import csv | |
import json | |
import os | |
import random | |
import datasets | |
import pandas as pd | |
from torchvision.io import read_video | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@misc{black2023vader, | |
title={VADER: Video Alignment Differencing and Retrieval}, | |
author={Alexander Black and Simon Jenni and Tu Bui and Md. Mehrab Tanjim and Stefano Petrangeli and Ritwik Sinha and Viswanathan Swaminathan and John Collomosse}, | |
year={2023}, | |
eprint={2303.13193}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "https://github.com/AlexBlck/vader" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "cc-by-4.0" | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"all": "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv", | |
} | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class Anakin(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="all", | |
version=VERSION, | |
description="Full video, trimmed video, edited video, masks (if exists), and edit description", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "all": | |
features = datasets.Features( | |
{ | |
"full": datasets.Value("string"), | |
"trimmed": datasets.Value("string"), | |
"edited": datasets.Value("string"), | |
"masks": datasets.Sequence(datasets.Image()), | |
# "edit_description": datasets.Value("string"), | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
metadata_dir = dl_manager.download_and_extract(urls) | |
random.seed(47) | |
root_url = "https://huggingface.co/datasets/AlexBlck/ANAKIN/resolve/main/" | |
df = pd.read_csv(metadata_dir) | |
ids = df["video-id"].to_list() | |
random.shuffle(ids) | |
data_urls = [ | |
{ | |
"full": root_url + f"full/{idx}.mp4", | |
"trimmed": root_url + f"trimmed/{idx}.mp4", | |
"edited": root_url + f"edited/{idx}.mp4", | |
} | |
for idx in ids | |
] | |
data_dir = dl_manager.download(data_urls) | |
# data_dir = dl_manager.iter_files(data_dir) | |
mask_dir = { | |
idx: dl_manager.iter_archive( | |
dl_manager.download(root_url + f"masks/{idx}.zip") | |
) | |
for idx in ids | |
} | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"files": data_dir, | |
"masks": mask_dir, | |
"df": df, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"files": data_dir, | |
"masks": mask_dir, | |
"df": df, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"files": data_dir, | |
"masks": mask_dir, | |
"df": df, | |
}, | |
), | |
] | |
def _generate_examples(self, files, masks, df): | |
for key, sample in enumerate(files): | |
idx = sample["trimmed"].split("/")[-1].split(".")[0] | |
if df[df["video-id"] == idx]["has-masks"].values[0]: | |
sample["masks"] = [m for m in masks[idx]] | |
else: | |
sample["masks"] = None | |
print(sample) | |
yield key, sample | |