repo_name
stringlengths
6
96
path
stringlengths
4
180
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
906
722k
license
stringclasses
15 values
UltronAI/Deep-Learning
Pattern-Recognition/hw2-Feature-Selection/skfeature/function/wrapper/svm_backward.py
1
1775
import numpy as np from sklearn.svm import SVC from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score def svm_backward(X, y, n_selected_features): """ This function implements the backward feature selection algorithm based on SVM Input ----- X: {numpy array}, shape (n_samples, n_features) input data y: {numpy array}, shape (n_samples,) input class labels n_selected_features: {int} number of selected features Output ------ F: {numpy array}, shape (n_features, ) index of selected features """ n_samples, n_features = X.shape # using 10 fold cross validation cv = KFold(n_samples, n_folds=10, shuffle=True) # choose SVM as the classifier clf = SVC() # selected feature set, initialized to contain all features F = range(n_features) count = n_features while count > n_selected_features: max_acc = 0 for i in range(n_features): if i in F: F.remove(i) X_tmp = X[:, F] acc = 0 for train, test in cv: clf.fit(X_tmp[train], y[train]) y_predict = clf.predict(X_tmp[test]) acc_tmp = accuracy_score(y[test], y_predict) acc += acc_tmp acc = float(acc)/10 F.append(i) # record the feature which results in the largest accuracy if acc > max_acc: max_acc = acc idx = i # delete the feature which results in the largest accuracy F.remove(idx) count -= 1 return np.array(F)
mit
NeuralEnsemble/elephant
elephant/asset/asset.py
2
102992
# -*- coding: utf-8 -*- """ ASSET is a statistical method :cite:`asset-Torre16_e1004939` for the detection of repeating sequences of synchronous spiking events in parallel spike trains. ASSET analysis class object of finding patterns ----------------------------------------------- .. autosummary:: :toctree: _toctree/asset/ ASSET Patterns post-exploration ------------------------- .. autosummary:: :toctree: _toctree/asset/ synchronous_events_intersection synchronous_events_difference synchronous_events_identical synchronous_events_no_overlap synchronous_events_contained_in synchronous_events_contains_all synchronous_events_overlap Tutorial -------- :doc:`View tutorial <../tutorials/asset>` Run tutorial interactively: .. image:: https://mybinder.org/badge.svg :target: https://mybinder.org/v2/gh/NeuralEnsemble/elephant/master ?filepath=doc/tutorials/asset.ipynb Examples -------- In this example we * simulate two noisy synfire chains; * shuffle the neurons to destroy visual appearance; * run ASSET analysis to recover the original neurons arrangement. 1. Simulate two noise synfire chains, shuffle the neurons to destroy the pattern visually, and store shuffled activations in neo.SpikeTrains. >>> import neo >>> import numpy as np >>> import quantities as pq >>> np.random.seed(10) >>> spiketrain = np.linspace(0, 50, num=10) >>> np.random.shuffle(spiketrain) >>> spiketrains = np.c_[spiketrain, spiketrain + 100] >>> spiketrains += np.random.random_sample(spiketrains.shape) * 5 >>> spiketrains = [neo.SpikeTrain(st, units='ms', t_stop=1 * pq.s) ... for st in spiketrains] 2. Create `ASSET` class object that holds spike trains. `ASSET` requires at least one argument - a list of spike trains. If `spiketrains_y` is not provided, the same spike trains are used to build an intersection matrix with. >>> from elephant import asset >>> asset_obj = asset.ASSET(spiketrains, bin_size=3*pq.ms) 3. Build the intersection matrix `imat`: >>> imat = asset_obj.intersection_matrix() 4. Estimate the probability matrix `pmat`, using the analytical method: >>> pmat = asset_obj.probability_matrix_analytical(imat, ... kernel_width=50*pq.ms) 5. Compute the joint probability matrix `jmat`, using a suitable filter: >>> jmat = asset_obj.joint_probability_matrix(pmat, filter_shape=(5, 1), ... n_largest=3) 6. Create the masked version of the intersection matrix, `mmat`, from `pmat` and `jmat`: >>> mmat = asset_obj.mask_matrices([pmat, jmat], thresholds=.9) 7. Cluster significant elements of imat into diagonal structures: >>> cmat = asset_obj.cluster_matrix_entries(mmat, max_distance=11, ... min_neighbors=3, stretch=5) 9. Extract sequences of synchronous events: >>> sses = asset_obj.extract_synchronous_events(cmat) The ASSET found the following sequences of synchronous events: >>> sses {1: {(36, 2): {5}, (37, 4): {1}, (40, 6): {4}, (41, 7): {8}, (43, 9): {2}, (47, 14): {7}, (48, 15): {0}, (50, 17): {9}}} To visualize them, refer to Viziphant documentation and an example plot :func:`viziphant.asset.plot_synchronous_events`. """ from __future__ import division, print_function, unicode_literals import math import os import subprocess import sys import tempfile import warnings from pathlib import Path import neo import numpy as np import quantities as pq import scipy.spatial import scipy.stats from sklearn.cluster import dbscan from sklearn.metrics import pairwise_distances, pairwise_distances_chunked from tqdm import trange, tqdm import elephant.conversion as conv from elephant import spike_train_surrogates from elephant.utils import get_cuda_capability_major try: from mpi4py import MPI mpi_accelerated = True comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() except ImportError: mpi_accelerated = False size = 1 rank = 0 __all__ = [ "ASSET", "synchronous_events_intersection", "synchronous_events_difference", "synchronous_events_identical", "synchronous_events_no_overlap", "synchronous_events_contained_in", "synchronous_events_contains_all", "synchronous_events_overlap" ] # ============================================================================= # Some Utility Functions to be dealt with in some way or another # ============================================================================= def _signals_same_attribute(signals, attr_name): """ Check whether a list of signals (`neo.AnalogSignal` or `neo.SpikeTrain`) have same attribute `attr_name`. If so, return that value. Otherwise, raise ValueError. Parameters ---------- signals : list A list of signals (e.g. `neo.AnalogSignal` or `neo.SpikeTrain`) having attribute `attr_name`. Returns ------- pq.Quantity The value of the common attribute `attr_name` of the list of signals. Raises ------ ValueError If `signals` is an empty list. If `signals` have different `attr_name` attribute values. """ if len(signals) == 0: raise ValueError('Empty signals list') attribute = getattr(signals[0], attr_name) for sig in signals[1:]: if getattr(sig, attr_name) != attribute: raise ValueError( "Signals have different '{}' values".format(attr_name)) return attribute def _quantities_almost_equal(x, y): """ Returns True if two quantities are almost equal, i.e., if `x - y` is "very close to 0" (not larger than machine precision for floats). Parameters ---------- x : pq.Quantity First Quantity to compare. y : pq.Quantity Second Quantity to compare. Must have same unit type as `x`, but not necessarily the same shape. Any shapes of `x` and `y` for which `x - y` can be calculated are permitted. Returns ------- np.ndarray Array of `bool`, which is True at any position where `x - y` is almost zero. Notes ----- Not the same as `numpy.testing.assert_allclose` (which does not work with Quantities) and `numpy.testing.assert_almost_equal` (which works only with decimals) """ eps = np.finfo(float).eps relative_diff = (x - y).magnitude return np.all([-eps <= relative_diff, relative_diff <= eps], axis=0) def _transactions(spiketrains, bin_size, t_start, t_stop, ids=None): """ Transform parallel spike trains into a list of sublists, called transactions, each corresponding to a time bin and containing the list of spikes in `spiketrains` falling into that bin. To compute each transaction, the spike trains are binned (with adjacent exclusive binning) and clipped (i.e., spikes from the same train falling in the same bin are counted as one event). The list of spike IDs within each bin form the corresponding transaction. Parameters ---------- spiketrains : list of neo.SpikeTrain or list of tuple A list of `neo.SpikeTrain` objects, or list of pairs (Train_ID, `neo.SpikeTrain`), where `Train_ID` can be any hashable object. bin_size : pq.Quantity Width of each time bin. Time is binned to determine synchrony. t_start : pq.Quantity The starting time. Only spikes occurring at times `t >= t_start` are considered. The first transaction contains spikes falling into the time segment `[t_start, t_start+bin_size]`. If None, takes the value of `spiketrain.t_start`, common for all input `spiketrains` (raises ValueError if it's not the case). Default: None t_stop : pq.Quantity The ending time. Only spikes occurring at times `t < t_stop` are considered. If None, takes the value of `spiketrain.t_stop`, common for all input `spiketrains` (raises ValueError if it's not the case). Default: None ids : list of int, optional List of spike train IDs. If None, the IDs `0` to `N-1` are used, where `N` is the number of input spike trains. Default: None Returns ------- list of list A list of transactions, where each transaction corresponds to a time bin and represents the list of spike train IDs having a spike in that time bin. Raises ------ TypeError If `spiketrains` is not a list of `neo.SpikeTrain` or a list of tuples (id, `neo.SpikeTrain`). """ if all(isinstance(st, neo.SpikeTrain) for st in spiketrains): trains = spiketrains if ids is None: ids = range(len(spiketrains)) else: # (id, SpikeTrain) pairs try: ids, trains = zip(*spiketrains) except TypeError: raise TypeError('spiketrains must be either a list of ' + 'SpikeTrains or a list of (id, SpikeTrain) pairs') # Bin the spike trains and take for each of them the ids of filled bins binned = conv.BinnedSpikeTrain( trains, bin_size=bin_size, t_start=t_start, t_stop=t_stop) filled_bins = binned.spike_indices # Compute and return the transaction list return [[train_id for train_id, b in zip(ids, filled_bins) if bin_id in b] for bin_id in range(binned.n_bins)] def _analog_signal_step_interp(signal, times): """ Compute the step-wise interpolation of a signal at desired times. Given a signal (e.g. a `neo.AnalogSignal`) `s` taking values `s[t0]` and `s[t1]` at two consecutive time points `t0` and `t1` (`t0 < t1`), the value of the step-wise interpolation at time `t: t0 <= t < t1` is given by `s[t] = s[t0]`. Parameters ---------- signal : neo.AnalogSignal The analog signal, containing the discretization of the function to interpolate. times : pq.Quantity A vector of time points at which the step interpolation is computed. Returns ------- pq.Quantity Object with same shape of `times` and containing the values of the interpolated signal at the time points in `times`. """ dt = signal.sampling_period # Compute the ids of the signal times to the left of each time in times time_ids = np.floor( ((times - signal.t_start) / dt).rescale( pq.dimensionless).magnitude).astype('i') return (signal.magnitude[time_ids] * signal.units).rescale(signal.units) # ============================================================================= # HERE ASSET STARTS # ============================================================================= def _stretched_metric_2d(x, y, stretch, ref_angle, working_memory=None): r""" Given a list of points on the real plane, identified by their abscissa `x` and ordinate `y`, compute a stretched transformation of the Euclidean distance among each of them. The classical euclidean distance `d` between points `(x1, y1)` and `(x2, y2)`, i.e., :math:`\sqrt((x1-x2)^2 + (y1-y2)^2)`, is multiplied by a factor .. math:: 1 + (stretch - 1.) * \abs(\sin(ref_angle - \theta)), where :math:`\theta` is the angle between the points and the 45 degree direction (i.e., the line `y = x`). The stretching factor thus steadily varies between 1 (if the line connecting `(x1, y1)` and `(x2, y2)` has inclination `ref_angle`) and `stretch` (if that line has inclination `90 + ref_angle`). Parameters ---------- x : (n,) np.ndarray Array of abscissas of all points among which to compute the distance. y : (n,) np.ndarray Array of ordinates of all points among which to compute the distance (same shape as `x`). stretch : float Maximum stretching factor, applied if the line connecting the points has inclination `90 + ref_angle`. ref_angle : float Reference angle in degrees (i.e., the inclination along which the stretching factor is 1). Returns ------- D : (n,n) np.ndarray Square matrix of distances between all pairs of points. """ alpha = np.deg2rad(ref_angle) # reference angle in radians # Create the array of points (one per row) for which to compute the # stretched distance points = np.column_stack([x, y]) x_array = np.expand_dims(x, axis=0) y_array = np.expand_dims(y, axis=0) def calculate_stretch_mat(theta_mat, D_mat): # Transform [-pi, pi] back to [-pi/2, pi/2] theta_mat[theta_mat < -np.pi / 2] += np.pi theta_mat[theta_mat > np.pi / 2] -= np.pi # Compute the matrix of stretching factors for each pair of points. # Equivalent to: # stretch_mat = 1 + (stretch - 1.) * np.abs(np.sin(alpha - theta)) _stretch_mat = np.subtract(alpha, theta_mat, out=theta_mat) _stretch_mat = np.sin(_stretch_mat, out=_stretch_mat) _stretch_mat = np.abs(_stretch_mat, out=_stretch_mat) _stretch_mat = np.multiply(stretch - 1, _stretch_mat, out=_stretch_mat) _stretch_mat = np.add(1, _stretch_mat, out=_stretch_mat) _stretch_mat = np.multiply(D_mat, _stretch_mat, out=_stretch_mat) return _stretch_mat if working_memory is None: # Compute the matrix D[i, j] of euclidean distances among points # i and j D = pairwise_distances(points) # Compute the angular coefficients of the line between each pair of # points # dX[i,j]: x difference between points i and j # dY[i,j]: y difference between points i and j dX = x_array.T - x_array dY = y_array.T - y_array # Compute the matrix Theta of angles between each pair of points theta = np.arctan2(dY, dX, dtype=np.float32) stretch_mat = calculate_stretch_mat(theta, D) else: start = 0 # x and y sizes are the same stretch_mat = np.empty((len(x), len(y)), dtype=np.float32) for D_chunk in pairwise_distances_chunked( points, working_memory=working_memory): chunk_size = D_chunk.shape[0] dX = x_array[:, start: start + chunk_size].T - x_array dY = y_array[:, start: start + chunk_size].T - y_array theta_chunk = np.arctan2( dY, dX, out=stretch_mat[start: start + chunk_size, :]) # stretch_mat (theta_chunk) is updated in-place here calculate_stretch_mat(theta_chunk, D_chunk) start += chunk_size # Return the stretched distance matrix return stretch_mat def _interpolate_signals(signals, sampling_times, verbose=False): """ Interpolate signals at given sampling times. """ # Reshape all signals to one-dimensional array object (e.g. AnalogSignal) for i, signal in enumerate(signals): if signal.ndim == 2: signals[i] = signal.flatten() elif signal.ndim > 2: raise ValueError('elements in fir_rates must have 2 dimensions') if verbose: print('create time slices of the rates...') # Interpolate in the time bins interpolated_signal = np.vstack([_analog_signal_step_interp( signal, sampling_times).rescale('Hz').magnitude for signal in signals]) * pq.Hz return interpolated_signal class _GPUBackend: """ Parameters ---------- max_chunk_size: int or None, optional Defines the maximum chunk size used in the `_split_axis` function. The users typically don't need to set this parameter manually - it's used to simulate scenarios when the input matrix is so large that it cannot fit into GPU memory. Setting this parameter manually can resolve GPU memory errors in case automatic parameters adjustment fails. Notes ----- 1. PyOpenCL backend takes some time to compile the kernel for the first time - the caching will affect your benchmarks unless you run each program twice. 2. Pinned Host Memory. Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from pageable host memory, so when a data transfer from pageable host memory to device memory is invoked, the CUDA driver must first allocate a temporary page-locked, or "pinned", host array, copy the host data to the pinned array, and then transfer the data from the pinned array to device memory, as illustrated at https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/ Same for OpenCL. Therefore, Python memory analyzers show increments in the used RAM each time an OpenCL/CUDA buffer is created. As with any Python objects, PyOpenCL and PyCUDA clean up and free allocated memory automatically when garbage collection is executed. """ def __init__(self, max_chunk_size=None): self.max_chunk_size = max_chunk_size def _choose_backend(self): # If CUDA is detected, always use CUDA. # If OpenCL is detected, don't use it by default to avoid the system # becoming unresponsive until the program terminates. use_cuda = int(os.getenv("ELEPHANT_USE_CUDA", '1')) use_opencl = int(os.getenv("ELEPHANT_USE_OPENCL", '1')) cuda_detected = get_cuda_capability_major() != 0 if use_cuda and cuda_detected: return self.pycuda if use_opencl: return self.pyopencl return self.cpu def _split_axis(self, chunk_size, axis_size, min_chunk_size=None): chunk_size = min(chunk_size, axis_size) if self.max_chunk_size is not None: chunk_size = min(chunk_size, self.max_chunk_size) if min_chunk_size is not None and chunk_size < min_chunk_size: raise ValueError(f"[GPU not enough memory] Impossible to split " f"the array into chunks of size at least " f"{min_chunk_size} to fit into GPU memory") n_chunks = math.ceil(axis_size / chunk_size) chunk_size = math.ceil(axis_size / n_chunks) # align in size if min_chunk_size is not None: chunk_size = max(chunk_size, min_chunk_size) split_idx = list(range(0, axis_size, chunk_size)) last_id = split_idx[-1] last_size = axis_size - last_id # last is the smallest split_idx = list(zip(split_idx[:-1], split_idx[1:])) if min_chunk_size is not None and last_size < min_chunk_size: # Overlap the last chunk with the previous. # The overlapped part (intersection) will be computed twice. last_id = axis_size - min_chunk_size split_idx.append((last_id, axis_size)) return chunk_size, split_idx class _JSFUniformOrderStat3D(_GPUBackend): def __init__(self, n, d, precision='float', verbose=False, cuda_threads=64, cuda_cwr_loops=32, tolerance=1e-5, max_chunk_size=None): super().__init__(max_chunk_size=max_chunk_size) if d > n: raise ValueError(f"d ({d}) must be less or equal n ({n})") self.n = n self.d = d self.precision = precision self.verbose = verbose and rank == 0 self.cuda_threads = cuda_threads self.cuda_cwr_loops = cuda_cwr_loops self.map_iterations = self._create_iteration_table() bits = 32 if precision == "float" else 64 self.dtype = np.dtype(f"float{bits}") self.tolerance = tolerance @property def num_iterations(self): # map_iterations table is populated with element indices, not counts; # therefore, we add 1 return self.map_iterations[:, -1].sum() + 1 def _create_iteration_table(self): # do not use numpy arrays - they are limited to uint64 map_iterations = [list(range(self.n))] for row_id in range(1, self.d): prev_row = map_iterations[row_id - 1] curr_row = [0] * (row_id + 1) for col_id in range(row_id + 1, self.n): cumsum = prev_row[col_id] + curr_row[-1] curr_row.append(cumsum) map_iterations.append(curr_row) # here we can wrap the resulting array in numpy: # if at least one item is greater than 2<<63 - 1, # the data type will be set to 'object' map_iterations = np.vstack(map_iterations) return map_iterations def _combinations_with_replacement(self): # Generate sequences of {a_i} such that # a_0 >= a_1 >= ... >= a_(d-1) and # d-i <= a_i <= n, for each i in [0, d-1]. # # Almost equivalent to # list(itertools.combinations_with_replacement(range(n, 0, -1), r=d)) # [::-1] # # Example: # _combinations_with_replacement(n=13, d=3) --> # (3, 2, 1), (3, 2, 2), (3, 3, 1), ... , (13, 13, 12), (13, 13, 13). # # The implementation follows the insertion sort algorithm: # insert a new element a_i from right to left to keep the reverse # sorted order. Now substitute increment operation for insert. if self.d > self.n: return if self.d == 1: for matrix_entry in range(1, self.n + 1): yield (matrix_entry,) return sequence_sorted = list(range(self.d, 0, -1)) input_order = tuple(sequence_sorted) # fixed while sequence_sorted[0] != self.n + 1: for last_element in range(1, sequence_sorted[-2] + 1): sequence_sorted[-1] = last_element yield tuple(sequence_sorted) increment_id = self.d - 2 while increment_id > 0 and sequence_sorted[increment_id - 1] == \ sequence_sorted[increment_id]: increment_id -= 1 sequence_sorted[increment_id + 1:] = input_order[increment_id + 1:] sequence_sorted[increment_id] += 1 def cpu(self, log_du): log_1 = np.log(1.) # Compute the log of the integral's coefficient logK = np.sum(np.log(np.arange(1, self.n + 1))) # Add to the 3D matrix u a bottom layer equal to 0 and a # top layer equal to 1. Then compute the difference du along # the first dimension. # prepare arrays for usage inside the loop di_scratch = np.empty_like(log_du, dtype=np.int32) log_du_scratch = np.empty_like(log_du) # precompute log(factorial)s # pad with a zero to get 0! = 1 log_factorial = np.hstack((0, np.cumsum(np.log(range(1, self.n + 1))))) # compute the probabilities for each unique row of du # only loop over the indices and do all du entries at once # using matrix algebra # initialise probabilities to 0 P_total = np.zeros( log_du.shape[0], dtype=np.float32 if self.precision == 'float' else np.float64 ) for iter_id, matrix_entries in enumerate( tqdm(self._combinations_with_replacement(), total=self.num_iterations, desc="Joint survival function", disable=not self.verbose)): # if we are running with MPI if mpi_accelerated and iter_id % size != rank: continue # we only need the differences of the indices: di = -np.diff((self.n,) + matrix_entries + (0,)) # reshape the matrix to be compatible with du di_scratch[:, range(len(di))] = di # use precomputed factorials sum_log_di_factorial = log_factorial[di].sum() # Compute for each i,j the contribution to the probability # given by this step, and add it to the total probability # Use precomputed log np.copyto(log_du_scratch, log_du) # for each a=0,1,...,A-1 and b=0,1,...,B-1, replace du with 1 # whenever di_scratch = 0, so that du ** di_scratch = 1 (this # avoids nans when both du and di_scratch are 0, and is # mathematically correct) log_du_scratch[di_scratch == 0] = log_1 di_log_du = di_scratch * log_du_scratch sum_di_log_du = di_log_du.sum(axis=1) logP = sum_di_log_du - sum_log_di_factorial P_total += np.exp(logP + logK) if mpi_accelerated: totals = np.zeros_like(P_total) # exchange all the results mpi_float_type = MPI.FLOAT \ if self.precision == 'float' else MPI.DOUBLE comm.Allreduce( [P_total, mpi_float_type], [totals, mpi_float_type], op=MPI.SUM) # We need to return the collected totals instead of the local # P_total P_total = totals return P_total def _compile_template(self, template_name, **kwargs): from jinja2 import Template cu_template_path = Path(__file__).parent / template_name cu_template = Template(cu_template_path.read_text()) asset_cu = cu_template.render( precision=self.precision, CWR_LOOPS=self.cuda_cwr_loops, N=self.n, D=self.d, **kwargs) return asset_cu def pyopencl(self, log_du, device_id=0): import pyopencl as cl import pyopencl.array as cl_array self._check_input(log_du) it_todo = self.num_iterations u_length = log_du.shape[0] context = cl.create_some_context(interactive=False) if self.verbose: print("Available OpenCL devices:\n", context.devices) device = context.devices[device_id] # A queue bounded to the device queue = cl.CommandQueue(context) max_l_block = device.local_mem_size // ( self.dtype.itemsize * (self.d + 2)) n_threads = min(self.cuda_threads, max_l_block, device.max_work_group_size) if n_threads > 32: # It's more efficient to make the number of threads # a multiple of the warp size (32). n_threads -= n_threads % 32 iteration_table_str = ", ".join(f"{val}LU" for val in self.map_iterations.flatten()) iteration_table_str = "{%s}" % iteration_table_str log_factorial = np.r_[0, np.cumsum(np.log(range(1, self.n + 1)))] logK = log_factorial[-1] log_factorial_str = ", ".join(f"{val:.10f}" for val in log_factorial) log_factorial_str = "{%s}" % log_factorial_str atomic_int = 'int' if self.precision == 'float' else 'long' # GPU_MAX_HEAP_SIZE OpenCL flag is set to 2 Gb (1 << 31) by default mem_avail = min(device.max_mem_alloc_size, device.global_mem_size, 1 << 31) # 4 * (D + 1) * size + 8 * size == mem_avail chunk_size = mem_avail // (4 * log_du.shape[1] + self.dtype.itemsize) chunk_size, split_idx = self._split_axis(chunk_size=chunk_size, axis_size=u_length) P_total = np.empty(u_length, dtype=self.dtype) P_total_gpu = cl_array.Array(queue, shape=chunk_size, dtype=self.dtype) for i_start, i_end in split_idx: log_du_gpu = cl_array.to_device(queue, log_du[i_start: i_end], async_=True) P_total_gpu.fill(0, queue=queue) chunk_size = i_end - i_start l_block = min(n_threads, chunk_size) l_num_blocks = math.ceil(chunk_size / l_block) grid_size = math.ceil(it_todo / (n_threads * self.cuda_cwr_loops)) if grid_size > l_num_blocks: # make grid_size divisible by l_num_blocks grid_size -= grid_size % l_num_blocks else: # grid_size must be at least l_num_blocks grid_size = l_num_blocks if self.verbose: print(f"[Joint prob. matrix] it_todo={it_todo}, " f"grid_size={grid_size}, L_BLOCK={l_block}, " f"N_THREADS={n_threads}") # OpenCL defines unsigned long as uint64, therefore we're adding # the LU suffix, not LLU, which would indicate unsupported uint128 # data type format. asset_cl = self._compile_template( template_name="joint_pmat.cl", L=f"{chunk_size}LU", L_BLOCK=l_block, L_NUM_BLOCKS=l_num_blocks, ITERATIONS_TODO=f"{it_todo}LU", logK=f"{logK:.10f}f", iteration_table=iteration_table_str, log_factorial=log_factorial_str, ATOMIC_UINT=f"unsigned {atomic_int}", ASSET_ENABLE_DOUBLE_SUPPORT=int(self.precision == "double") ) program = cl.Program(context, asset_cl).build() # synchronize cl.enqueue_barrier(queue) kernel = program.jsf_uniform_orderstat_3d_kernel kernel(queue, (grid_size,), (n_threads,), P_total_gpu.data, log_du_gpu.data, g_times_l=True) P_total_gpu[:chunk_size].get(ary=P_total[i_start: i_end]) return P_total def pycuda(self, log_du): try: # PyCuda should not be in requirements-extra because CPU limited # users won't be able to install Elephant. import pycuda.autoinit import pycuda.gpuarray as gpuarray import pycuda.driver as drv from pycuda.compiler import SourceModule except ImportError as err: raise ImportError( "Install pycuda with 'pip install pycuda'") from err self._check_input(log_du) it_todo = self.num_iterations u_length = log_du.shape[0] device = pycuda.autoinit.device max_l_block = device.MAX_SHARED_MEMORY_PER_BLOCK // ( self.dtype.itemsize * (self.d + 2)) n_threads = min(self.cuda_threads, max_l_block, device.MAX_THREADS_PER_BLOCK) if n_threads > device.WARP_SIZE: # It's more efficient to make the number of threads # a multiple of the warp size (32). n_threads -= n_threads % device.WARP_SIZE log_factorial = np.r_[0, np.cumsum(np.log(range(1, self.n + 1)))] log_factorial = log_factorial.astype(self.dtype) logK = log_factorial[-1] free, total = drv.mem_get_info() # 4 * (D + 1) * size + 8 * size == mem_avail chunk_size = free // (4 * log_du.shape[1] + self.dtype.itemsize) chunk_size, split_idx = self._split_axis(chunk_size=chunk_size, axis_size=u_length) P_total = np.empty(u_length, dtype=self.dtype) P_total_gpu = gpuarray.GPUArray(chunk_size, dtype=self.dtype) log_du_gpu = drv.mem_alloc(4 * chunk_size * log_du.shape[1]) for i_start, i_end in split_idx: drv.memcpy_htod_async(dest=log_du_gpu, src=log_du[i_start: i_end]) P_total_gpu.fill(0) chunk_size = i_end - i_start l_block = min(n_threads, chunk_size) l_num_blocks = math.ceil(chunk_size / l_block) grid_size = math.ceil(it_todo / (n_threads * self.cuda_cwr_loops)) grid_size = min(grid_size, device.MAX_GRID_DIM_X) if grid_size > l_num_blocks: # make grid_size divisible by l_num_blocks grid_size -= grid_size % l_num_blocks else: # grid_size must be at least l_num_blocks grid_size = l_num_blocks if self.verbose: print(f"[Joint prob. matrix] it_todo={it_todo}, " f"grid_size={grid_size}, L_BLOCK={l_block}, " f"N_THREADS={n_threads}") asset_cu = self._compile_template( template_name="joint_pmat.cu", L=f"{chunk_size}LLU", L_BLOCK=l_block, L_NUM_BLOCKS=l_num_blocks, ITERATIONS_TODO=f"{it_todo}LLU", logK=f"{logK:.10f}f", ) module = SourceModule(asset_cu) iteration_table_gpu, _ = module.get_global("iteration_table") iteration_table = self.map_iterations.astype(np.uint64) drv.memcpy_htod(iteration_table_gpu, iteration_table) log_factorial_gpu, _ = module.get_global("log_factorial") drv.memcpy_htod(log_factorial_gpu, log_factorial) drv.Context.synchronize() kernel = module.get_function("jsf_uniform_orderstat_3d_kernel") kernel(P_total_gpu.gpudata, log_du_gpu, grid=(grid_size, 1), block=(n_threads, 1, 1)) P_total_gpu[:chunk_size].get(ary=P_total[i_start: i_end]) return P_total def _cuda(self, log_du): # Compile a self-contained joint_pmat_old.cu file and run it # in a terminal. Having this function is useful to debug ASSET CUDA # application because it's self-contained and the logic is documented. # Don't use this backend when the 'log_du' arrays are huge because # of the disk I/O operations. # A note to developers: remove this backend in half a year once the # pycuda backend proves to be stable. self._check_input(log_du) asset_cu = self._compile_template( template_name="joint_pmat_old.cu", L=f"{log_du.shape[0]}LLU", N_THREADS=self.cuda_threads, ITERATIONS_TODO=f"{self.num_iterations}LLU", ASSET_DEBUG=int(self.verbose) ) with tempfile.TemporaryDirectory() as asset_tmp_folder: asset_cu_path = os.path.join(asset_tmp_folder, 'asset.cu') asset_bin_path = os.path.join(asset_tmp_folder, 'asset.o') with open(asset_cu_path, 'w') as f: f.write(asset_cu) # -O3 optimization flag is for the host code only; # by default, GPU device code is optimized with -O3. # -w to ignore warnings. compile_cmd = ['nvcc', '-w', '-O3', '-o', asset_bin_path, asset_cu_path] if self.precision == 'double' and get_cuda_capability_major() >= 6: # atomicAdd(double) requires compute capability 6.x compile_cmd.extend(['-arch', 'sm_60']) compile_status = subprocess.run( compile_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if self.verbose: print(compile_status.stdout.decode()) print(compile_status.stderr.decode(), file=sys.stderr) compile_status.check_returncode() log_du_path = os.path.join(asset_tmp_folder, "log_du.dat") P_total_path = os.path.join(asset_tmp_folder, "P_total.dat") with open(log_du_path, 'wb') as f: log_du.tofile(f) run_status = subprocess.run( [asset_bin_path, log_du_path, P_total_path], stdout=subprocess.PIPE, stderr=subprocess.PIPE) if self.verbose: print(run_status.stdout.decode()) print(run_status.stderr.decode(), file=sys.stderr) run_status.check_returncode() with open(P_total_path, 'rb') as f: P_total = np.fromfile(f, dtype=self.dtype) return P_total def _check_input(self, log_du): it_todo = self.num_iterations if it_todo > np.iinfo(np.uint64).max: raise ValueError(f"it_todo ({it_todo}) is larger than MAX_UINT64." " Only Python backend is supported.") # Don't convert log_du to float32 transparently for the user to avoid # situations when the user accidentally passes an array with float64. # Doing so wastes memory for nothing. if log_du.dtype != np.float32: raise ValueError("'log_du' must be a float32 array") if log_du.shape[1] != self.d + 1: raise ValueError(f"log_du.shape[1] ({log_du.shape[1]}) must be " f"equal to D+1 ({self.d + 1})") def compute(self, u): if u.shape[1] != self.d: raise ValueError("Invalid input data shape axis 1: expected {}, " "got {}".format(self.d, u.shape[1])) # A faster and memory efficient implementation of # du = np.diff(u, prepend=0, append=1, axis=1).astype(np.float32) du = np.empty((u.shape[0], u.shape[1] + 1), dtype=np.float32) du[:, 0] = u[:, 0] np.subtract(u[:, 1:], u[:, :-1], out=du[:, 1:-1]) np.subtract(1, u[:, -1], out=du[:, -1]) # precompute logarithms # ignore warnings about infinities, see inside the loop: # we replace 0 * ln(0) by 1 to get exp(0 * ln(0)) = 0 ** 0 = 1 # the remaining infinities correctly evaluate to # exp(ln(0)) = exp(-inf) = 0 with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) log_du = np.log(du, out=du) jsf_backend = self._choose_backend() P_total = jsf_backend(log_du) # Captures non-finite values like NaN, inf inside = (P_total > -self.tolerance) & (P_total < 1 + self.tolerance) outside_vals = P_total[~inside] if len(outside_vals) > 0: # A watchdog for unexpected results. warnings.warn(f"{len(outside_vals)}/{P_total.shape[0]} values of " "the computed joint prob. matrix lie outside of the " f"valid [0, 1] interval:\n{outside_vals}\nIf you're " "using PyOpenCL backend, make sure you've disabled " "GPU Hangcheck as described here https://" "software.intel.com/content/www/us/en/develop/" "documentation/get-started-with-intel-oneapi-" "base-linux/top/before-you-begin.html\n" "Clipping the output array to 0 and 1.") P_total = np.clip(P_total, a_min=0., a_max=1., out=P_total) return P_total class _PMatNeighbors(_GPUBackend): """ Parameters ---------- filter_shape : tuple of int A pair of integers representing the kernel shape `(l, w)`. n_largest : int The number of largest neighbors to collect for each entry in `mat`. """ def __init__(self, filter_shape, n_largest, max_chunk_size=None): super().__init__(max_chunk_size=max_chunk_size) self.n_largest = n_largest self.max_chunk_size = max_chunk_size filter_size, filter_width = filter_shape if filter_width >= filter_size: raise ValueError('filter_shape width must be lower than length') if not ((filter_width % 2) and (filter_size % 2)): warnings.warn( 'The kernel is not centered on the datapoint in whose' 'calculation it is used. Consider using odd values' 'for both entries of filter_shape.') # Construct the kernel filt = np.ones((filter_size, filter_size), dtype=bool) filt = np.triu(filt, -filter_width) filt = np.tril(filt, filter_width) if n_largest > len(filt.nonzero()[0]): raise ValueError(f"Too small filter shape {filter_shape} to " f"select {n_largest} largest elements.") self.filter_kernel = filt def _check_input(self, mat): symmetric = np.all(np.diagonal(mat) == 0.5) # Check consistent arguments filter_size = self.filter_kernel.shape[0] if (symmetric and mat.shape[0] < 2 * filter_size - 1) \ or (not symmetric and min(mat.shape) < filter_size): raise ValueError(f"'filter_shape' {self.filter_kernel.shape} is " f"too large for the input matrix of shape " f"{mat.shape}") if mat.dtype != np.float32: raise ValueError("The input matrix dtype must be float32.") def pyopencl(self, mat): import pyopencl as cl import pyopencl.array as cl_array from jinja2 import Template context = cl.create_some_context(interactive=False) device = context.devices[0] queue = cl.CommandQueue(context) # if the matrix is symmetric the diagonal was set to 0.5 # when computing the probability matrix symmetric = np.all(np.diagonal(mat) == 0.5) self._check_input(mat) filt_size = self.filter_kernel.shape[0] # filt is a square matrix filt_rows, filt_cols = self.filter_kernel.nonzero() filt_rows = "{%s}" % ", ".join(f"{row}U" for row in filt_rows) filt_cols = "{%s}" % ", ".join(f"{col}U" for col in filt_cols) lmat_padded = np.zeros((mat.shape[0], mat.shape[1], self.n_largest), dtype=np.float32) if symmetric: mat = mat[filt_size:] lmat = lmat_padded[filt_size + filt_size // 2: -filt_size // 2 + 1] else: lmat = lmat_padded[filt_size // 2: -filt_size // 2 + 1] # GPU_MAX_HEAP_SIZE OpenCL flag is set to 2 Gb (1 << 31) by default mem_avail = min(device.max_mem_alloc_size, device.global_mem_size, 1 << 31) # 4 * size * n_cols * n_largest + 4 * (size + filt_size) * n_cols chunk_size = (mem_avail // 4 - filt_size * lmat.shape[1]) // ( lmat.shape[1] * (self.n_largest + 1)) chunk_size, split_idx = self._split_axis(chunk_size=chunk_size, axis_size=lmat.shape[0], min_chunk_size=filt_size) pmat_cl_path = Path(__file__).parent / "pmat_neighbors.cl" pmat_cl_template = Template(pmat_cl_path.read_text()) lmat_gpu = cl_array.Array( queue, shape=(chunk_size, lmat.shape[1], self.n_largest), dtype=np.float32 ) for i_start, i_end in split_idx: mat_gpu = cl_array.to_device(queue, mat[i_start: i_end + filt_size], async_=True) lmat_gpu.fill(0, queue=queue) chunk_size = i_end - i_start it_todo = chunk_size * (lmat.shape[1] - filt_size + 1) pmat_neighbors_cl = pmat_cl_template.render( FILT_SIZE=filt_size, N_LARGEST=self.n_largest, PMAT_COLS=f"{lmat.shape[1]}LU", Y_OFFSET=f"{i_start}LU", NONZERO_SIZE=self.filter_kernel.sum(), SYMMETRIC=int(symmetric), filt_rows=filt_rows, filt_cols=filt_cols ) program = cl.Program(context, pmat_neighbors_cl).build() # synchronize cl.enqueue_barrier(queue) kernel = program.pmat_neighbors # When the grid size is set to the total number of work items to # execute and the local size is set to None, PyOpenCL chooses the # number of threads automatically such that the total number of # work items exactly matches the desired number of iterations. kernel(queue, (it_todo,), None, lmat_gpu.data, mat_gpu.data) lmat_gpu[:chunk_size].get(ary=lmat[i_start: i_end]) return lmat_padded def pycuda(self, mat): from jinja2 import Template try: # PyCuda should not be in requirements-extra because CPU limited # users won't be able to install Elephant. import pycuda.autoinit import pycuda.gpuarray as gpuarray import pycuda.driver as drv from pycuda.compiler import SourceModule except ImportError as err: raise ImportError( "Install pycuda with 'pip install pycuda'") from err # if the matrix is symmetric the diagonal was set to 0.5 # when computing the probability matrix symmetric = np.all(np.diagonal(mat) == 0.5) self._check_input(mat) device = pycuda.autoinit.device n_threads = device.MAX_THREADS_PER_BLOCK filt_size = self.filter_kernel.shape[0] filt_rows, filt_cols = self.filter_kernel.nonzero() lmat_padded = np.zeros((mat.shape[0], mat.shape[1], self.n_largest), dtype=np.float32) if symmetric: mat = mat[filt_size:] lmat = lmat_padded[filt_size + filt_size // 2: -filt_size // 2 + 1] else: lmat = lmat_padded[filt_size // 2: -filt_size // 2 + 1] free, total = drv.mem_get_info() # 4 * size * n_cols * n_largest + 4 * (size + filt_size) * n_cols chunk_size = (free // 4 - filt_size * lmat.shape[1]) // ( lmat.shape[1] * (self.n_largest + 1)) chunk_size, split_idx = self._split_axis(chunk_size=chunk_size, axis_size=lmat.shape[0], min_chunk_size=filt_size) pmat_cu_path = Path(__file__).parent / "pmat_neighbors.cu" pmat_cu_template = Template(pmat_cu_path.read_text()) lmat_gpu = gpuarray.GPUArray( (chunk_size, lmat.shape[1], self.n_largest), dtype=np.float32) mat_gpu = drv.mem_alloc(4 * (chunk_size + filt_size) * mat.shape[1]) for i_start, i_end in split_idx: drv.memcpy_htod_async(dest=mat_gpu, src=mat[i_start: i_end + filt_size]) lmat_gpu.fill(0) chunk_size = i_end - i_start it_todo = chunk_size * (lmat.shape[1] - filt_size + 1) pmat_neighbors_cu = pmat_cu_template.render( FILT_SIZE=filt_size, N_LARGEST=self.n_largest, PMAT_COLS=f"{lmat.shape[1]}LLU", Y_OFFSET=f"{i_start}LLU", NONZERO_SIZE=self.filter_kernel.sum(), SYMMETRIC=int(symmetric), IT_TODO=it_todo, ) module = SourceModule(pmat_neighbors_cu) filt_rows_gpu, _ = module.get_global("filt_rows") drv.memcpy_htod(filt_rows_gpu, filt_rows.astype(np.uint32)) filt_cols_gpu, _ = module.get_global("filt_cols") drv.memcpy_htod(filt_cols_gpu, filt_cols.astype(np.uint32)) drv.Context.synchronize() grid_size = math.ceil(it_todo / n_threads) if grid_size > device.MAX_GRID_DIM_X: raise ValueError("Cannot launch a CUDA kernel with " f"{grid_size} num. of blocks. Adjust the " "'max_chunk_size' parameter.") kernel = module.get_function("pmat_neighbors") kernel(lmat_gpu.gpudata, mat_gpu, grid=(grid_size, 1), block=(n_threads, 1, 1)) lmat_gpu[:chunk_size].get(ary=lmat[i_start: i_end]) return lmat_padded def compute(self, mat): """ Build the 3D matrix `L` of largest neighbors of elements in a 2D matrix `mat`. For each entry `mat[i, j]`, collects the `n_largest` elements with largest values around `mat[i, j]`, say `z_i, i=1,2,...,n_largest`, and assigns them to `L[i, j, :]`. The zone around `mat[i, j]` where