soil or geological formation the repository is to be built on or under. Events would include things that may or will occur in the future, like, e.g., glaciations, droughts, earthquakes, or formation of faults. Processes are things that are ongoing, such as the erosion or subsidence of the landform where the site is located on, or near. Several catalogues of FEP's are publicly available, a.o., this one elaborated for the NEA Clay Club dealing with the disposal of radioactive waste in deep clay formations, and those compiled for deep crystalline rocks (granite) by Svensk Kärnbränslehantering AB, SKB, the Swedish Nuclear Fuel and Waste Management Company.
0
Theoretical and Fundamental Chemistry
Chiral recognition implies the ability of chiral stationery phases to interact differently with mirror-image molecules, leading to their separation. The mechanism of enantiomeric resolution using CSPs is generally attributed to the “three-point" interaction model (fig.1.) between the analyte and the chiral selector in the stationary phase. Also known as the Dalgliesh model. Under this model, for chiral recognition, and hence enantiomeric resolution to happen on a CSP one of the enantiomers of the analyte must be involved in three simultaneous interactions. This means to say the one of enantiomers is able to have a good interaction with the complimentary sites on the chiral selector attached to the CSP. While Its mirror-image partner may only interact at two or one such sites. In the figure, enantiomer (a), has the correct configuration of the ligands (X, Y and Z) for three-point interactions with the complimentary sites (X’, Y’ and Z’) on the CSP, while its mirror image (b) can only interact at one site. The dotted lines (-----) indicate interaction with complimentary sites. The diastereomeric complexes thus formed will have different energies of interaction. The enantiomer forming the more stable complex will have less energy and stay longer in the stationary phase compared to the less stable complex with higher energy. The success of chiral separation basically depends in manipulating the subtle energy differences between the reversibly formed non-covalent transient diastereomeric complexes. The energy difference reflects the magnitude of enantioselectivity. Mobile phase has a major role in stabilizing the diastereomeric complex and thus in chiral separation. This simplified bimolecular interaction model is a treatment suitable for theoretical purposes. Mobile phase plays a key role in chiral recognition mechanism. Components of MP (such as bulk solvents, modifiers, buffer salts, additives) not only influence the conformational flexibility of CS and CA molecules but also their degree of ionization. The types of interaction involved in the analyte-selector interaction vary depending on the nature of the CSP used. These may include hydrogen bonding, dipole-dipole, π-π, electrostatic, hydrophobic or steric interactions, and inclusion complex formation.
0
Theoretical and Fundamental Chemistry
In the pump-probe method the reaction is first triggered (pump) by photolysis (most often laser light) and then a diffraction pattern is collected by an X-ray pulse (probe) at a specific time delay. This makes it possible to obtain many images at different time delays after reaction triggering, and thereby building up a chronological series of images describing the events during reaction. To obtain a reasonable signal to noise ratio this pump-probe cycle has to be performed many times for each spatial rotation of the crystal, and many times for the same time delay. Therefore, the reaction that one wishes to study with pump-probe must be able to relax back to its original conformation after triggering, enabling many measurements on the same sample. The time resolution of the observed phenomena is dictated by the time width of the probing pulse (full width at half maximum). All processes that happen on a faster time scale than that are going to be averaged out by the convolution of the probe pulse intensity in time with the intensity of the actual x-ray reflectivity of the sample.
0
Theoretical and Fundamental Chemistry
Per- and polyfluoroalkyl substances (PFAS or PFASs) are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain. The PubChem database lists more than 6 million unique compounds in this group. PFASs started being used in the mid-20th century to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. They are used in a variety of products including waterproof clothing, furniture, adhesives, food packaging, heat-resistant non-stick cooking surfaces, and the insulation of electrical wire. They have played a key economic role for companies such as DuPont, 3M, and W. L. Gore & Associates that use them to produce widely known materials such as Teflon or Gore-Tex. Only since the start of the 21st century has the environmental impact and toxicity to human and mammalian life been studied in depth. Many PFAS such as PFOS, PFOA are a concern because they do not break down via natural processes and are commonly described as persistent organic pollutants or "forever chemicals". They can also move through soils and contaminate drinking water sources and can build up (bioaccumulate) in fish and wildlife. Residues have been detected in humans and wildlife. Due to the large number of PFAS it is challenging to study and assess the potential human health and environmental risks; more research is necessary. According to the United States Environmental Protection Agency, exposure to some PFAS in the environment may be linked to harmful health effects in humans and animals. The International Agency for Research on Cancer (IARC) has classified PFOA as carcinogenic to humans and PFOS as possibly carcinogenic. According to the National Academies of Sciences, Engineering, and Medicine, PFAS exposure is linked to increased risk of dyslipidemia (abnormally high cholesterol), suboptimal antibody response, reduced infant and fetal growth, and higher rates of kidney cancer. Health concerns related to PFASs have resulted in numerous litigations (see Timeline of events related to per- and polyfluoroalkyl substances). PFAS producers such as 3M, Chemours, DuPont and Corteva have reached billion dollar agreements to settle claims against them. The use of PFAS is regulated in several parts of the world, with some plans to phase them out entirely from products.
0
Theoretical and Fundamental Chemistry
Conceived to work in concert with next-gen sequencing platforms such as Illumina dye sequencing, GUIDE-Seq relies on the integration of a blunt, double-stranded oligodeoxynucleotide (dsODN) that has been phosphothioated on two of the phosphate linkages on the 5' end of both strands. The dsODN cassette integrates into any site in the genome that contains a double-stranded break (DSB). This means that along with the target and off-target sites that may exist as a result of the activity of a nuclease, the dsODN cassette will also integrate into any spurious sites in the genome that have a DSB. This makes it critical to have a dsODN only condition that controls for errant and naturally occurring DSBs, and is required to use the GUIDE-seq bioinformatic pipeline. After integration of the dsODN cassette, genomic DNA (gDNA) is extracted from the cell culture and sheared to 500bp fragments via sonication. The resulting sheared gDNA undergoes end-repair and adapter ligation. From here, DNA specifically containing the dsODN insert is amplified via two rounds of polymerase chain reaction (PCR) that proceeds in a unidirectional manner starting from the primers that are complementary to the dsODN. This process allows for the reading of the adjacent sequences, both the sense and anti-sense strands, flanking the insert. The final product is a panoply of amplicons, describing the DSB distribution, containing indices for sample differentiation, p5 and p7 Illumina flow-cell adapters, and the sequences flanking the dsODN cassette. GUIDE-Seq is able to achieve detection of rare DSBs that occur with a 0.1% frequency, however this may be as a result of the limitations of next-generation sequencing platforms. The greater the depth of reads an instrument is able to achieve, the better it can detect rarer events. Additionally, GUIDE-Seq is able to detect sites not predicted by the "in silico" methods which often will predict sites based on sequence similarity and percent mismatch. There have been cases of GUIDE-Seq not detecting any off-targets for certain guide RNAs, suggesting that some RNA-guided nucleases may have no associated off-targets. GUIDE-Seq has been used to show that engineered variants of Cas9 can have reduced off-target effects.