largest neighbors are collected from is a rectangular area (kernel) of shape `(l, w) = filter_shape` centered around `mat[i, j]` and aligned along the diagonal. If `mat` is symmetric, only the triangle below the diagonal is considered. Parameters ---------- mat : np.ndarray A square matrix of real-valued elements. Returns ------- lmat : np.ndarray A matrix of shape `(l, w, n_largest)` containing along the last dimension `lmat[i, j, :]` the largest neighbors of `mat[i, j]`. """ backend = self._choose_backend() lmat = backend(mat) return lmat def cpu(self, mat): # if the matrix is symmetric the diagonal was set to 0.5 # when computing the probability matrix symmetric = np.all(np.diagonal(mat) == 0.5) self._check_input(mat) filter_size = self.filter_kernel.shape[0] # Initialize the matrix of d-largest values as a matrix of zeroes lmat = np.zeros((mat.shape[0], mat.shape[1], self.n_largest), dtype=np.float32) N_bin_y = mat.shape[0] N_bin_x = mat.shape[1] # if the matrix is symmetric do not use kernel positions intersected # by the diagonal if symmetric: bin_range_y = range(filter_size, N_bin_y - filter_size + 1) else: bin_range_y = range(N_bin_y - filter_size + 1) bin_range_x = range(N_bin_x - filter_size + 1) # compute matrix of largest values for y in bin_range_y: if symmetric: # x range depends on y position bin_range_x = range(y - filter_size + 1) for x in bin_range_x: patch = mat[y: y + filter_size, x: x + filter_size] mskd = patch[self.filter_kernel] largest_vals = np.sort(mskd)[-self.n_largest:] lmat[y + (filter_size // 2), x + (filter_size // 2), :] = \ largest_vals return lmat def synchronous_events_intersection(sse1, sse2, intersection='linkwise'): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of positions `(iK, jK)` of matrix entries and associated synchronous events `SK`, finds the intersection among them. The intersection can be performed 'pixelwise' or 'linkwise'. * if 'pixelwise', it yields a new SSE which retains only events in `sse1` whose pixel position matches a pixel position in `sse2`. This operation is not symmetric: `intersection(sse1, sse2) != intersection(sse2, sse1)`. * if 'linkwise', an additional step is performed where each retained synchronous event `SK` in `sse1` is intersected with the corresponding event in `sse2`. This yields a symmetric operation: `intersection(sse1, sse2) = intersection(sse2, sse1)`. Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Each is a dictionary of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values (see above). intersection : {'pixelwise', 'linkwise'}, optional The type of intersection to perform among the two SSEs (see above). Default: 'linkwise' Returns ------- sse_new : dict A new SSE (same structure as `sse1` and `sse2`) which retains only the events of `sse1` associated to keys present both in `sse1` and `sse2`. If `intersection = 'linkwise'`, such events are additionally intersected with the associated events in `sse2`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ sse_new = sse1.copy() for pixel1 in sse1.keys(): if pixel1 not in sse2.keys(): del sse_new[pixel1] if intersection == 'linkwise': for pixel1, link1 in sse_new.items(): sse_new[pixel1] = link1.intersection(sse2[pixel1]) if len(sse_new[pixel1]) == 0: del sse_new[pixel1] elif intersection == 'pixelwise': pass else: raise ValueError( "intersection (=%s) can only be" % intersection + " 'pixelwise' or 'linkwise'") return sse_new def synchronous_events_difference(sse1, sse2, difference='linkwise'): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), computes the difference between `sse1` and `sse2`. The difference can be performed 'pixelwise' or 'linkwise': * if 'pixelwise', it yields a new SSE which contains all (and only) the events in `sse1` whose pixel position doesn't match any pixel in `sse2`. * if 'linkwise', for each pixel `(i, j)` in `sse1` and corresponding synchronous event `S1`, if `(i, j)` is a pixel in `sse2` corresponding to the event `S2`, it retains the set difference `S1 - S2`. If `(i, j)` is not a pixel in `sse2`, it retains the full set `S1`. Note that in either case the difference is a non-symmetric operation: `intersection(sse1, sse2) != intersection(sse2, sse1)`. Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values (see above). difference : {'pixelwise', 'linkwise'}, optional The type of difference to perform between `sse1` and `sse2` (see above). Default: 'linkwise' Returns ------- sse_new : dict A new SSE (same structure as `sse1` and `sse2`) which retains the difference between `sse1` and `sse2`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ sse_new = sse1.copy() for pixel1 in sse1.keys(): if pixel1 in sse2.keys(): if difference == 'pixelwise': del sse_new[pixel1] elif difference == 'linkwise': sse_new[pixel1] = sse_new[pixel1].difference(sse2[pixel1]) if len(sse_new[pixel1]) == 0: del sse_new[pixel1] else: raise ValueError( "difference (=%s) can only be" % difference + " 'pixelwise' or 'linkwise'") return sse_new def _remove_empty_events(sse): """ Given a sequence of synchronous events (SSE) `sse` consisting of a pool of pixel positions and associated synchronous events (see below), returns a copy of `sse` where all empty events have been removed. `sse` must be provided as a dictionary of type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse : dict A dictionary of pixel positions `(i, j)` as keys, and sets `S` of synchronous events as values (see above). Returns ------- sse_new : dict A copy of `sse` where all empty events have been removed. """ sse_new = sse.copy() for pixel, link in sse.items(): if link == set([]): del sse_new[pixel] return sse_new def synchronous_events_identical(sse1, sse2): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), determines whether `sse1` is strictly contained in `sse2`. `sse1` is strictly contained in `sse2` if all its pixels are pixels of `sse2`, if its associated events are subsets of the corresponding events in `sse2`, and if `sse2` contains events, or neuron IDs in some event, which do not belong to `sse1` (i.e., `sse1` and `sse2` are not identical). Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values. Returns ------- bool True if `sse1` is identical to `sse2`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ # Remove empty links from sse11 and sse22, if any sse11 = _remove_empty_events(sse1) sse22 = _remove_empty_events(sse2) # Return whether sse11 == sse22 return sse11 == sse22 def synchronous_events_no_overlap(sse1, sse2): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), determines whether `sse1` and `sse2` are disjoint. Two SSEs are disjoint if they don't share pixels, or if the events associated to common pixels are disjoint. Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values. Returns ------- bool True if `sse1` is disjoint from `sse2`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ # Remove empty links from sse11 and sse22, if any sse11 = _remove_empty_events(sse1) sse22 = _remove_empty_events(sse2) # If both SSEs are empty, return False (we consider them equal) if sse11 == {} and sse22 == {}: return False common_pixels = set(sse11.keys()).intersection(set(sse22.keys())) if len(common_pixels) == 0: return True if all(sse11[p].isdisjoint(sse22[p]) for p in common_pixels): return True return False def synchronous_events_contained_in(sse1, sse2): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), determines whether `sse1` is strictly contained in `sse2`. `sse1` is strictly contained in `sse2` if all its pixels are pixels of `sse2`, if its associated events are subsets of the corresponding events in `sse2`, and if `sse2` contains non-empty events, or neuron IDs in some event, which do not belong to `sse1` (i.e., `sse1` and `sse2` are not identical). Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values. Returns ------- bool True if `sse1` is a subset of `sse2`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ # Remove empty links from sse11 and sse22, if any sse11 = _remove_empty_events(sse1) sse22 = _remove_empty_events(sse2) # Return False if sse11 and sse22 are disjoint if synchronous_events_identical(sse11, sse22): return False # Return False if any pixel in sse1 is not contained in sse2, or if any # link of sse1 is not a subset of the corresponding link in sse2. # Otherwise (if sse1 is a subset of sse2) continue for pixel1, link1 in sse11.items(): if pixel1 not in sse22.keys(): return False if not link1.issubset(sse22[pixel1]): return False # Check that sse1 is a STRICT subset of sse2, i.e. that sse2 contains at # least one pixel or neuron id not present in sse1. return not synchronous_events_identical(sse11, sse22) def synchronous_events_contains_all(sse1, sse2): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), determines whether `sse1` strictly contains `sse2`. `sse1` strictly contains `sse2` if it contains all pixels of `sse2`, if all associated events in `sse1` contain those in `sse2`, and if `sse1` additionally contains other pixels / events not contained in `sse2`. Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values. Returns ------- bool True if `sse1` strictly contains `sse2`. Notes ----- `synchronous_events_contains_all(sse1, sse2)` is identical to `synchronous_events_is_subsequence(sse2, sse1)`. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ return synchronous_events_contained_in(sse2, sse1) def synchronous_events_overlap(sse1, sse2): """ Given two sequences of synchronous events (SSEs) `sse1` and `sse2`, each consisting of a pool of pixel positions and associated synchronous events (see below), determines whether the two SSEs overlap. The SSEs overlap if they are not equal and none of them is a superset of the other one but they are also not disjoint. Both `sse1` and `sse2` must be provided as dictionaries of the type .. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK}, where each `i`, `j` is an integer and each `S` is a set of neuron IDs. Parameters ---------- sse1, sse2 : dict Dictionaries of pixel positions `(i, j)` as keys and sets `S` of synchronous events as values. Returns ------- bool True if `sse1` and `sse2` overlap. See Also -------- ASSET.extract_synchronous_events : extract SSEs from given spike trains """ contained_in = synchronous_events_contained_in(sse1, sse2) contains_all = synchronous_events_contains_all(sse1, sse2) identical = synchronous_events_identical(sse1, sse2) is_disjoint = synchronous_events_no_overlap(sse1, sse2) return not (contained_in or contains_all or identical or is_disjoint) def _signals_t_start_stop(signals, t_start=None, t_stop=None): if t_start is None: t_start = _signals_same_attribute(signals, 't_start') if t_stop is None: t_stop = _signals_same_attribute(signals, 't_stop') return t_start, t_stop def _intersection_matrix(spiketrains, spiketrains_y, bin_size, t_start_x, t_start_y, t_stop_x, t_stop_y, normalization=None): if spiketrains_y is None: spiketrains_y = spiketrains # Compute the binned spike train matrices, along both time axes spiketrains_binned = conv.BinnedSpikeTrain( spiketrains, bin_size=bin_size, t_start=t_start_x, t_stop=t_stop_x) spiketrains_binned_y = conv.BinnedSpikeTrain( spiketrains_y, bin_size=bin_size, t_start=t_start_y, t_stop=t_stop_y) # Compute imat by matrix multiplication bsts_x = spiketrains_binned.sparse_matrix bsts_y = spiketrains_binned_y.sparse_matrix # Compute the number of spikes in each bin, for both time axes # 'A1' property returns self as a flattened ndarray. spikes_per_bin_x = bsts_x.sum(axis=0).A1 spikes_per_bin_y = bsts_y.sum(axis=0).A1 # Compute the intersection matrix imat imat = bsts_x.T.dot(bsts_y).toarray().astype(np.float32) for ii in range(bsts_x.shape[1]): # Normalize the row col_sum = bsts_x[:, ii].sum() if normalization is None or col_sum == 0: norm_coef = 1. elif normalization == 'intersection': norm_coef = np.minimum( spikes_per_bin_x[ii], spikes_per_bin_y) elif normalization == 'mean': # geometric mean norm_coef = np.sqrt( spikes_per_bin_x[ii] * spikes_per_bin_y) elif normalization == 'union': norm_coef = np.array([(bsts_x[:, ii] + bsts_y[:, jj]).count_nonzero() for jj in range(bsts_y.shape[1])]) else: raise ValueError( "Invalid parameter 'norm': {}".format(normalization)) # If normalization required, for each j such that bsts_y[j] is # identically 0 the code above sets imat[:, j] to identically nan. # Substitute 0s instead. imat[ii, :] = np.divide(imat[ii, :], norm_coef, out=np.zeros(imat.shape[1], dtype=np.float32), where=norm_coef != 0) # Return the intersection matrix and the edges of the bins used for the # x and y axes, respectively. return imat class ASSET(object): """ Analysis of Sequences of Synchronous EvenTs class. Parameters ---------- spiketrains_i, spiketrains_j : list of neo.SpikeTrain Input spike trains for the first and second time dimensions, respectively, to compute the p-values from. If `spiketrains_y` is None, it's set to `spiketrains`. bin_size : pq.Quantity, optional The width of the time bins used to compute the probability matrix. t_start_i, t_start_j : pq.Quantity, optional The start time of the binning for the first and second axes, respectively. If None, the attribute `t_start` of the spike trains is used (if the same for all spike trains). Default: None t_stop_i, t_stop_j : pq.Quantity, optional The stop time of the binning for the first and second axes, respectively. If None, the attribute `t_stop` of the spike trains is used (if the same for all spike trains). Default: None verbose : bool, optional If True, print messages and show progress bar. Default: True Raises ------ ValueError If the `t_start` & `t_stop` times are not (one of): perfectly aligned; fully disjoint. """ def __init__(self, spiketrains_i, spiketrains_j=None, bin_size=3 * pq.ms, t_start_i=None, t_start_j=None, t_stop_i=None, t_stop_j=None, verbose=True): self.spiketrains_i = spiketrains_i if spiketrains_j is None: spiketrains_j = spiketrains_i self.spiketrains_j = spiketrains_j self.bin_size = bin_size self.t_start_i, self.t_stop_i = _signals_t_start_stop( spiketrains_i, t_start=t_start_i, t_stop=t_stop_i) self.t_start_j, self.t_stop_j = _signals_t_start_stop( spiketrains_j, t_start=t_start_j, t_stop=t_stop_j) self.verbose = verbose and rank == 0 msg = 'The time intervals for x and y need to be either identical ' \ 'or fully disjoint, but they are:\n' \ 'x: ({}, {}) and y: ({}, {}).'.format(self.t_start_i, self.t_stop_i, self.t_start_j, self.t_stop_j) # the starts have to be perfectly aligned for the binning to work # the stops can differ without impacting the binning if self.t_start_i == self.t_start_j: if not _quantities_almost_equal(self.t_stop_i, self.t_stop_j): raise ValueError(msg) elif (self.t_start_i < self.t_start_j < self.t_stop_i) \ or (self.t_start_i < self.t_stop_j < self.t_stop_i): raise ValueError(msg) # Compute the binned spike train matrices, along both time axes self.spiketrains_binned_i = conv.BinnedSpikeTrain( self.spiketrains_i, bin_size=self.bin_size, t_start=self.t_start_i, t_stop=self.t_stop_i) self.spiketrains_binned_j = conv.BinnedSpikeTrain( self.spiketrains_j, bin_size=self.bin_size, t_start=self.t_start_j, t_stop=self.t_stop_j) @property def x_edges(self): """ A Quantity array of `n+1` edges of the bins used for the horizontal axis of the intersection matrix, where `n` is the number of bins that time was discretized in. """ return self.spiketrains_binned_i.bin_edges.rescale(self.bin_size.units) @property def y_edges(self): """ A Quantity array of `n+1` edges of the bins used for the vertical axis of the intersection matrix, where `n` is the number of bins that time was discretized in. """ return self.spiketrains_binned_j.bin_edges.rescale(self.bin_size.units) def is_symmetric(self): """ Returns ------- bool Whether the intersection matrix is symmetric or not. See Also -------- ASSET.intersection_matrix """ return _quantities_almost_equal(self.x_edges[0], self.y_edges[0]) def intersection_matrix(self, normalization=None): """ Generates the intersection matrix from a list of spike trains. Given a list of `neo.SpikeTrain`, consider two binned versions of them differing for the starting and ending times of the binning: `t_start_x`, `t_stop_x`, `t_start_y` and `t_stop_y` respectively (the time intervals can be either identical or completely disjoint). Then calculate the intersection matrix `M` of the two binned data, where `M[i,j]` is the overlap of bin `i` in the first binned data and bin `j` in the second binned data (i.e., the number of spike trains spiking at both bin `i` and bin `j`). The matrix entries can be normalized to values between `0` and `1` via different normalizations (see "Parameters" section). Parameters ---------- normalization : {'intersection', 'mean', 'union'} or None, optional The normalization type to be applied to each entry `M[i,j]` of the intersection matrix `M`. Given the sets `s_i` and `s_j` of neuron IDs in the bins `i` and `j` respectively, the normalization coefficient can be: * None: no normalisation (row counts) * 'intersection': `len(intersection(s_i, s_j))` * 'mean': `sqrt(len(s_1) * len(s_2))` * 'union': `len(union(s_i, s_j))` Default: None Returns ------- imat : (n,n) np.ndarray The floating point intersection matrix of a list of spike trains. It has the shape `(n, n)`, where `n` is the number of bins that time was discretized in. """ imat = _intersection_matrix(self.spiketrains_i, self.spiketrains_j, self.bin_size, self.t_start_i, self.t_start_j, self.t_stop_i, self.t_stop_j, normalization=normalization) return imat def probability_matrix_montecarlo(self, n_surrogates, imat=None, surrogate_method='dither_spikes', surrogate_dt=None): """ Given a list of parallel spike trains, estimate the cumulative probability of each entry in their intersection matrix by a Monte Carlo approach using surrogate data. Contrarily to the analytical version (see :func:`ASSET.probability_matrix_analytical`) the Monte Carlo one does not incorporate the assumptions of Poissonianity in the null hypothesis. The method produces surrogate spike trains (using one of several methods at disposal, see "Parameters" section) and calculates their intersection matrix `M`. For each entry `(i, j)`, the intersection CDF `P[i, j]` is then given by: .. centered:: P[i, j] = #(spike_train_surrogates such that M[i, j] < I[i, j]) / #(spike_train_surrogates) If `P[i, j]` is large (close to 1), `I[i, j]` is statistically significant: the probability to observe an overlap equal to or larger than `I[i, j]` under the null hypothesis is `1 - P[i, j]`, very small. Parameters ---------- n_surrogates : int The number of spike train surrogates to generate for the bootstrap procedure. imat : (n,n) np.ndarray or None, optional The floating point intersection matrix of a list of spike trains. It has the shape `(n, n)`, where `n` is the number of bins that time was discretized in. If None, the output of :func:`ASSET.intersection_matrix` is used. Default: None surrogate_method : {'dither_spike_train', 'dither_spikes', 'jitter_spikes', 'randomise_spikes', 'shuffle_isis', 'joint_isi_dithering'}, optional The method to generate surrogate spike trains. Refer to the :func:`spike_train_surrogates.surrogates` documentation for more information about each surrogate method. Note that some of these methods need `surrogate_dt` parameter, others ignore it. Default: 'dither_spike_train' surrogate_dt : pq.Quantity, optional For surrogate methods shifting spike times randomly around their original time ('dither_spike_train', 'dither_spikes') or replacing them randomly within a certain window ('jitter_spikes'), `surrogate_dt` represents the size of that shift (window). For other methods, `surrogate_dt` is ignored. If None, it's set to `self.bin_size * 5`. Default: None Returns ------- pmat : np.ndarray The cumulative probability matrix. `pmat[i, j]` represents the estimated probability of having an overlap between bins `i` and `j` STRICTLY LOWER than the observed overlap, under the null hypothesis of independence of the input spike trains. Notes ----- We recommend playing with `surrogate_dt` parameter to see how it influences the result matrix. For this, refer to the ASSET tutorial. See Also -------- ASSET.probability_matrix_analytical : analytical derivation of the matrix """ if imat is None: # Compute the intersection matrix of the original data imat = self.intersection_matrix() if surrogate_dt is None: surrogate_dt = self.bin_size * 5 symmetric = self.is_symmetric() # Generate surrogate spike trains as a list surrs # Compute the p-value matrix pmat; pmat[i, j] counts the fraction of # surrogate data whose intersection value at (i, j) is lower than or # equal to that of the original data pmat = np.zeros(imat.shape, dtype=np.int32) for surr_id in trange(n_surrogates, desc="pmat_bootstrap", disable=not self.verbose): if mpi_accelerated and surr_id % size != rank: continue surrogates = [spike_train_surrogates.surrogates( st, n_surrogates=1, method=surrogate_method, dt=surrogate_dt, decimals=None, edges=True)[0] for st in self.spiketrains_i] if symmetric: surrogates_y = surrogates else: surrogates_y = [spike_train_surrogates.surrogates( st, n_surrogates=1, method=surrogate_method, dt=surrogate_dt, decimals=None, edges=True)[0] for st in self.spiketrains_j] imat_surr = _intersection_matrix(surrogates, surrogates_y, self.bin_size, self.t_start_i, self.t_start_j, self.t_stop_i, self.t_stop_j) pmat += (imat_surr <= (imat - 1)) del imat_surr if mpi_accelerated: pmat = comm.allreduce(pmat, op=MPI.SUM) pmat = pmat * 1. / n_surrogates if symmetric: np.fill_diagonal(pmat, 0.5) return pmat def probability_matrix_analytical(self, imat=None, firing_rates_x='estimate', firing_rates_y='estimate', kernel_width=100 * pq.ms): r""" Given a list of spike trains, approximates the cumulative probability of each entry in their intersection matrix. The approximation is analytical and works under the assumptions that the input spike trains are independent and Poisson. It works as follows: * Bin each spike train at the specified `bin_size`: this yields a binary array of 1s (spike in bin) and 0s (no spike in bin; clipping used); * If required, estimate the rate profile of each spike train by convolving the binned array with a boxcar kernel of user-defined length; * For each neuron `k` and each pair of bins `i` and `j`, compute the probability :math:`p_ijk` that neuron `k` fired in both bins `i` and `j`. * Approximate the probability distribution of the intersection value at `(i, j)` by a Poisson distribution with mean parameter :math:`l = \sum_k (p_ijk)`, justified by Le Cam's approximation of a sum of independent Bernouilli random variables with a Poisson distribution. Parameters ---------- imat : (n,n) np.ndarray or None, optional The intersection matrix of a list of spike trains. It has the shape `(n, n)`, where `n` is the number of bins that time was discretized in. If None, the output of :func:`ASSET.intersection_matrix` is used. Default: None firing_rates_x, firing_rates_y : list of neo.AnalogSignal or 'estimate' If a list, `firing_rates[i]` is the firing rate of the spike train `spiketrains[i]`. If 'estimate', firing rates are estimated by simple boxcar kernel convolution, with the specified `kernel_width`. Default: 'estimate' kernel_width : pq.Quantity, optional The total width of the kernel used to estimate the rate profiles when `firing_rates` is 'estimate'. Default: 100 * pq.ms Returns ------- pmat : np.ndarray The cumulative probability matrix. `pmat[i, j]` represents the estimated probability of having an overlap between bins `i` and `j` STRICTLY LOWER than the observed overlap, under the null hypothesis of independence of the input spike trains. """ if imat is None: # Compute the intersection matrix of the original data imat = self.intersection_matrix() symmetric = self.is_symmetric() bsts_x_matrix = self.spiketrains_binned_i.to_bool_array() if symmetric: bsts_y_matrix = bsts_x_matrix else: bsts_y_matrix = self.spiketrains_binned_j.to_bool_array() # Check that the nr. neurons is identical between the two axes if bsts_x_matrix.shape[0] != bsts_y_matrix.shape[0]: raise ValueError( 'Different number of neurons along the x and y axis!') # Define the firing rate profiles if firing_rates_x == 'estimate': # If rates are to be estimated, create the rate profiles as # Quantity objects obtained by boxcar-kernel convolution fir_rate_x = self._rate_of_binned_spiketrain(bsts_x_matrix, kernel_width) elif isinstance(firing_rates_x, list): # If rates provided as lists of AnalogSignals, create time slices # for both axes, interpolate in the time bins of interest and # convert to Quantity fir_rate_x = _interpolate_signals( firing_rates_x, self.spiketrains_binned_i.bin_edges[:-1], self.verbose) else: raise ValueError( 'fir_rates_x must be a list or the string "estimate"') if symmetric: fir_rate_y = fir_rate_x elif firing_rates_y == 'estimate': fir_rate_y = self._rate_of_binned_spiketrain(bsts_y_matrix, kernel_width) elif isinstance(firing_rates_y, list): # If rates provided as lists of AnalogSignals, create time slices # for both axes, interpolate in the time bins of interest and # convert to Quantity fir_rate_y = _interpolate_signals( firing_rates_y, self.spiketrains_binned_j.bin_edges[:-1], self.verbose) else: raise ValueError( 'fir_rates_y must be a list or the string "estimate"') # For each neuron, compute the prob. that that neuron spikes in any bin if self.verbose: print('compute the prob. that each neuron fires in each pair of ' 'bins...') rate_bins_x = (fir_rate_x * self.bin_size).simplified.magnitude spike_probs_x = 1. - np.exp(-rate_bins_x) if symmetric: spike_probs_y = spike_probs_x else: rate_bins_y = (fir_rate_y * self.bin_size).simplified.magnitude spike_probs_y = 1. - np.exp(-rate_bins_y) # Compute the matrix Mu[i, j] of parameters for the Poisson # distributions which describe, at each (i, j), the approximated # overlap probability. This matrix is just the sum of the probability # matrices p_ijk computed for each neuron k: # p_ijk is the probability that neuron k spikes in both bins i and j. # The sum of outer products is equivalent to a dot product. if self.verbose: print( "compute the probability matrix by Le Cam's approximation...") Mu = spike_probs_x.T.dot(spike_probs_y) # A straightforward implementation is: # pmat_shape = spike_probs_x.shape[1], spike_probs_y.shape[1] # Mu = np.zeros(pmat_shape, dtype=np.float64) # for probx, proby in zip(spike_probs_x, spike_probs_y): # Mu += np.outer(probx, proby) # Compute the probability matrix obtained from imat using the Poisson # pdfs pmat = scipy.stats.poisson.cdf(imat - 1, Mu) if symmetric: # Substitute 0.5 to the elements along the main diagonal if self.verbose: print("substitute 0.5 to elements along the main diagonal...") np.fill_diagonal(pmat, 