1
Applied and Interdisciplinary Chemistry
The chalcophile elements include Ag, As, Bi, Cd, Cu, Ga, Ge, Hg, In, Pb, S, Sb, Se, Sn, Te, Tl and Zn. Chalcophile elements are those that remain on or close to the surface because they combine readily with sulfur and some other chalcogen other than oxygen, forming compounds which do not sink into the Earth's core. Chalcophile elements are those metals and heavier nonmetals that have a low affinity for oxygen and prefer to bond with sulfur as highly insoluble sulfides. Chalcophile derives from Greek khalkós (χαλκός), meaning "ore" (it also meant "bronze" or "copper", but in this case "ore" is the relevant meaning), and is taken to mean "chalcogen-loving" by various sources. Because these sulfides are much denser than the silicate minerals formed by lithophile elements, chalcophile elements separated below the lithophiles at the time of the first crystallization of the Earths crust. This has led to their depletion in the Earths crust relative to their solar abundances, though because the minerals they form are nonmetallic, this depletion has not reached the levels found with siderophile elements. However, because they formed volatile hydrides on the primitive Earth when the controlling redox reaction was the oxidation or reduction of hydrogen, the less metallic chalcophile elements are strongly depleted on Earth as a whole relative to cosmic abundances. This is most especially true of the chalcogens selenium and tellurium (which formed volatile hydrogen selenide and hydrogen telluride, respectively), which for this reason are among the rarest elements found in the Earth's crust (to illustrate, tellurium is only about as abundant as platinum). The most metallic chalcophile elements (of the copper, zinc and boron groups) may mix to some degree with iron in the Earth's core. They are not likely to be depleted on Earth as a whole relative to their solar abundances since they do not form volatile hydrides. Zinc and gallium are somewhat "lithophile" in nature because they often occur in silicate or related minerals and form quite strong bonds with oxygen. Gallium, notably, is sourced mainly from bauxite, an aluminum hydroxide ore in which gallium ion substitutes for chemically similar aluminum. Although no chalcophile element is of high abundance in the Earths crust, chalcophile elements constitute the bulk of commercially important metals. This is because, whereas lithophile elements require energy-intensive electrolysis for extraction, chalcophiles can be easily extracted by reduction with coke, and chalcophiles geochemical concentration – which in extreme cases can exceed 100,000 times average crustal abundance. These greatest enrichments occur in high plateaux like the Tibetan Plateau and the Bolivian Altiplano where large quantities of chalcophile elements have been uplifted through plate collisions. A side-effect of this in modern times is that the rarest chalcophiles (like mercury) are so completely exploited that their value as minerals has almost completely disappeared.
0
Theoretical and Fundamental Chemistry
Spectral optical depth in frequency and spectral optical depth in wavelength of a material, denoted and respectively, are given by: where * is the spectral radiant flux in frequency transmitted by that material; * is the spectral radiant flux in frequency received by that material; * is the spectral transmittance in frequency of that material; * is the spectral radiant flux in wavelength transmitted by that material; * is the spectral radiant flux in wavelength received by that material; * is the spectral transmittance in wavelength of that material. Spectral absorbance is related to spectral optical depth by: where * is the spectral absorbance in frequency; * is the spectral absorbance in wavelength.
0
Theoretical and Fundamental Chemistry
The photocyte of Arachnocampa luminosa was found to contain a circular nucleus, and large amounts of ribosomes, smooth endoplasmic reticulum, mitochondria, and microtubules. Instead of having photocyte granules, the photocytes of the organism were shown to undergo the luciferase reaction in their cytoplasm. The cells do not have a golgi apparatus or rough endoplasmic reticulum and were found to be 250 micrometers by 120 micrometers overall with a depth of 25 to 30 micrometers.
1
Applied and Interdisciplinary Chemistry
Several complexes of disulfur monoxide are known. Most are formed by oxidation peroxide oxidation of a disulfur ligand. In these complexes, the ligand is invariably bound in an manner. Selected examples: , , , , , . arises when the dithiocarbamate complex is oxidized with elemental sulfur in air. Another way to form these complexes is to combine complexes with hydrogen sulfide. Complexes formed in this way are: ; . With hydrosulfide and a base followed by oxygen, can be made.
0
Theoretical and Fundamental Chemistry
In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics. Metals and alloys exhibit phenomena such as stress corrosion cracking, hydrogen embrittlement, liquid metal embrittlement and corrosion fatigue all coming under this category. Environments such as moist air, sea water and corrosive liquids and gases cause environmental stress fracture. Metal matrix composites are also susceptible to many of these processes. Plastics and plastic-based composites may suffer swelling, debonding and loss of strength when exposed to organic fluids and other corrosive environments, such as acids and alkalies. Under the influence of stress and environment, many structural materials, particularly the high-specific strength ones become brittle and lose their resistance to fracture. While their fracture toughness remains unaltered, their threshold stress intensity factor for crack propagation may be considerably lowered. Consequently, they become prone to premature fracture because of sub-critical crack growth. This article aims to give a brief overview of the various degradation processes mentioned above.
1
Applied and Interdisciplinary Chemistry
The methyl radical has the formula . It exists in dilute gases, but in more concentrated form it readily dimerizes to ethane. It is routinely produced by various enzymes of the radical SAM and methylcobalamin varieties.
0
Theoretical and Fundamental Chemistry
(Bis(trifluoroacetoxy)iodo)benzene, , is a hypervalent iodine compound used as a reagent in organic chemistry. It can be used to carry out the Hofmann rearrangement under acidic conditions.
0
Theoretical and Fundamental Chemistry
The society was founded in 1911 by Benjamin Moore, W.D. Halliburton and others, under the name of the Biochemical Club. It acquired the existing Biochemical Journal in 1912. The society name changed to the Biochemical Society in 1913. In 2005, the headquarters of the society moved from Portland Place to purpose-built offices in Holborn. In 2009, the headquarters moved again to Charles Darwin House, near Gray's Inn Road. Past presidents include Professor Ron Laskey, Sir Philip Cohen, and Sir Tom Blundell.
1
Applied and Interdisciplinary Chemistry
Foot-and-mouth disease virus (FMDV) is a member of the Aphthovirus genus in the Picornaviridae family and is the cause of foot-and-mouth disease in pigs, cattle, sheep and goats. It is a non-enveloped, positive strand, RNA virus. FMDV is a highly contagious virus. It enters the body through inhalation.
1
Applied and Interdisciplinary Chemistry
The isotope was first hypothesized and subsequently imaged by Patrick Blackett in Rutherford's lab in 1925: It was a product out of the first man-made transmutation of N and He conducted by Frederick Soddy and Ernest Rutherford in 1917–1919. Its natural abundance in Earth's atmosphere was later detected in 1929 by Giauque and Johnson in absorption spectra.
0
Theoretical and Fundamental Chemistry
Vinegar, petroleum jelly, milk and lemon juice solutions have also been used by activists. It is unclear how effective these remedies are. In particular, vinegar itself can burn the eyes and prolonged inhalation can also irritate the airways. Vegetable oil and vinegar have been reported as helping relieve burning caused by pepper spray, Kräuter suggests the usage of baking soda or toothpaste, stating that they trap the particles emanating from the gas near the airways that are more feasible to inhale. A small trial of baby shampoo for washing out the eyes did not show any benefit.
1
Applied and Interdisciplinary Chemistry
Baron Axel Fredrik Cronstedt (/kroonstet/ 23 December 1722 – 19 August 1765) was a Swedish mineralogist and chemist who discovered the element nickel in 1751 as a mining expert with the Bureau of Mines. Cronstedt is considered a founder of modern mineralogy, for introducing the blowpipe as a tool for mineralogists, and for proposing that the mineral kingdom be organized on the basis of chemical analysis in his book Försök til mineralogie, eller mineral-rikets upställning (“An attempt at mineralogy or arrangement of the Mineral Kingdom”, 1758).
1
Applied and Interdisciplinary Chemistry
An early medieval writer Theophilus Presbyter, believed to be the Benedictine monk and metalworker Roger of Helmarshausen, wrote a treatise in the early-to-mid-12th century that includes original work and copied information from other sources, such as the Mappae clavicula and Eraclius, De dolorous et artibus Romanorum. It provides step-by-step procedures for making various articles, some by lost-wax casting: "The Copper Wind Chest and Its Conductor" (Chapter 84); "Tin Cruets" (Chapter 88), and "Casting Bells" (Chapter 85), which call for using "tallow" instead of wax; and "The Cast Censer". In Chapters 86 and 87 Theophilus details how to divide the wax into differing ratios before moulding and casting to achieve accurately tuned small musical bells. The 16th-century Florentine sculptor Benvenuto Cellini may have used Theophilus writings when he cast his bronze Perseus with the Head of Medusa'.