0.5) return pmat def joint_probability_matrix(self, pmat, filter_shape, n_largest, min_p_value=1e-5, precision='float', cuda_threads=64, cuda_cwr_loops=32, tolerance=1e-5): """ Map a probability matrix `pmat` to a joint probability matrix `jmat`, where `jmat[i, j]` is the joint p-value of the largest neighbors of `pmat[i, j]`. The values of `pmat` are assumed to be uniformly distributed in the range [0, 1]. Centered a rectangular kernel of shape `filter_shape=(l, w)` around each entry `pmat[i, j]`, aligned along the diagonal where `pmat[i, j]` lies into, extracts the `n_largest` values falling within the kernel and computes their joint p-value `jmat[i, j]`. Parameters ---------- pmat : np.ndarray A square matrix, the output of :func:`ASSET.probability_matrix_montecarlo` or :func:`ASSET.probability_matrix_analytical`, of cumulative probability values between 0 and 1. The values are assumed to be uniformly distributed in the said range. filter_shape : tuple of int A pair of integers representing the kernel shape `(l, w)`. n_largest : int The number of the largest neighbors to collect for each entry in `jmat`. min_p_value : float, optional The minimum p-value in range `[0, 1)` for individual entries in `pmat`. Each `pmat[i, j]` is set to `min(pmat[i, j], 1-p_value_min)` to avoid that a single highly significant value in `pmat` (extreme case: `pmat[i, j] = 1`) yields joint significance of itself and its neighbors. Default: 1e-5 <<<<<<< HEAD:elephant/asset.py ======= precision : {'float', 'double'}, optional Single or double floating-point precision for the resulting `jmat` matrix. * `'float'`: 32 bits; the tolerance error is ``≲1e-3``. * `'double'`: 64 bits; the tolerance error is ``<1e-5``. Double floating-point precision is typically x4 times slower than the single floating-point equivalent. Default: 'float' cuda_threads : int, optional [CUDA/OpenCL performance parameter that does not influence the result.] The number of CUDA/OpenCL threads per block (in X axis) between 1 and 1024 and is used only if CUDA or OpenCL backend is enabled. For performance reasons, it should be a multiple of 32. Old GPUs (Tesla K80) perform faster with `cuda_threads` larger than 64 while new series (Tesla T4) with capabilities 6.x and more work best with 32 threads. Default: 64 cuda_cwr_loops : int, optional [CUDA/OpenCL performance parameter that does not influence the result.] A positive integer that defines the number of fast 'combinations_with_replacement' loops to run to reduce branch divergence. This parameter influences the performance when the number of iterations is huge (`>1e8`); in such cases, increase the value. Default: 32 tolerance : float, optional Tolerance is used to catch unexpected behavior of billions of floating point additions, when the number of iterations is huge or the data arrays are large. A warning is thrown when the resulting joint prob. matrix values are outside of the acceptable range ``[-tolerance, 1.0 + tolerance]``. Default: 1e-5 >>>>>>> master:elephant/asset/asset.py Returns ------- jmat : np.ndarray The joint probability matrix associated to `pmat`. Notes ----- 1. By default, if CUDA is detected, CUDA acceleration is used. CUDA backend is **~X1000** faster than the Python implementation. To turn off CUDA features, set the environment flag ``ELEPHANT_USE_CUDA`` to ``0``. Otherwise 2. If PyOpenCL is installed and detected, PyOpenCL backend is used. PyOpenCL backend is **~X100** faster than the Python implementation. To turn off OpenCL features, set the environment flag ``ELEPHANT_USE_OPENCL`` to ``0``. When using PyOpenCL backend, make sure you've disabled GPU Hangcheck as described in the `Intel GPU developers documentation <https://software.intel.com/content/www/us/en/develop/ documentation/get-started-with-intel-oneapi-base-linux/top/ before-you-begin.html>`_. Do it with caution - using your built-in Intel graphics card to perform computations may make the system unresponsive until the compute program terminates. """ l, w = filter_shape # Find for each P_ij in the probability matrix its neighbors and # maximize them by the maximum value 1-p_value_min pmat = np.asarray(pmat, dtype=np.float32) pmat_neighb_obj = _PMatNeighbors(filter_shape=filter_shape, n_largest=n_largest) pmat_neighb = pmat_neighb_obj.compute(pmat) pmat_neighb = np.minimum(pmat_neighb, 1. - min_p_value, out=pmat_neighb) # in order to avoid doing the same calculation multiple times: # find all unique sets of values in pmat_neighb # and store the corresponding indices # flatten the second and third dimension in order to use np.unique pmat_neighb = pmat_neighb.reshape(pmat.size, n_largest) pmat_neighb, pmat_neighb_indices = np.unique(pmat_neighb, axis=0, return_inverse=True) # Compute the joint p-value matrix jpvmat n = l * (1 + 2 * w) - w * ( w + 1) # number of entries covered by kernel jsf = _JSFUniformOrderStat3D(n=n, d=pmat_neighb.shape[1], precision=precision, verbose=self.verbose, cuda_threads=cuda_threads, cuda_cwr_loops=cuda_cwr_loops, tolerance=tolerance) jpvmat = jsf.compute(u=pmat_neighb) # restore the original shape using the stored indices jpvmat = jpvmat[pmat_neighb_indices].reshape(pmat.shape) return 1. - jpvmat @staticmethod def mask_matrices(matrices, thresholds): """ Given a list of `matrices` and a list of `thresholds`, return a boolean matrix `B` ("mask") such that `B[i,j]` is True if each input matrix in the list strictly exceeds the corresponding threshold at that position. If multiple matrices are passed along with only one threshold the same threshold is applied to all matrices. Parameters ---------- matrices : list of np.ndarray The matrices which are compared to the respective thresholds to build the mask. All matrices must have the same shape. Typically, it is a list `[pmat, jmat]`, i.e., the (cumulative) probability and joint probability matrices. thresholds : float or list of float The significance thresholds for each matrix in `matrices`. Returns ------- mask : np.ndarray Boolean mask matrix with the shape of the input matrices. Raises ------ ValueError If `matrices` or `thresholds` is an empty list. If `matrices` and `thresholds` have different lengths. See Also -------- ASSET.probability_matrix_montecarlo : for `pmat` generation ASSET.probability_matrix_analytical : for `pmat` generation ASSET.joint_probability_matrix : for `jmat` generation """ if len(matrices) == 0: raise ValueError("Empty list of matrices") if isinstance(thresholds, float): thresholds = np.full(shape=len(matrices), fill_value=thresholds) if len(matrices) != len(thresholds): raise ValueError( '`matrices` and `thresholds` must have same length') mask = np.ones_like(matrices[0], dtype=bool) for (mat, thresh) in zip(matrices, thresholds): mask &= mat > thresh # Replace nans, coming from False * np.inf, with zeros mask[np.isnan(mask)] = False return mask @staticmethod def cluster_matrix_entries(mask_matrix, max_distance, min_neighbors, stretch, working_memory=None): r""" Given a matrix `mask_matrix`, replaces its positive elements with integers representing different cluster IDs. Each cluster comprises close-by elements. In ASSET analysis, `mask_matrix` is a thresholded ("masked") version of the intersection matrix `imat`, whose values are those of `imat` only if considered statistically significant, and zero otherwise. A cluster is built by pooling elements according to their distance, via the DBSCAN algorithm (see `sklearn.cluster.DBSCAN` class). Elements form a neighbourhood if at least one of them has a distance not larger than `max_distance` from the others, and if they are at least `min_neighbors`. Overlapping neighborhoods form a cluster: * Clusters are assigned integers from `1` to the total number `k` of clusters; * Unclustered ("isolated") positive elements of `mask_matrix` are assigned value `-1`; * Non-positive elements are assigned the value `0`. The distance between the positions of two positive elements in `mask_matrix` is given by a Euclidean metric which is stretched if the two positions are not aligned along the 45 degree direction (the main diagonal direction), as more, with maximal stretching along the anti-diagonal. Specifically, the Euclidean distance between positions `(i1, j1)` and `(i2, j2)` is stretched by a factor .. math:: 1 + (\mathtt{stretch} - 1.) * \left|\sin((\pi / 4) - \theta)\right|, where :math:`\theta` is the angle between the pixels and the 45 degree direction. The stretching factor thus varies between 1 and `stretch`. Parameters ---------- mask_matrix : np.ndarray The boolean matrix, whose elements with positive values are to be clustered. The output of :func:`ASSET.mask_matrices`. max_distance : float The maximum distance between two elements in `mask_matrix` to be a part of the same neighbourhood in the DBSCAN algorithm. min_neighbors : int The minimum number of elements to form a neighbourhood. stretch : float The stretching factor of the euclidean metric for elements aligned along the 135 degree direction (anti-diagonal). The actual stretching increases from 1 to `stretch` as the direction of the two elements moves from the 45 to the 135 degree direction. `stretch` must be greater than 1. working_memory : int or None, optional The sought maximum memory in MiB for temporary distance matrix chunks. When None (default), no chunking is performed. This parameter is passed directly to ``sklearn.metrics.pairwise_distances_chunked`` function and it has no influence on the outcome matrix. Instead, it control the memory VS speed trade-off. Default: None Returns ------- cluster_mat : np.ndarray A matrix with the same shape of `mask_matrix`, each of whose elements is either: * a positive integer (cluster ID) if the element is part of a cluster; * `0` if the corresponding element in `mask_matrix` is non-positive; * `-1` if the element does not belong to any cluster. See Also -------- sklearn.cluster.DBSCAN """ # Don't do anything if mat is identically zero if np.all(mask_matrix == 0): return mask_matrix # List the significant pixels of mat in a 2-columns array xpos_sgnf, ypos_sgnf = np.where(mask_matrix > 0) # Compute the matrix D[i, j] of euclidean distances between pixels i # and j try: D = _stretched_metric_2d( xpos_sgnf, ypos_sgnf, stretch=stretch, ref_angle=45, working_memory=working_memory ) except MemoryError as err: raise MemoryError("Set 'working_memory=100' or another value to " "chunk the data") from err # Cluster positions of significant pixels via dbscan core_samples, config = dbscan( D, eps=max_distance, min_samples=min_neighbors, metric='precomputed') # Construct the clustered matrix, where each element has value # * i = 1 to k if it belongs to a cluster i, # * 0 if it is not significant, # * -1 if it is significant but does not belong to any cluster cluster_mat = np.zeros_like(mask_matrix, dtype=np.int32) cluster_mat[xpos_sgnf, ypos_sgnf] = \ config * (config == -1) + (config + 1) * (config >= 0) return cluster_mat def extract_synchronous_events(self, cmat, ids=None): """ Given a list of spike trains, a bin size, and a clustered intersection matrix obtained from those spike trains via ASSET analysis, extracts the sequences of synchronous events (SSEs) corresponding to clustered elements in the cluster matrix. Parameters ---------- cmat : (n,n) np.ndarray The cluster matrix, the output of :func:`ASSET.cluster_matrix_entries`. ids : list, optional A list of spike train IDs. If provided, `ids[i]` is the identity of `spiketrains[i]`. If None, the IDs `0,1,...,n-1` are used. Default: None Returns ------- sse_dict : dict A dictionary `D` of SSEs, where each SSE is a sub-dictionary `Dk`, `k=1,...,K`, where `K` is the max positive integer in `cmat` (i.e., the total number of clusters in `cmat`): .. centered:: D = {1: D1, 2: D2, ..., K: DK} Each sub-dictionary `Dk` represents the k-th diagonal structure (i.e., the k-th cluster) in `cmat`, and is of the form .. centered:: Dk = {(i1, j1): S1, (i2, j2): S2, ..., (iL, jL): SL}. The keys `(i, j)` represent the positions (time bin IDs) of all elements in `cmat` that compose the SSE (i.e., that take value `l` and therefore belong to the same cluster), and the values `Sk` are sets of neuron IDs representing a repeated synchronous event (i.e., spiking at time bins `i` and `j`). """ nr_worms = cmat.max() # number of different clusters ("worms") in cmat if nr_worms <= 0: return {} # Compute the transactions associated to the two binnings tracts_x = _transactions( self.spiketrains_i, bin_size=self.bin_size, t_start=self.t_start_i, t_stop=self.t_stop_i, ids=ids) if self.spiketrains_j is self.spiketrains_i: diag_id = 0 tracts_y = tracts_x else: if self.is_symmetric(): diag_id = 0 tracts_y = tracts_x else: diag_id = None tracts_y = _transactions( self.spiketrains_j, bin_size=self.bin_size, t_start=self.t_start_j, t_stop=self.t_stop_j, ids=ids) # Reconstruct each worm, link by link sse_dict = {} for k in range(1, nr_worms + 1): # for each worm # worm k is a list of links (each link will be 1 sublist) worm_k = {} pos_worm_k = np.array( np.where(cmat == k)).T # position of all links # if no link lies on the reference diagonal if all([y - x != diag_id for (x, y) in pos_worm_k]): for bin_x, bin_y in pos_worm_k: # for each link # reconstruct the link link_l = set(tracts_x[bin_x]).intersection( tracts_y[bin_y]) # and assign it to its pixel worm_k[(bin_x, bin_y)] = link_l sse_dict[k] = worm_k return sse_dict def _rate_of_binned_spiketrain(self, binned_spiketrains, kernel_width): """ Calculate the rate of binned spiketrains using convolution with a boxcar kernel. """ if self.verbose: print('compute rates by boxcar-kernel convolution...') # Create the boxcar kernel and convolve it with the binned spike trains k = int((kernel_width / self.bin_size).simplified.item()) kernel = np.full(k, fill_value=1. / k) rate = np.vstack([np.convolve(bst, kernel, mode='same') for bst in binned_spiketrains]) # The convolution results in an array decreasing at the borders due # to absence of spikes beyond the borders. Replace the first and last # (k//2) elements with the (k//2)-th / (n-k//2)-th ones, respectively k2 = k // 2 for i in range(rate.shape[0]): rate[i, :k2] = rate[i, k2] rate[i, -k2:] = rate[i, -k2 - 1] # Multiply the firing rates by the proper unit rate = rate * (1. / self.bin_size).rescale('Hz') return rate
bsd-3-clause