1
Applied and Interdisciplinary Chemistry
Pedagogical work was an important part of the life of Pigulevsky. From 1911 to 1964, with a break for the duration of the war, he taught at Leningrad State University and lectured at other universities and institutes. During this time, he read many lecture courses: “Fats and oils”, “About derivatives of aliphatic terpenes”, “Resins”, “Terpenes”, “Essential oils”, etc. Pigulevsky was a member of the Academic Council of the Leningrad branch of the D.I. Mendeleev All-Union Chemical Society, as well as a member of the Central Council of the D.I. Mendeleev All-Union Chemical Society. In 1946-1947, he was a member of the editorial board of the journal "Sovietskaya Botanica". From 1937 until the end of his life, he was a member of the editorial committee of the Journal of Applied Chemistry of the USSR.
0
Theoretical and Fundamental Chemistry
Crystal structures for the E. coli SCS provide evidence that the coenzyme A binds within each α-subunit (within a Rossmann fold) in close proximity to a histidine residue (His246α). This histidine residue becomes phosphorylated during the succinate forming step in the reaction mechanism. The exact binding location of succinate is not well-defined. The formation of the nucleotide triphosphate occurs in an ATP grasp domain, which is located near the N-terminus of the each β subunit. However, this grasp domain is located about 35 Å away from the phosphorylated histidine residue. This leads researchers to believe that the enzyme must undergo a major change in conformation to bring the histidine to the grasp domain and facilitate the formation of the nucleoside triphosphate. Mutagenesis experiments have determined that two glutamate residues (one near the catalytic histidine, Glu208α and one near the ATP grasp domain, Glu197β) play a role in the phosphorylation and dephosphorylation of the histidine, but the exact mechanism by which the enzyme changes conformation is not fully understood.
1
Applied and Interdisciplinary Chemistry
The link between protein chemical shifts and protein secondary structure (specifically alpha helices) was first described by John Markley and colleagues in 1967. With the development of modern 2-dimensional NMR techniques, it became possible to measure more protein chemical shifts. With more peptides and proteins were being assigned in the early 1980s it soon became obvious that amino acid chemical shifts were sensitive not only to helical conformations, but also to β-strand conformations. Specifically, the secondary Hα chemical shifts of all amino acids exhibit a clear upfield trend on helix formation and an obvious downfield trend on β-sheet formation. By the early 1990s, a sufficient body of C and N chemical shift assignments for peptides and proteins had been collected to determine that similar upfield/downfield trends were evident for essentially all backbone Cα, Cβ, C', HN and N (weakly) chemical shifts. It was these rather striking chemical shift trends that were exploited in the development of the chemical shift index.
0
Theoretical and Fundamental Chemistry
There have been disputes on metamerism being included with other isomerisms such as position as well as chain isomerism, some authors still keep using it in their textbooks, mostly citing the examples of ethers and secondary amines.
0
Theoretical and Fundamental Chemistry
This type of flow provides important information about flow in front part of streamlined body. It is probable that at the boundary, flow is not properly represented for real flow. The pressure and velocity of flow near to boundary layer is calculated by applying the Bernoulli's principle and is approximated with potential flow. The above equations may be used to calculate the stress on the body placed into the flow stream.
1
Applied and Interdisciplinary Chemistry
Acyl halides are rather reactive compounds often synthesized to be used as intermediates in the synthesis of other organic compounds. For example, an acyl halide can react with: *water, to form a carboxylic acid. This hydrolysis is the most heavily exploited reaction for acyl halides as it occurs in the industrial synthesis of acetic acid. *an alcohol to form an ester *an amine to form an amide *an aromatic compound, using a Lewis acid catalyst such as AlCl, to form an aromatic ketone. See Friedel-Crafts acylation. *carboxylic acids to form an organic acid anhydrides. In the above reactions, HX (hydrogen halide or hydrohalic acid) is also formed. For example, if the acyl halide is an acyl chloride, HCl (hydrogen chloride or hydrochloric acid) is also formed.
0
Theoretical and Fundamental Chemistry
The first structure of a creatine kinase solved by X-ray protein crystallography was that of the octameric, sarcomeric muscle-type mitochondrial CK (s-mtCK) in 1996., followed by the structure of ubiquitous mitochondrial CK (u-mtCK) in 2000. Both mt-CK isoforms form octameric structures (built of 4 banana-like dimers) with a four-fold symmetry and a central channel. The atomic structure of the banana-shaped, dimeric cytosolic brain-type BB-CK was solved in 1999 at a resolution of 1,4 Å. Cytosolic BB-CK, as well as muscle-type MM-CK both form banana-shaped symmetric dimers, with one catalytic active site in each subunit.
1
Applied and Interdisciplinary Chemistry
Crystallographic features of HCP systems, such as vectors and atomic plane families, can be described using a four-value Miller index notation ( hkil ) in which the third index i denotes a convenient but degenerate component which is equal to −h − k. The h, i and k index directions are separated by 120°, and are thus not orthogonal; the l component is mutually perpendicular to the h, i and k index directions.
0
Theoretical and Fundamental Chemistry
It is useful to distinguish between global and local thermodynamic equilibrium. In thermodynamics, exchanges within a system and between the system and the outside are controlled by intensive parameters. As an example, temperature controls heat exchanges. Global thermodynamic equilibrium (GTE) means that those intensive parameters are homogeneous throughout the whole system, while local thermodynamic equilibrium (LTE) means that those intensive parameters are varying in space and time, but are varying so slowly that, for any point, one can assume thermodynamic equilibrium in some neighborhood about that point. If the description of the system requires variations in the intensive parameters that are too large, the very assumptions upon which the definitions of these intensive parameters are based will break down, and the system will be in neither global nor local equilibrium. For example, it takes a certain number of collisions for a particle to equilibrate to its surroundings. If the average distance it has moved during these collisions removes it from the neighborhood it is equilibrating to, it will never equilibrate, and there will be no LTE. Temperature is, by definition, proportional to the average internal energy of an equilibrated neighborhood. Since there is no equilibrated neighborhood, the concept of temperature doesn't hold, and the temperature becomes undefined. It is important to note that this local equilibrium may apply only to a certain subset of particles in the system. For example, LTE is usually applied only to massive particles. In a radiating gas, the photons being emitted and absorbed by the gas do not need to be in a thermodynamic equilibrium with each other or with the massive particles of the gas for LTE to exist. In some cases, it is not considered necessary for free electrons to be in equilibrium with the much more massive atoms or molecules for LTE to exist. As an example, LTE will exist in a glass of water that contains a melting ice cube. The temperature inside the glass can be defined at any point, but it is colder near the ice cube than far away from it. If energies of the molecules located near a given point are observed, they will be distributed according to the Maxwell–Boltzmann distribution for a certain temperature. If the energies of the molecules located near another point are observed, they will be distributed according to the Maxwell–Boltzmann distribution for another temperature. Local thermodynamic equilibrium does not require either local or global stationarity. In other words, each small locality need not have a constant temperature. However, it does require that each small locality change slowly enough to practically sustain its local Maxwell–Boltzmann distribution of molecular velocities. A global non-equilibrium state can be stably stationary only if it is maintained by exchanges between the system and the outside. For example, a globally-stable stationary state could be maintained inside the glass of water by continuously adding finely powdered ice into it to compensate for the melting, and continuously draining off the meltwater. Natural transport phenomena may lead a system from local to global thermodynamic equilibrium. Going back to our example, the diffusion of heat will lead our glass of water toward global thermodynamic equilibrium, a state in which the temperature of the glass is completely homogeneous.
0
Theoretical and Fundamental Chemistry
These compounds are related to SO. They have planar C–N=S=N–C cores with bent C–N=S and N=S=N geometries, and various combinations of E and Z isomers are observed for the two N=S bonds. Sulfur diimides are electrophilic. They undergo Diels–Alder reactions with dienes. Organolithium reagents attack at the sulfur to give the corresponding nitrogen anion: :RLi + S(NR) → RS(NR)(NRLi) The triimido analogues of sulfite can be generated by treating the sulfur diimides with a metal amide: ::4 LiNHBu-t + 2 S(NBu-t) → 2 LiS(NBu-t) + 2 t-BuNH
0
Theoretical and Fundamental Chemistry
The salt effects (salting in and salting-out) refers to the fact that the presence of a salt which has no ion in common with the solute, has an effect on the ionic strength of the solution and hence on activity coefficients, so that the equilibrium constant, expressed as a concentration quotient, changes.
0
Theoretical and Fundamental Chemistry
A marine outfall (or ocean outfall) is a pipeline or tunnel that discharges municipal or industrial wastewater, stormwater, combined sewer overflows (CSOs), cooling water, or brine effluents from water desalination plants to the sea. Usually they discharge under the sea's surface (submarine outfall). In the case of municipal wastewater, effluent is often being discharged after having undergone no or only primary treatment, with the intention of using the assimilative capacity of the sea for further treatment. Submarine outfalls are common throughout the world and probably number in the thousands. The light intensity and salinity in natural sea water disinfects the wastewater to ocean outfall system significantly. More than 200 outfalls alone have been listed in a single international database maintained by the Institute for Hydromechanics at Karlsruhe University for the International Association of Hydraulic Engineering and Research (IAHR) / International Water Association (IWA) Committee on Marine Outfall Systems. The worlds first marine outfall was built in Santa Monica, United States, in 1910. In Latin America and the Caribbean there were 134 outfalls with more than 500 m length in 2006 for wastewater disposal alone, according to a survey by the Pan American Center for Sanitary Engineering and Environmental Sciences (CEPIS) of PAHO. According to the survey, the largest number of municipal wastewater outfalls in the region exist in Venezuela (39), Chile (39) and Brazil (22). The worlds largest marine outfall stems from the Deer Island Waste Water Treatment Plant located in Boston, United States. Currently, Boston has approximately 235 miles of combined sewers and 37 active CSO outfalls. Many outfalls are simply known by a public used name, e.g. Boston Outfall.
1
Applied and Interdisciplinary Chemistry
In the 1910s, Wint-O-Green Life Savers were used to create soda geysers. The tubes of candies were threaded onto a pipe cleaner and dropped into the soft drink to create a geyser. At the end of the 1990s, the manufacturer of Wintergreen Lifesavers increased the size of the mints, and they no longer fit in the mouth of soda bottles. Science teachers found that Mentos candies had the same effect when dropped into a bottle of any carbonated soft drink. Lee Marek and "Mareks Kid Scientists" performed the Diet Coke and Mentos experiment on the Late Show with David Letterman in 1999. In March 2002, Steve Spangler, a science educator, did the demonstration on KUSA-TV, an NBC affiliate, in Denver, Colorado. The Diet Coke and Mentos geyser experiment became an internet sensation in September 2005. The experiment became a subject of the television show MythBusters in 2006. Spangler signed a licensing agreement with Perfetti Van Melle, the maker of Mentos, after inventing an apparatus aimed to make it easier to drop the Mentos into the bottle and produce a large soda geyser. Amazing Toys, Spanglers toy company, released the Geyser Tube toys in February 2007. In October 2010, a Guinness World Record of 2,865 simultaneous geysers was set at an event organized by Perfetti Van Melle at the SM Mall of Asia Complex, in Manila, Philippines. This record was afterward beaten in November 2014 by another event organized by Perfetti Van Melle and Chupa Chups in León, Guanajuato, Mexico, where 4,334 Mentos and soda fountains were set off simultaneously.
1
Applied and Interdisciplinary Chemistry
For decades β-blockers have been used in cardiovascular medicine. They have proved to reduce morbidity and mortality. In acute coronary syndrome, β-blockers have been recommended as a class I-A indication in clinical practice guidelines, because the treatment decreases the mortality rate. β-blockers, along with calcium channel blockers, reduce the workload of the heart and its oxygen requirement. β-blockers are sometimes used in a combination therapy to treat angina, if a β-blocker doesn't work well enough on its own. They are used as anti-arrhythmic drugs in patients with hyperthyroidism, cardiac dysrhythmia, atrial fibrillation, atrial flutter and ventricular tachycardia. The treatment with β-blockers reduces the incidence of sudden heart failure when the patient has already had a myocardial infarction. The reason is probably because of their anti-arrhythmic effects and also anti-ischemic effects. A β-blocker therapy is also useful in myocardial infarction, independent to heart failure. The therapy has been very helpful for high-risk patients. Although beta-blockers effectively lower blood pressure, they are not recommended as a first-line agent in the treatment of hypertension, as thiazides diuretics, ACE inhibitors, and calcium channel blockers show greater benefit. Therefore, β-blockers are usually used alongside other blood pressure medications such as calcium channel blockers. They also have an effect on cardiomyopathy, postural orthostatic tachycardia syndrome and portal hypertension, to name a few.
1
Applied and Interdisciplinary Chemistry
Photons have a momentum given by (where is the reduced Planck constant and the photon wavenumber), which is conserved in all atom-photon interactions. Thus, when an atom absorbs a photon, it is given a momentum kick in the direction of the photon before absorption. By detuning a laser beam to a frequency less than the resonant frequency (also known as red detuning), laser light is only absorbed if the light is frequency up-shifted by the Doppler effect, which occurs whenever the atom is moving towards the laser source. This applies a friction force to the atom whenever it moves towards a laser source. For cooling to occur along all directions, the atom must see this friction force along all three Cartesian axes; this is most easily achieved by illuminating the atom with three orthogonal laser beams, which are then reflected back along the same direction.
0
Theoretical and Fundamental Chemistry
Genome-wide knockdown studies are an example of the reverse genetics made possible by the acquisition of whole genome sequences, and the advent of genomics and gene-silencing technologies, mainly siRNA and deletion mapping. Genome-wide knockdown studies involve systematic knockdown or deletion of genes or segments of the genome. This is generally done in prokaryotes or in a tissue culture environment due to the massive number of knockdowns that must be performed. After the systematic knockout is completed (and possibly confirmed by mRNA expression analysis), the phenotypic results of the knockdown/knockout can be observed. Observation parameters can be selected to target a highly specific phenotype. The resulting dataset is then queried for samples which exhibit phenotypes matching the disease in question – the gene(s) knocked down/out in said samples can then be considered candidate disease genes for the individual in question.
1
Applied and Interdisciplinary Chemistry
Absolute bioavailability compares the bioavailability of the active drug in systemic circulation following non-intravenous administration (i.e., after oral, buccal, ocular, nasal, rectal, transdermal, subcutaneous, or sublingual administration), with the bioavailability of the same drug following intravenous administration. It is the fraction of exposure to a drug (AUC) through non-intravenous administration compared with the corresponding intravenous administration of the same drug. The comparison must be dose normalized (e.g., account for different doses or varying weights of the subjects); consequently, the amount absorbed is corrected by dividing the corresponding dose administered. In pharmacology, in order to determine absolute bioavailability of a drug, a pharmacokinetic study must be done to obtain a plasma drug concentration vs time plot for the drug after both intravenous (iv) and extravascular (non-intravenous, i.e., oral) administration. The absolute bioavailability is the dose-corrected area under curve (AUC) non-intravenous divided by AUC intravenous. The formula for calculating the absolute bioavailability, F, of a drug administered orally (po) is given below (where D is dose administered). Therefore, a drug given by the intravenous route will have an absolute bioavailability of 100% (f = 1), whereas drugs given by other routes usually have an absolute bioavailability of less than one. If we compare the two different dosage forms having same active ingredients and compare the two drug bioavailability is called comparative bioavailability. Although knowing the true extent of systemic absorption (referred to as absolute bioavailability) is clearly useful, in practice it is not determined as frequently as one may think. The reason for this is that its assessment requires an intravenous reference; that is, a route of administration that guarantees all of the administered drug reaches systemic circulation. Such studies come at considerable cost, not least of which is the necessity to conduct preclinical toxicity tests to ensure adequate safety, as well as potential problems due to solubility limitations. These limitations may be overcome, however, by administering a very low dose (typically a few micrograms) of an isotopically labelled drug concomitantly with a therapeutic non-isotopically labelled oral dose (the isotopically labelled intravenous dose is sufficiently low so as not to perturb the systemic drug concentrations achieved from the non-labelled oral dose). The intravenous and oral concentrations can then be deconvoluted by virtue of their different isotopic constitution, and can thus be used to determine the oral and intravenous pharmacokinetics from the same dose administration. This technique eliminates pharmacokinetic issues with non-equivalent clearance as well as enabling the intravenous dose to be administered with a minimum of toxicology and formulation. The technique was first applied using stable-isotopes such as C and mass-spectrometry to distinguish the isotopes by mass difference. More recently, C labelled drugs are administered intravenously and accelerator mass spectrometry (AMS) used to measure the isotopically labelled drug along with mass spectrometry for the unlabelled drug. There is no regulatory requirement to define the intravenous pharmacokinetics or absolute bioavailability however regulatory authorities do sometimes ask for absolute bioavailability information of the extravascular route in cases in which the bioavailability is apparently low or variable and there is a proven relationship between the pharmacodynamics and the pharmacokinetics at therapeutic doses. In all such cases, to conduct an absolute bioavailability study requires that the drug be given intravenously. Intravenous administration of a developmental drug can provide valuable information on the fundamental pharmacokinetic parameters of volume of distribution (V) and clearance (CL).