xubenben/scikit-learn
sklearn/linear_model/ridge.py
25
39394
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel, _rescale_data from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import compute_sample_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_cholesky(X, y, alpha): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] if copy: K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) \ or sample_weight not in [1.0, None] if has_sw: # Unlike other solvers, we need to support sample_weight directly # because K might be a pre-computed kernel. sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] try: # Note: we must use overwrite_a=False in order to be able to # use the fall-back solution below in case a LinAlgError # is raised dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=False) except np.linalg.LinAlgError: warnings.warn("Singular matrix in solving dual problem. Using " "least-squares solution instead.") dual_coef = linalg.lstsq(K, y)[0] # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0): """Solve the ridge equation by the method of normal equations. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is set, then the solver will automatically be set to 'cholesky' solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr'): raise ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=self.solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- RidgeClassifier, RidgeCV, KernelRidge Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Singular value decomposition to obtain the solution, 'cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True, y_numeric=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. If an integer is passed, it is the number of folds for KFold cross validation. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Read more in the :ref:`User Guide <ridge_regression>`. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: if sample_weight is None: sample_weight = 1. # modify the sample weights with the corresponding class weight sample_weight = (sample_weight * compute_sample_weight(self.class_weight, y)) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
Lawrence-Liu/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
clemkoa/scikit-learn
examples/covariance/plot_outlier_detection.py
15
5121
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates three different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; - using the Isolation Forest algorithm, which is based on random forests and hence more adapted to large-dimensional settings, even if it performs quite well in the examples below. - using the Local Outlier Factor to measure the local deviation of a given data point with respect to its neighbors by comparing their local density. The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) rng = np.random.RandomState(42) # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "Robust covariance": EllipticEnvelope(contamination=outliers_fraction), "Isolation Forest": IsolationForest(max_samples=n_samples, contamination=outliers_fraction, random_state=rng), "Local Outlier Factor": LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = -1 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model plt.figure(figsize=(9, 7)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers if clf_name == "Local Outlier Factor": y_pred = clf.fit_predict(X) scores_pred = clf.negative_outlier_factor_ else: clf.fit(X) scores_pred = clf.decision_function(X) y_pred = clf.predict(X) threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction) n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points if clf_name == "Local Outlier Factor": # decision_function is private for LOF Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(2, 2, i + 1) subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white', s=20, edgecolor='k') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black', s=20, edgecolor='k') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=10), loc='lower right') subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.suptitle("Outlier detection") plt.show()
bsd-3-clause
idlead/scikit-learn
sklearn/neighbors/tests/test_approximate.py
26
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
Vimos/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
25
1866
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k') plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
huzq/scikit-learn
sklearn/impute/tests/test_knn.py
15
17366
import numpy as np import pytest from sklearn import config_context from sklearn.impute import KNNImputer from sklearn.metrics.pairwise import nan_euclidean_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import KNeighborsRegressor from sklearn.utils._testing import assert_allclose @pytest.mark.parametrize("weights", ["uniform", "distance"]) @pytest.mark.parametrize("n_neighbors", range(1, 6)) def test_knn_imputer_shape(weights, n_neighbors): # Verify the shapes of the imputed matrix for different weights and # number of neighbors. n_rows = 10 n_cols = 2 X = np.random.rand(n_rows, n_cols) X[0, 0] = np.nan imputer = KNNImputer(n_neighbors=n_neighbors, weights=weights) X_imputed = imputer.fit_transform(X) assert X_imputed.shape == (n_rows, n_cols) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_default_with_invalid_input(na): # Test imputation with default values and invalid input # Test with inf present X = np.array([ [np.inf, 1, 1, 2, na], [2, 1, 2, 2, 3], [3, 2, 3, 3, 8], [na, 6, 0, 5, 13], [na, 7, 0, 7, 8], [6, 6, 2, 5, 7], ]) with pytest.raises(ValueError, match="Input contains (infinity|NaN)"): KNNImputer(missing_values=na).fit(X) # Test with inf present in matrix passed in transform() X = np.array([ [np.inf, 1, 1, 2, na], [2, 1, 2, 2, 3], [3, 2, 3, 3, 8], [na, 6, 0, 5, 13], [na, 7, 0, 7, 8], [6, 6, 2, 5, 7], ]) X_fit = np.array([ [0, 1, 1, 2, na], [2, 1, 2, 2, 3], [3, 2, 3, 3, 8], [na, 6, 0, 5, 13], [na, 7, 0, 7, 8], [6, 6, 2, 5, 7], ]) imputer = KNNImputer(missing_values=na).fit(X_fit) with pytest.raises(ValueError, match="Input contains (infinity|NaN)"): imputer.transform(X) # negative n_neighbors with pytest.raises(ValueError, match="Expected n_neighbors > 0"): KNNImputer(missing_values=na, n_neighbors=0).fit(X_fit) # Test with missing_values=0 when NaN present imputer = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform") X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) msg = (r"Input contains NaN, infinity or a value too large for " r"dtype\('float64'\)") with pytest.raises(ValueError, match=msg): imputer.fit(X) X = np.array([ [0, 0], [np.nan, 2], ]) # Test with a metric type without NaN support imputer = KNNImputer(metric="euclidean") bad_metric_msg = "The selected metric does not support NaN values" with pytest.raises(ValueError, match=bad_metric_msg): imputer.fit(X) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_removes_all_na_features(na): X = np.array([ [1, 1, na, 1, 1, 1.], [2, 3, na, 2, 2, 2], [3, 4, na, 3, 3, na], [6, 4, na, na, 6, 6], ]) knn = KNNImputer(missing_values=na, n_neighbors=2).fit(X) X_transform = knn.transform(X) assert not np.isnan(X_transform).any() assert X_transform.shape == (4, 5) X_test = np.arange(0, 12).reshape(2, 6) X_transform = knn.transform(X_test) assert_allclose(X_test[:, [0, 1, 3, 4, 5]], X_transform) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_zero_nan_imputes_the_same(na): # Test with an imputable matrix and compare with different missing_values X_zero = np.array([ [1, 0, 1, 1, 1.], [2, 2, 2, 2, 2], [3, 3, 3, 3, 0], [6, 6, 0, 6, 6], ]) X_nan = np.array([ [1, na, 1, 1, 1.], [2, 2, 2, 2, 2], [3, 3, 3, 3, na], [6, 6, na, 6, 6], ]) X_imputed = np.array([ [1, 2.5, 1, 1, 1.], [2, 2, 2, 2, 2], [3, 3, 3, 3, 1.5], [6, 6, 2.5, 6, 6], ]) imputer_zero = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform") imputer_nan = KNNImputer(missing_values=na, n_neighbors=2, weights="uniform") assert_allclose(imputer_zero.fit_transform(X_zero), X_imputed) assert_allclose(imputer_zero.fit_transform(X_zero), imputer_nan.fit_transform(X_nan)) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_verify(na): # Test with an imputable matrix X = np.array([ [1, 0, 0, 1], [2, 1, 2, na], [3, 2, 3, na], [na, 4, 5, 5], [6, na, 6, 7], [8, 8, 8, 8], [16, 15, 18, 19], ]) X_imputed = np.array([ [1, 0, 0, 1], [2, 1, 2, 8], [3, 2, 3, 8], [4, 4, 5, 5], [6, 3, 6, 7], [8, 8, 8, 8], [16, 15, 18, 19], ]) imputer = KNNImputer(missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) # Test when there is not enough neighbors X = np.array([ [1, 0, 0, na], [2, 1, 2, na], [3, 2, 3, na], [4, 4, 5, na], [6, 7, 6, na], [8, 8, 8, na], [20, 20, 20, 20], [22, 22, 22, 22] ]) # Not enough neighbors, use column mean from training X_impute_value = (20 + 22) / 2 X_imputed = np.array([ [1, 0, 0, X_impute_value], [2, 1, 2, X_impute_value], [3, 2, 3, X_impute_value], [4, 4, 5, X_impute_value], [6, 7, 6, X_impute_value], [8, 8, 8, X_impute_value], [20, 20, 20, 20], [22, 22, 22, 22] ]) imputer = KNNImputer(missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) # Test when data in fit() and transform() are different X = np.array([ [0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 16] ]) X1 = np.array([ [1, 0], [3, 2], [4, na] ]) X_2_1 = (0 + 3 + 6 + 7 + 8) / 5 X1_imputed = np.array([ [1, 0], [3, 2], [4, X_2_1] ]) imputer = KNNImputer(missing_values=na) assert_allclose(imputer.fit(X).transform(X1), X1_imputed) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_one_n_neighbors(na): X = np.array([ [0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13] ]) X_imputed = np.array([ [0, 0], [4, 2], [4, 3], [5, 3], [7, 7], [7, 8], [14, 13] ]) imputer = KNNImputer(n_neighbors=1, missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_all_samples_are_neighbors(na): X = np.array([ [0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13] ]) X_imputed = np.array([ [0, 0], [6, 2], [4, 3], [5, 5.5], [7, 7], [6, 8], [14, 13] ]) n_neighbors = X.shape[0] - 1 imputer = KNNImputer(n_neighbors=n_neighbors, missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) n_neighbors = X.shape[0] imputer_plus1 = KNNImputer(n_neighbors=n_neighbors, missing_values=na) assert_allclose(imputer_plus1.fit_transform(X), X_imputed) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_weight_uniform(na): X = np.array([ [0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10] ]) # Test with "uniform" weight (or unweighted) X_imputed_uniform = np.array([ [0, 0], [5, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10] ]) imputer = KNNImputer(weights="uniform", missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed_uniform) # Test with "callable" weight def no_weight(dist): return None imputer = KNNImputer(weights=no_weight, missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed_uniform) # Test with "callable" uniform weight def uniform_weight(dist): return np.ones_like(dist) imputer = KNNImputer(weights=uniform_weight, missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed_uniform) @pytest.mark.parametrize("na", [np.nan, -1]) def test_knn_imputer_weight_distance(na): X = np.array([ [0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10] ]) # Test with "distance" weight nn = KNeighborsRegressor(metric="euclidean", weights="distance") X_rows_idx = [0, 2, 3, 4, 5, 6] nn.fit(X[X_rows_idx, 1:], X[X_rows_idx, 0]) knn_imputed_value = nn.predict(X[1:2, 1:])[0] # Manual calculation X_neighbors_idx = [0, 2, 3, 4, 5] dist = nan_euclidean_distances(X[1:2, :], X, missing_values=na) weights = 1 / dist[:, X_neighbors_idx].ravel() manual_imputed_value = np.average(X[X_neighbors_idx, 0], weights=weights) X_imputed_distance1 = np.array([ [0, 0], [manual_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10] ]) # NearestNeighbor calculation X_imputed_distance2 = np.array([ [0, 0], [knn_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10] ]) imputer = KNNImputer(weights="distance", missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed_distance1) assert_allclose(imputer.fit_transform(X), X_imputed_distance2) # Test with weights = "distance" and n_neighbors=2 X = np.array([ [na, 0, 0], [2, 1, 2], [3, 2, 3], [4, 5, 5], ]) # neighbors are rows 1, 2, the nan_euclidean_distances are: dist_0_1 = np.sqrt((3/2)*((1 - 0)**2 + (2 - 0)**2)) dist_0_2 = np.sqrt((3/2)*((2 - 0)**2 + (3 - 0)**2)) imputed_value = np.average([2, 3], weights=[1 / dist_0_1, 1 / dist_0_2]) X_imputed = np.array([ [imputed_value, 