1
Applied and Interdisciplinary Chemistry
Peramivir has a guanidino group similar to zanamivir and a hydrophobic group similar to oseltamivir. Mutations that effect the efficiency of oseltamivir and zanamivir can also effect peramivir efficiency. Resistances to peramivir have been seen at the mutation of H274Y residue in vitro. One of these resistances is associated with cross-resistance to peramivir and oseltamivir. Peramivir is approved in Japan as Rapiacta and also available in South Korea as Peramiflu.
1
Applied and Interdisciplinary Chemistry
In physics, a bipolaron is a bound pair of two polarons. An electron in a material may cause a distortion in the underlying lattice. The combination of electron and distortion (which may also be understood as a cloud of phonons) is known as a polaron (in part because the interaction between electron and lattice is via a polarization). When two polarons are close together, they can lower their energy by sharing the same distortions, which leads to an effective attraction between the polarons. If the interaction is sufficiently large, then that attraction leads to a bound bipolaron. For strong attraction, bipolarons may be small. Small bipolarons have integer spin and thus share some of the properties of bosons. If many bipolarons form without coming too close, they might be able to form a Bose–Einstein condensate. This has led to a suggestion that bipolarons could be a possible mechanism for high-temperature superconductivity. For example, they can lead to a very direct interpretation of the isotope effect. Recently, bipolarons were predicted theorethically in a Bose-Einstein condensate. Two polarons interchange sound waves and they attract to each other, forming a bound-state when the strength coupling between the single polarons and the condensate is strong in comparison with the interactions of the host gas.
0
Theoretical and Fundamental Chemistry
Historically, small muffle ovens were often used for a second firing of porcelain at a relatively low temperature to fix overglaze enamels; these tend to be called muffle kilns. The pigments for most enamel colours discoloured at the high temperatures required for the body and glaze of the porcelain. They were used for painted enamels on metal for the same reason. Like other types of muffle furnaces, the design isolates the objects from the flames producing the heat (with electricity this is not so important). For historical overglaze enamels the kiln was generally far smaller than that for the main firing, and produced firing temperatures in the approximate range of 750 to 950 °C, depending on the colours used. Typically, wares were fired for between five and twelve hours and then cooled over twelve hours.
1
Applied and Interdisciplinary Chemistry
The most thorough fluid mechanics studies in gas have been performed using the RELIEF scheme and the APART scheme. Both techniques can be used in ambient air without the need for additional seeding. In RELIEF, excited oxygen is used as a tracer. The method takes advantage of quantum mechanical properties that prohibit relaxation of the molecule so that the excited oxygen has a relatively long lifetime. APART is based on the "photosynthesis" of nitric oxide. Since NO is a stable molecule, patterns written with it can, in principle, be followed almost indefinitely. Another well-developed and widely documented technique that yields extremely high accuracy is hydroxyl tagging velocimetry (HTV). It is based on photo-dissociation of water vapor followed by visualization of the resulting OH radical using LIF. HTV has been successfully demonstrated in many test conditions ranging from room air temperature flows to Mach 2 flows within a cavity.
1
Applied and Interdisciplinary Chemistry
The ferric chloride test is used to determine the presence of phenols in a given sample or compound (for instance natural phenols in a plant extract). Enols, hydroxamic acids, oximes, and sulfinic acids give positive results as well. The bromine test is useful to confirm the result, although modern spectroscopic techniques (e.g. NMR and IR spectroscopy) are far superior in determining the identity of the unknown. The quantity of total phenols may be spectroscopically determined by the Folin–Ciocalteau assay.
0
Theoretical and Fundamental Chemistry
The inside of pipes can be cleaned with a tube cleaning process, if they are contaminated with debris or fouling. This depends on the process that the pipe will be used for and the cleanliness needed for the process. In some cases the pipes are cleaned using a displacement device formally known as a Pipeline Inspection Gauge or "pig"; alternately the pipes or tubes may be chemically flushed using specialized solutions that are pumped through. In some cases, where care has been taken in the manufacture, storage, and installation of pipe and tubing, the lines are blown clean with compressed air or nitrogen.
1
Applied and Interdisciplinary Chemistry
Deuterium is often represented by the chemical symbol D. Since it is an isotope of hydrogen with mass number 2, it is also represented by H. IUPAC allows both D and H, though H is preferred. A distinct chemical symbol is used for convenience because of the isotopes common use in various scientific processes. Also, its large mass difference with protium (H) confers non-negligible chemical differences with protium compounds. Deuterium has a mass of , about twice the mean hydrogen atomic weight of , or twice protiums mass of . The isotope weight ratios within other chemical elements are largely insignificant in this regard.
0
Theoretical and Fundamental Chemistry
The DLVO theory (named after Boris erjaguin and Lev andau, Evert erwey and Theodoor verbeek) explains the aggregation and kinetic stability of aqueous dispersions quantitatively and describes the force between charged surfaces interacting through a liquid medium. It combines the effects of the van der Waals attraction and the electrostatic repulsion due to the so-called double layer of counterions. The electrostatic part of the DLVO interaction is computed in the mean field approximation in the limit of low surface potentials - that is when the potential energy of an elementary charge on the surface is much smaller than the thermal energy scale, . For two spheres of radius each having a charge (expressed in units of the elementary charge) separated by a center-to-center distance in a fluid of dielectric constant containing a concentration of monovalent ions, the electrostatic potential takes the form of a screened-Coulomb or Yukawa potential, where * is the Bjerrum length, * is the potential energy, * ≈ 2.71828 is Euler's number, * is the inverse of the Debye–Hückel screening length (); is given by , and * is the thermal energy scale at absolute temperature
0
Theoretical and Fundamental Chemistry
A systematic review of clinical studies found an association between low vitamin D levels with cognitive impairment and a higher risk of developing Alzheimer's disease. However, lower vitamin D concentrations are also associated with poor nutrition and spending less time outdoors. Therefore, alternative explanations for the increase in cognitive impairment exist and hence a direct causal relationship between vitamin D levels and cognition could not be established.
1
Applied and Interdisciplinary Chemistry
In this pathway CO is fixed (i.e. incorporated) by the action of two enzymes, acetyl-CoA carboxylase and propionyl-CoA carboxylase. These enzymes generate malonyl-CoA and (S)-methylmalonyl-CoA, respectively.
1
Applied and Interdisciplinary Chemistry
In optics the noise-equivalent flux density (NEFD) or noise-equivalent irradiance (NEI) of a system is the level of flux density required to be equivalent to the noise present in the system. It is a measure used by astronomers in determining the accuracy of observations. The NEFD can be related to a light detectors noise-equivalent power for a collection area A' and a photon bandwidth by: where a factor (often 2, in the case of switching between measuring a source and measuring off-source) accounts for the photon statistics for the mode of operation.
0
Theoretical and Fundamental Chemistry
Organic compounds containing conjugate (i.e., alternate single-double) bonds can have semiconducting properties. The conductivity and mobility of those organic compounds however, are very low compared to inorganic semiconductors. Assuming the molecules of the organic semiconductor are lattices, the same procedure of electroreflectance of inorganic semiconductors can be applied for the organic ones. It should be noted though that there is a certain dualism in semiconductors: intra-molecular conduction (inside a molecule) and inter-molecular conduction (between molecules), which one should take into account doing measurements. Especially for thin films the band gaps of organic semiconductors can be accurately determined using this method.
0
Theoretical and Fundamental Chemistry
Bürgi–Dunitz angle theory was initially developed based on "frozen" interactions in crystals, while most chemistry takes place via collisions of molecules tumbling in solution; remarkably, the theories of the , with the complexity they reflect, evolved not from crystallographic work, but from studying reaction outcomes in such practical reactions as addition of enolates to aldehydes (e.g., in study of diastereoselection in particular aldol reactions). In applying both angles of the nucleophile trajectory to real chemical reactions, the HOMO-LUMO centered view of the Bürgi-Dunitz angle, , is modified to include further complex, electrophile-specific attractive and repulsive electrostatic and van der Waals interactions that can alter and bias toward one substituent or the other (see above). As well, dynamics are at play in each system (e.g., changing torsional angles) and are implicitly included in studies of reaction outcomes in solution, as in the early studies of ,—though not in crystallographic structure correlation approaches as gave birth to the BD concept. Finally, in constrained environments (e.g., in enzyme and nanomaterial binding sites), these angles, when characterized, appear to be quite distinct, an observation conjectured to arise because reactivity is not based on random collision, and so the relationship between orbital overlap principles and reactivity is more complex. For instance, while a simple amide addition study with relatively small substituents gave an of ≈50° in solution, the crystallographic value determined for an enzymatic cleavage of an amide by the serine protease subtilisin gave an of 8°, and a compilation of literature crystallographic values for the same reaction in different catalysts clustered at 4 ± 6° (i.e., only slightly offset from directly behind the carbonyl, despite significant dissymmetry of the substrate electrophiles). At the same time, the subtilisin was 88° (quite distinct from the hydride-formaldehyde value of 107°, see the Bürgi–Dunitz article), and angle values from the careful literature compilation clustered at 89 ± 7° (i.e., only slightly offset from directly above or below the carbonyl carbon).
0
Theoretical and Fundamental Chemistry
In France, the only academy where conservators and curators can receive training is at the Institut national du patrimoine (The National Institute of Cultural Heritage). A five-year training program for aspiring conservators is offered which grants students with a Master's in Conservation-Restoration, with specialties in earthenware and glassware.
0
Theoretical and Fundamental Chemistry
In organic chemistry, a carbonate ester (organic carbonate or organocarbonate) is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is and they are related to esters (), ethers () and also to the inorganic carbonates. Monomers of polycarbonate (e.g. Makrolon or Lexan) are linked by carbonate groups. These polycarbonates are used in eyeglass lenses, compact discs, and bulletproof glass. Small carbonate esters like dimethyl carbonate, ethylene carbonate, propylene carbonate are used as solvents, dimethyl carbonate is also a mild methylating agent.
0
Theoretical and Fundamental Chemistry
In 1832, lacking his own laboratory facilities at Kassel, Wöhler worked with Justus Liebig in his Giessen laboratory. In that year, Wöhler and Liebig published an investigation of the oil of bitter almonds. Through their detailed analysis of the chemical composition of this oil, they proved by their experiments that a group of carbon, hydrogen, and oxygen atoms can behave chemically as if it were the equivalent of a single atom, take the place of an atom in a chemical compound, and be exchanged for other atoms in chemical compounds. Specifically, their research on the oil of bitter almonds showed that a group of elements with the chemical composition CHO can be thought of as a single functional group, which came to be known as a benzoyl radical. In this way, the investigations of Wöhler and Liebig established a new concept in organic chemistry referred to as compound radicals, which had a profound influence on the development of organic chemistry. Many more functional groups were later identified by subsequent investigators with wide utility in chemistry. Liebig and Wöhler explored the concept of chemical isomerism, the idea that two chemical compounds with identical chemical compositions could be different substances because of different arrangements of the atoms in the chemical structure. Aspects of chemical isomerism originated in the research of Berzelius. Liebig and Wöhler investigated silver fulminate and silver cyanate. These two compounds have the same chemical composition yet are chemically different. Silver fulminate is explosive, while silver cyanate is a stable compound. Liebig and Wöhler recognized these as examples of structural isomerism, which was a significant advance in understanding chemical isomerism. Wöhler has also been regarded as a pioneering researcher in organic chemistry as a result of his 1828 demonstration of the laboratory synthesis of urea from ammonium cyanate, in a chemical reaction that came to be known as the "Wöhler synthesis". Urea and ammonium cyanate are further examples of structural isomers of chemical compounds. Heating ammonium cyanate converts it into urea, which is its isomer. In a letter to Swedish chemist Jöns Jacob Berzelius the same year, he wrote, In a manner of speaking, I can no longer hold my chemical water. I must tell you that I can make urea without the use of kidneys of any animal, be it man or dog. Wöhler's demonstration of urea synthesis has become regarded as a refutation of vitalism, the hypothesis that living things are alive because of some special "vital force". It was the beginning of the end for one popular vitalist hypothesis, the idea that "organic" compounds could be made only by living things. In responding to Wöhler, Jöns Jakob Berzelius acknowledged that Wöhlers results were highly significant for the understanding of organic chemistry, calling the findings a "jewel" for Wöhlers "laurel wreath". Both scientists also recognized the work's importance to the study of isomerism, a new area of research. Wöhlers role in overturning vitalism is said to have become exaggerated over time. This tendency can be traced back to Hermann Kopps History of Chemistry (in four volumes, 1843–1847). He emphasized the importance of Wöhler's research as a refutation of vitalism but ignored its importance in understanding chemical isomerism, setting a tone for subsequent writers. The notion that Wöhler single-handedly overturned vitalism also gained popularity after it appeared in a popular history of chemistry published in 1931, which, "ignoring all pretense of historical accuracy, turned Wöhler into a crusader". Contrary to what was thought in Wöhler's time, cyanate is not a purely inorganic anion, as it is formed in various metabolic pathways. Thus the conversion of ammonium cyanate into urea was not an example of production of an organic compound from an inorganic precursor.
1
Applied and Interdisciplinary Chemistry
Under Carl Duisbergs leadership, Bayer was firmly committed to the standards of ethical drugs, as opposed to patent medicines. Ethical drugs were drugs that could be obtained only through a pharmacist, usually with a doctors prescription. Advertising drugs directly to consumers was considered unethical and strongly opposed by many medical organizations; that was the domain of patent medicines. Therefore, Bayer was limited to marketing Aspirin directly to doctors. When production of Aspirin began in 1899, Bayer sent out small packets of the drug to doctors, pharmacists and hospitals, advising them of Aspirins uses and encouraging them to publish about the drugs effects and effectiveness. As positive results came in and enthusiasm grew, Bayer sought to secure patent and trademark wherever possible. It was ineligible for patent in Germany (despite being accepted briefly before the decision was overturned), but Aspirin was patented in Britain (filed 22 December 1898) and the United States (US Patent 644,077 issued 27 February 1900). The British patent was overturned in 1905, the American patent was also besieged but was ultimately upheld. Faced with growing legal and illegal competition for the globally marketed ASA, Bayer worked to cement the connection between Bayer and Aspirin. One strategy it developed was to switch from distributing Aspirin powder for pharmacists to press into pill form to distributing standardized tablets—complete with the distinctive Bayer cross logo. In 1903 the company set up an American subsidiary, with a converted factory in Rensselaer, New York, to produce Aspirin for the American market without paying import duties. Bayer also sued the most egregious patent violators and smugglers. The company's attempts to hold onto its Aspirin sales incited criticism from muckraking journalists and the American Medical Association, especially after the 1906 Pure Food and Drug Act that prevented trademarked drugs from being listed in the United States Pharmacopeia; Bayer listed ASA with an intentionally convoluted generic name (monoacetic acid ester of salicylic acid) to discourage doctors referring to anything but Aspirin.
1
Applied and Interdisciplinary Chemistry
A number of implanted ceramics have not actually been designed for specific biomedical applications. However, they manage to find their way into different implantable systems because of their properties and their good biocompatibility. Among these ceramics, we can cite silicon carbide, titanium nitrides and carbides, and boron nitride. TiN has been suggested as the friction surface in hip prostheses. While cell culture tests show a good biocompatibility, the analysis of implants shows significant wear, related to a delaminating of the TiN layer. Silicon carbide is another modern-day ceramic which seems to provide good biocompatibility and can be used in bone implants.
0
Theoretical and Fundamental Chemistry
Vortex dynamics is a vibrant subfield of fluid dynamics, commanding attention at major scientific conferences and precipitating workshops and symposia that focus fully on the subject. A curious diversion in the history of vortex dynamics was the Vortex theory of the atom of William Thomson, later Lord Kelvin. His basic idea was that atoms were to be represented as vortex motions in the ether. This theory predated the quantum theory by several decades and because of the scientific standing of its originator received considerable attention. Many profound insights into vortex dynamics were generated during the pursuit of this theory. Other interesting corollaries were the first counting of simple knots by P. G. Tait, today considered a pioneering effort in graph theory, topology and knot theory. Ultimately, Kelvins vortex atom was seen to be wrong-headed but the many results in vortex dynamics that it precipitated have stood the test of time. Kelvin himself originated the notion of circulation and proved that in an inviscid fluid circulation around a material contour would be conserved. This result singled out by Einstein in "Zum hundertjährigen Gedenktag von Lord Kelvins Geburt, Naturwissenschaften, 12 (1924), 601–602," (title translation: "On the 100th Anniversary of Lord Kelvins Birth"), as one of the most significant results of Kelvin's work provided an early link between fluid dynamics and topology. The history of vortex dynamics seems particularly rich in discoveries and re-discoveries of important results, because results obtained were entirely forgotten after their discovery and then were re-discovered decades later. Thus, the integrability of the problem of three point vortices on the plane was solved in the 1877 thesis of a young Swiss applied mathematician named Walter Gröbli. In spite of having been written in Göttingen in the general circle of scientists surrounding Helmholtz and Kirchhoff, and in spite of having been mentioned in Kirchhoffs well known lectures on theoretical physics and in other major texts such as Lambs Hydrodynamics, this solution was largely forgotten. A 1949 paper by the noted applied mathematician J. L. Synge created a brief revival, but Synges paper was in turn forgotten. A quarter century later a 1975 paper by E. A. Novikov and a 1979 paper by H. Aref on chaotic advection finally brought this important earlier work to light. The subsequent elucidation of chaos in the four-vortex problem, and in the advection of a passive particle by three vortices, made Gröblis work part of "modern science". Another example of this kind is the so-called "localized induction approximation" (LIA) for three-dimensional vortex filament motion, which gained favor in the mid-1960s through the work of Arms, Hama, Betchov and others, but turns out to date from the early years of the 20th century in the work of Da Rios, a gifted student of the noted Italian mathematician T. Levi-Civita. Da Rios published his results in several forms but they were never assimilated into the fluid mechanics literature of his time. In 1972 H. Hasimoto used Da Rios' "intrinsic equations" (later re-discovered independently by R. Betchov) to show how the motion of a vortex filament under LIA could be related to the non-linear Schrödinger equation. This immediately made the problem part of "modern science" since it was then realized that vortex filaments can support solitary twist waves of large amplitude.
1
Applied and Interdisciplinary Chemistry
The Bengal Iron Works was founded at Kulti, Bengal, in 1870 which began its production in 1874 followed by The Tata Iron and Steel Company (TISCO) was established by Dorabji Tata in 1907, as part of his father's conglomerate. By 1939 it operated the largest steel plant in the British Empire. The company launched a major modernization and expansion program in 1951. Prime Minister Jawaharlal Nehru, a believer in socialism, decided that the technological revolution in India needed maximization of steel production. He, therefore, formed a government owned company, Hindustan Steel Limited (HSL) and set up three steel plants in the 1950s. The Indian steel industry began expanding into Europe in the 21st century. In January 2007 Indias Tata Steel made a successful $11.3 billion offer to buy European steel maker Corus Group. In 2006 Mittal Steel (based in London but with Indian management) merged with Arcelor after a takeover bid for $34.3 billion to become the worlds biggest steel maker, ArcelorMittal (based in Luxembourg City), with 10% of the world's output.
1
Applied and Interdisciplinary Chemistry
An MRI pulse sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy.
0
Theoretical and Fundamental Chemistry
If the initial, environmentally-generated disturbance is small enough, the next stage of the transition process is that of primary mode growth. In this stage, the initial disturbances grow (or decay) in a manner described by linear stability theory. The specific instabilities that are exhibited in reality depend on the geometry of the problem and the nature and amplitude of initial disturbances. Across a range of Reynolds numbers in a given flow configuration, the most amplified modes can and often do vary. There are several major types of instability which commonly occur in boundary layers. In subsonic and early supersonic flows, the dominant two-dimensional instabilities are T-S waves. For flows in which a three-dimensional boundary layer develops such as a swept wing, the crossflow instability becomes important. For flows navigating concave surface curvature, Görtler vortices may become the dominant instability. Each instability has its own physical origins and its own set of control strategies - some of which are contraindicated by other instabilities – adding to the difficulty in controlling laminar-turbulent transition.
1
Applied and Interdisciplinary Chemistry
Many evaluation criteria apply globally to an entire experimental structure, most notably the resolution, the anisotropy or incompleteness of the data, and the residual or R-factor that measures overall model-to-data match (see below). Those help a user choose the most accurate among related Protein Data Bank entries to answer their questions. Other criteria apply to individual residues or local regions in the 3D structure, such as fit to the local electron density map or steric clashes between atoms. Those are especially valuable to the structural biologist for making improvements to the model, and to the user for evaluating the reliability of that model right around the place they care about - such as a site of enzyme activity or drug binding. Both types of measures are very useful, but although global criteria are easier to state or publish, local criteria make the greatest contribution to scientific accuracy and biological relevance. As expressed in the Rupp textbook, "Only local validation, including assessment of both geometry and electron density, can give an accurate picture of the reliability of the structure model or any hypothesis based on local features of the model."
1
Applied and Interdisciplinary Chemistry
Nutrition polysaccharides are common sources of energy. Many organisms can easily break down starches into glucose; however, most organisms cannot metabolize cellulose or other polysaccharides like cellulose, chitin, and arabinoxylans. Some bacteria and protists can metabolize these carbohydrate types. Ruminants and termites, for example, use microorganisms to process cellulose. Even though these complex polysaccharides are not very digestible, they provide important dietary elements for humans. Called dietary fiber, these carbohydrates enhance digestion. The main action of dietary fiber is to change the nature of the contents of the gastrointestinal tract and how other nutrients and chemicals are absorbed. Soluble fiber binds to bile acids in the small intestine, making them less likely to enter the body; this, in turn, lowers cholesterol levels in the blood. Soluble fiber also attenuates the absorption of sugar, reduces sugar response after eating, normalizes blood lipid levels and, once fermented in the colon, produces short-chain fatty acids as byproducts with wide-ranging physiological activities (discussion below). Although insoluble fiber is associated with reduced diabetes risk, the mechanism by which this occurs is unknown. Not yet formally proposed as an essential macronutrient (as of 2005), dietary fiber is nevertheless regarded as important for the diet, with regulatory authorities in many developed countries recommending increases in fiber intake.
0
Theoretical and Fundamental Chemistry
* 2023: Yoshida Prize, International Organic Chemistry Foundation * 2022: Sang-Chul Shim Academic Award, Korean Chemical Society * 2007: NUS Young Investigator Award * 2005: Career Award, National Science Foundation
0
Theoretical and Fundamental Chemistry
The ARC fusion reactor (affordable, robust, compact) is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three (to produce three times the electricity required to operate the machine). The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build. The ARC has a conventional advanced tokamak layout. ARC uses rare-earth barium copper oxide (REBCO) high-temperature superconductor magnets in place of copper wiring or conventional low-temperature superconductors. These magnets can be run at much higher field strengths, 23 T, roughly doubling the magnetic field on the plasma axis. The confinement time for a particle in plasma varies with the square of the linear size, and power density varies with the fourth power of the magnetic field, so doubling the magnetic field offers the performance of a machine 4 times larger. The smaller size reduces construction costs, although this is offset to some degree by the expense of the REBCO magnets. The use of REBCO may allow the magnet windings to be flexible when the machine is not operational. This would allow them to be "folded open" to allow access to the interior of the machine. This would greatly lower maintenance costs, eliminating the need to perform maintenance through small access ports using remote manipulators. If realized, this could improve the reactor's capacity factor, an important metric in power generation costs. The first machine planned to come from the project is a scaled-down demonstrator named SPARC (as Soon as Possible ARC). It is to be built by Commonwealth Fusion Systems, with backing led by Eni, Breakthrough Energy Ventures, Khosla Ventures, Temasek, and Equinor.
0
Theoretical and Fundamental Chemistry
The method has been in use since World War I. Prior to this, the process and purity of hydrogen generation relying on steam passing over hot iron was difficult to control. The chemical reaction uses sodium hydroxide (NaOH), ferrosilicon, and water (HO). While in the "silicol" process, a heavy steel pressure vessel is filled with sodium hydroxide and ferrosilicon, and upon closing, a controlled amount of water is added; the dissolving of the hydroxide heats the mixture to about and starts the reaction; sodium silicate, hydrogen and steam are produced. The overall reaction of the process is believed to be: : 2NaOH + Si + HO → NaSiO + 2H Ferrosilicon is used by the military to quickly produce hydrogen for balloons by the ferrosilicon method. The generator may be small enough to fit in a truck and requires only a small amount of electric power, the materials are stable and not combustible, and they do not generate hydrogen until mixed. One report notes that this method of hydrogen production wasn't thoroughly investigated for about century despite being reported by the US military in the beginning of 20th century.
1
Applied and Interdisciplinary Chemistry
MsO catalyzes the esterification of alcohols by carboxylic acids. 2-Naphthyl acetate was prepared from 2-naphthol and glacial (anhydrous) acetic acid in the presence of MsO. Both alcohols on ethylene glycol successfully benzoylated with benzoic acid and MsO. However, for free alcohols on monosaccharides, the acetylation was not completed.
0
Theoretical and Fundamental Chemistry
Since discovery of ribozymes by Thomas Cech and Sidney Altman in the early 1980s, ribozymes have been shown to be a distinct class of metalloenzymes. Many ribozymes require metal ions in their active sites for chemical catalysis; hence they are called metalloenzymes. Additionally, metal ions are essential for structural stabilization of ribozymes. Group I intron is the most studied ribozyme which has three metals participating in catalysis. Other known ribozymes include group II intron, RNase P, and several small viral ribozymes (such as hammerhead, hairpin, HDV, and VS) and the large subunit of ribosomes. Several classes of ribozymes have been described. Deoxyribozymes, also called DNAzymes or catalytic DNA, are artificial DNA-based catalysts that were first produced in 1994. Almost all DNAzymes require metal ions. Although ribozymes mostly catalyze cleavage of RNA substrates, a variety of reactions can be catalyzed by DNAzymes including RNA/DNA cleavage, RNA/DNA ligation, amino acid phosphorylation and dephosphorylation, and carbon–carbon bond formation. Yet, DNAzymes that catalyze RNA cleavage reaction are the most extensively explored ones. 10-23 DNAzyme, discovered in 1997, is one of the most studied catalytic DNAs with clinical applications as a therapeutic agent. Several metal-specific DNAzymes have been reported including the GR-5 DNAzyme (lead-specific), the CA1-3 DNAzymes (copper-specific), the 39E DNAzyme (uranyl-specific) and the NaA43 DNAzyme (sodium-specific).
1
Applied and Interdisciplinary Chemistry
The dietary reference intake for vitamin D issued in 2010 by the Institute of Medicine (IoM) (renamed National Academy of Medicine in 2015), superseded previous recommendations which were expressed in terms of adequate intake. The recommendations were formed assuming the individual has no skin synthesis of vitamin D because of inadequate sun exposure. The reference intake for vitamin D refers to total intake from food, beverages and supplements, and assumes that calcium requirements are being met. The tolerable upper intake level (UL) is defined as "the highest average daily intake of a nutrient that is likely to pose no risk of adverse health effects for nearly all persons in the general population." Although ULs are believed to be safe, information on the long-term effects is incomplete and these levels of intake are not recommended for long-term consumption. For US food and dietary supplement labeling purposes, the amount in a serving is expressed as a percent of Daily Value (%DV). For vitamin D labeling purposes, 100% of the daily value was 400IU (10μg), but in May 2016, it was revised to 800IU (20μg) to bring it into agreement with the recommended dietary allowance (RDA). Compliance with the updated labeling regulations was required by 1 January 2020 for manufacturers with or more in annual food sales, and by 1 January 2021 for manufacturers with lower volume food sales. A table of the old and new adult daily values is provided at Reference Daily Intake.
1
Applied and Interdisciplinary Chemistry
A volatile oil was extracted from waterwort distillery (Artemisia vulgaris) and tarragon (Artemisia dracunculus), from which the sesquiterpene alcohol spathulenol was isolated for the first time in 1975 as a colorless, viscous compound with an earth-aromatic odor and bitter-spicy taste.
1
Applied and Interdisciplinary Chemistry
Some of the first reported organotantalum complexes were cyclopentadienyl derivatives. These arise from the salt metathesis reactions of sodium cyclopentadienide and tantalum pentachloride. An example of this is the first transition metal trihydride, CpTaH. More soluble and better developed are derivatives of pentamethylcyclopentadiene such as Cp*TaCl, Cp*TaCl, and Cp*TaH.
0
Theoretical and Fundamental Chemistry
While the definition of sublimation is simple, there is often confusion as to what counts as a sublimation.
0
Theoretical and Fundamental Chemistry
Dexchlorpheniramine (trade name Polaramine) is an antihistamine with anticholinergic properties used to treat allergic conditions such as hay fever or urticaria. It is the pharmacologically active dextrorotatory isomer of chlorpheniramine. It came into medical use in 1959 and was patented in 1962.
0
Theoretical and Fundamental Chemistry
In the case of NMR, nuclei with spin ≥ 1/2 have a magnetic dipole moment so that their energies are split by a magnetic field, allowing resonance absorption of energy related to the Larmor frequency: where is the gyromagnetic ratio and is the (normally applied) magnetic field external to the nucleus. In the case of NQR, nuclei with spin ≥ 1, such as N, O, Cl and Cu, also have an electric quadrupole moment. The nuclear quadrupole moment is associated with non-spherical nuclear charge distributions. As such it is a measure of the degree to which the nuclear charge distribution deviates from that of a sphere; that is, the prolate or oblate shape of the nucleus. NQR is a direct observation of the interaction of the quadrupole moment with the local electric field gradient (EFG) created by the electronic structure of its environment. The NQR transition frequencies are proportional to the product of the electric quadrupole moment of the nucleus and a measure of the strength of the local EFG: where q is related to the largest principal component of the EFG tensor at the nucleus. is referred to as the quadrupole coupling constant. In principle, the NQR experimenter could apply a specified EFG in order to influence just as the NMR experimenter is free to choose the Larmor frequency by adjusting the magnetic field. However, in solids, the strength of the EFG is many kV/m^2, making the application of EFG's for NQR in the manner that external magnetic fields are chosen for NMR impractical. Consequently, the NQR spectrum of a substance is specific to the substance - and NQR spectrum is a so called "chemical fingerprint." Because NQR frequencies are not chosen by the experimenter, they can be difficult to find making NQR a technically difficult technique to carry out. Since NQR is done in an environment without a static (or DC) magnetic field, it is sometimes called "zero field NMR". Many NQR transition frequencies depend strongly upon temperature.
0
Theoretical and Fundamental Chemistry