0, 0], [2, 1, 2], [3, 2, 3], [4, 5, 5], ]) imputer = KNNImputer(n_neighbors=2, weights="distance", missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) # Test with varying missingness patterns X = np.array([ [1, 0, 0, 1], [0, na, 1, na], [1, 1, 1, na], [0, 1, 0, 0], [0, 0, 0, 0], [1, 0, 1, 1], [10, 10, 10, 10], ]) # Get weights of donor neighbors dist = nan_euclidean_distances(X, missing_values=na) r1c1_nbor_dists = dist[1, [0, 2, 3, 4, 5]] r1c3_nbor_dists = dist[1, [0, 3, 4, 5, 6]] r1c1_nbor_wt = 1 / r1c1_nbor_dists r1c3_nbor_wt = 1 / r1c3_nbor_dists r2c3_nbor_dists = dist[2, [0, 3, 4, 5, 6]] r2c3_nbor_wt = 1 / r2c3_nbor_dists # Collect donor values col1_donor_values = np.ma.masked_invalid(X[[0, 2, 3, 4, 5], 1]).copy() col3_donor_values = np.ma.masked_invalid(X[[0, 3, 4, 5, 6], 3]).copy() # Final imputed values r1c1_imp = np.ma.average(col1_donor_values, weights=r1c1_nbor_wt) r1c3_imp = np.ma.average(col3_donor_values, weights=r1c3_nbor_wt) r2c3_imp = np.ma.average(col3_donor_values, weights=r2c3_nbor_wt) X_imputed = np.array([ [1, 0, 0, 1], [0, r1c1_imp, 1, r1c3_imp], [1, 1, 1, r2c3_imp], [0, 1, 0, 0], [0, 0, 0, 0], [1, 0, 1, 1], [10, 10, 10, 10], ]) imputer = KNNImputer(weights="distance", missing_values=na) assert_allclose(imputer.fit_transform(X), X_imputed) X = np.array([ [0, 0, 0, na], [1, 1, 1, na], [2, 2, na, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6], [na, 7, 7, 7] ]) dist = pairwise_distances(X, metric="nan_euclidean", squared=False, missing_values=na) # Calculate weights r0c3_w = 1.0 / dist[0, 2:-1] r1c3_w = 1.0 / dist[1, 2:-1] r2c2_w = 1.0 / dist[2, (0, 1, 3, 4, 5)] r7c0_w = 1.0 / dist[7, 2:7] # Calculate weighted averages r0c3 = np.average(X[2:-1, -1], weights=r0c3_w) r1c3 = np.average(X[2:-1, -1], weights=r1c3_w) r2c2 = np.average(X[(0, 1, 3, 4, 5), 2], weights=r2c2_w) r7c0 = np.average(X[2:7, 0], weights=r7c0_w) X_imputed = np.array([ [0, 0, 0, r0c3], [1, 1, 1, r1c3], [2, 2, r2c2, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6], [r7c0, 7, 7, 7] ]) imputer_comp_wt = KNNImputer(missing_values=na, weights="distance") assert_allclose(imputer_comp_wt.fit_transform(X), X_imputed) def test_knn_imputer_callable_metric(): # Define callable metric that returns the l1 norm: def custom_callable(x, y, missing_values=np.nan, squared=False): x = np.ma.array(x, mask=np.isnan(x)) y = np.ma.array(y, mask=np.isnan(y)) dist = np.nansum(np.abs(x-y)) return dist X = np.array([ [4, 3, 3, np.nan], [6, 9, 6, 9], [4, 8, 6, 9], [np.nan, 9, 11, 10.] ]) X_0_3 = (9 + 9) / 2 X_3_0 = (6 + 4) / 2 X_imputed = np.array([ [4, 3, 3, X_0_3], [6, 9, 6, 9], [4, 8, 6, 9], [X_3_0, 9, 11, 10.] ]) imputer = KNNImputer(n_neighbors=2, metric=custom_callable) assert_allclose(imputer.fit_transform(X), X_imputed) @pytest.mark.parametrize("working_memory", [None, 0]) @pytest.mark.parametrize("na", [-1, np.nan]) # Note that we use working_memory=0 to ensure that chunking is tested, even # for a small dataset. However, it should raise a UserWarning that we ignore. @pytest.mark.filterwarnings("ignore:adhere to working_memory") def test_knn_imputer_with_simple_example(na, working_memory): X = np.array([ [0, na, 0, na], [1, 1, 1, na], [2, 2, na, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6], [na, 7, 7, 7] ]) r0c1 = np.mean(X[1:6, 1]) r0c3 = np.mean(X[2:-1, -1]) r1c3 = np.mean(X[2:-1, -1]) r2c2 = np.mean(X[[0, 1, 3, 4, 5], 2]) r7c0 = np.mean(X[2:-1, 0]) X_imputed = np.array([ [0, r0c1, 0, r0c3], [1, 1, 1, r1c3], [2, 2, r2c2, 2], [3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6], [r7c0, 7, 7, 7] ]) with config_context(working_memory=working_memory): imputer_comp = KNNImputer(missing_values=na) assert_allclose(imputer_comp.fit_transform(X), X_imputed) @pytest.mark.parametrize("na", [-1, np.nan]) @pytest.mark.parametrize("weights", ['uniform', 'distance']) def test_knn_imputer_not_enough_valid_distances(na, weights): # Samples with needed feature has nan distance X1 = np.array([ [na, 11], [na, 1], [3, na] ]) X1_imputed = np.array([ [3, 11], [3, 1], [3, 6] ]) knn = KNNImputer(missing_values=na, n_neighbors=1, weights=weights) assert_allclose(knn.fit_transform(X1), X1_imputed) X2 = np.array([[4, na]]) X2_imputed = np.array([[4, 6]]) assert_allclose(knn.transform(X2), X2_imputed) @pytest.mark.parametrize("na", [-1, np.nan]) def test_knn_imputer_drops_all_nan_features(na): X1 = np.array([ [na, 1], [na, 2] ]) knn = KNNImputer(missing_values=na, n_neighbors=1) X1_expected = np.array([[1], [2]]) assert_allclose(knn.fit_transform(X1), X1_expected) X2 = np.array([ [1, 2], [3, na] ]) X2_expected = np.array([[2], [1.5]]) assert_allclose(knn.transform(X2), X2_expected) @pytest.mark.parametrize("working_memory", [None, 0]) @pytest.mark.parametrize("na", [-1, np.nan]) def test_knn_imputer_distance_weighted_not_enough_neighbors(na, working_memory): X = np.array([ [3, na], [2, na], [na, 4], [5, 6], [6, 8], [na, 5] ]) dist = pairwise_distances(X, metric="nan_euclidean", squared=False, missing_values=na) X_01 = np.average(X[3:5, 1], weights=1/dist[0, 3:5]) X_11 = np.average(X[3:5, 1], weights=1/dist[1, 3:5]) X_20 = np.average(X[3:5, 0], weights=1/dist[2, 3:5]) X_50 = np.average(X[3:5, 0], weights=1/dist[5, 3:5]) X_expected = np.array([ [3, X_01], [2, X_11], [X_20, 4], [5, 6], [6, 8], [X_50, 5] ]) with config_context(working_memory=working_memory): knn_3 = KNNImputer(missing_values=na, n_neighbors=3, weights='distance') assert_allclose(knn_3.fit_transform(X), X_expected) knn_4 = KNNImputer(missing_values=na, n_neighbors=4, weights='distance') assert_allclose(knn_4.fit_transform(X), X_expected) @pytest.mark.parametrize("na, allow_nan", [(-1, False), (np.nan, True)]) def test_knn_tags(na, allow_nan): knn = KNNImputer(missing_values=na) assert knn._get_tags()["allow_nan"] == allow_nan
bsd-3-clause
kylerbrown/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
rupakc/Kaggle-Compendium
Homesite Quote Conversion/home-baseline.py
1
3586
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.neural_network import MLPClassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn import metrics from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split import numpy def get_naive_bayes_models(): gnb = GaussianNB() mnb = MultinomialNB() bnb = BernoulliNB() classifier_list = [gnb,mnb,bnb] classifier_name_list = ['Gaussian NB','Multinomial NB','Bernoulli NB'] return classifier_list,classifier_name_list def get_neural_network(hidden_layer_size=50): mlp = MLPClassifier(hidden_layer_sizes=hidden_layer_size) return [mlp], ['MultiLayer Perceptron'] def get_ensemble_models(): rf = RandomForestClassifier(n_estimators=51,min_samples_leaf=5,min_samples_split=3) bagg = BaggingClassifier(n_estimators=71,random_state=42) extra = ExtraTreesClassifier(n_estimators=57,random_state=42) ada = AdaBoostClassifier(n_estimators=51,random_state=42) grad = GradientBoostingClassifier(n_estimators=101,random_state=42) classifier_list = [rf,bagg,extra,ada,grad] classifier_name_list = ['Random Forests','Bagging','Extra Trees','AdaBoost','Gradient Boost'] return classifier_list,classifier_name_list def label_encode_frame(dataframe): columns = dataframe.columns encoder = LabelEncoder() for column in columns: if type(dataframe[column][0]) is str: dataframe[column] = encoder.fit_transform(dataframe[column].values) return dataframe def spilt_date(list_of_date_string,separator='-',format='yyyy-mm-dd'): month_list = list([]) day_list = list([]) year_list = list([]) for date_string in list_of_date_string: date_list = date_string.strip().split(separator) month_list.append(date_list[1]) day_list.append(date_list[2]) year_list.append(date_list[0]) return month_list,day_list,year_list def print_evaluation_metrics(trained_model,trained_model_name,X_test,y_test): print '--------- For Model : ', trained_model_name predicted_values = trained_model.predict(X_test) print metrics.classification_report(y_test,predicted_values) print "Accuracy Score : ",metrics.accuracy_score(y_test,predicted_values) print "---------------------------------------\n" filename = 'train.csv' home_frame = pd.read_csv(filename) class_labels = list(home_frame['QuoteConversion_Flag'].values) del home_frame['QuoteConversion_Flag'] del home_frame['QuoteNumber'] month_list, day_list, year_list = spilt_date(list(home_frame['Original_Quote_Date'].values)) home_frame['Month'] = month_list home_frame['Day'] = day_list home_frame['Year'] = year_list del home_frame['Original_Quote_Date'] label_encoded_frame = label_encode_frame(home_frame) imputed_features = Imputer().fit_transform(label_encoded_frame.values) X_train,X_test,y_train,y_test = train_test_split(imputed_features,class_labels,test_size=0.2,random_state=42) classifier_list,classifier_name_list = get_ensemble_models() for classifier,classifier_name in zip(classifier_list,classifier_name_list): classifier.fit(X_train,y_train) print_evaluation_metrics(classifier,classifier_name,X_test,y_test)
mit
GoogleCloudPlatform/mlops-on-gcp
workshops/kfp-caip-sklearn/lab-02-kfp-pipeline/pipeline/covertype_training_pipeline.py
3
7714
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KFP pipeline orchestrating BigQuery and Cloud AI Platform services.""" import os from helper_components import evaluate_model from helper_components import retrieve_best_run from jinja2 import Template import kfp from kfp.components import func_to_container_op from kfp.dsl.types import Dict from kfp.dsl.types import GCPProjectID from kfp.dsl.types import GCPRegion from kfp.dsl.types import GCSPath from kfp.dsl.types import String from kfp.gcp import use_gcp_secret # Defaults and environment settings BASE_IMAGE = os.getenv('BASE_IMAGE') TRAINER_IMAGE = os.getenv('TRAINER_IMAGE') RUNTIME_VERSION = os.getenv('RUNTIME_VERSION') PYTHON_VERSION = os.getenv('PYTHON_VERSION') COMPONENT_URL_SEARCH_PREFIX = os.getenv('COMPONENT_URL_SEARCH_PREFIX') USE_KFP_SA = os.getenv('USE_KFP_SA') TRAINING_FILE_PATH = 'datasets/training/data.csv' VALIDATION_FILE_PATH = 'datasets/validation/data.csv' TESTING_FILE_PATH = 'datasets/testing/data.csv' # Parameter defaults SPLITS_DATASET_ID = 'splits' HYPERTUNE_SETTINGS = """ { "hyperparameters": { "goal": "MAXIMIZE", "maxTrials": 6, "maxParallelTrials": 3, "hyperparameterMetricTag": "accuracy", "enableTrialEarlyStopping": True, "params": [ { "parameterName": "max_iter", "type": "DISCRETE", "discreteValues": [500, 1000] }, { "parameterName": "alpha", "type": "DOUBLE", "minValue": 0.0001, "maxValue": 0.001, "scaleType": "UNIT_LINEAR_SCALE" } ] } } """ # Helper functions def generate_sampling_query(source_table_name, num_lots, lots): """Prepares the data sampling query.""" sampling_query_template = """ SELECT * FROM `{{ source_table }}` AS cover WHERE MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), {{ num_lots }}) IN ({{ lots }}) """ query = Template(sampling_query_template).render( source_table=source_table_name, num_lots=num_lots, lots=str(lots)[1:-1]) return query # Create component factories component_store = kfp.components.ComponentStore( local_search_paths=None, url_search_prefixes=[COMPONENT_URL_SEARCH_PREFIX]) bigquery_query_op = component_store.load_component('bigquery/query') mlengine_train_op = component_store.load_component('ml_engine/train') mlengine_deploy_op = component_store.load_component('ml_engine/deploy') retrieve_best_run_op = func_to_container_op( retrieve_best_run, base_image=BASE_IMAGE) evaluate_model_op = func_to_container_op(evaluate_model, base_image=BASE_IMAGE) @kfp.dsl.pipeline( name='Covertype Classifier Training', description='The pipeline training and deploying the Covertype classifierpipeline_yaml' ) def covertype_train(project_id, region, source_table_name, gcs_root, dataset_id, evaluation_metric_name, evaluation_metric_threshold, model_id, version_id, replace_existing_version, hypertune_settings=HYPERTUNE_SETTINGS, dataset_location='US'): """Orchestrates training and deployment of an sklearn model.""" # Create the training split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[1, 2, 3, 4]) training_file_path = '{}/{}'.format(gcs_root, TRAINING_FILE_PATH) create_training_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=training_file_path, dataset_location=dataset_location) # Create the validation split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[8]) validation_file_path = '{}/{}'.format(gcs_root, VALIDATION_FILE_PATH) create_validation_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=validation_file_path, dataset_location=dataset_location) # Create the testing split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[9]) testing_file_path = '{}/{}'.format(gcs_root, TESTING_FILE_PATH) create_testing_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=testing_file_path, dataset_location=dataset_location) # Tune hyperparameters tune_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--hptune', 'True' ] job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir/hypertune', kfp.dsl.RUN_ID_PLACEHOLDER) hypertune = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=tune_args, training_input=hypertune_settings) # Retrieve the best trial get_best_trial = retrieve_best_run_op( project_id, hypertune.outputs['job_id']) # Train the model on a combined training and validation datasets job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir', kfp.dsl.RUN_ID_PLACEHOLDER) train_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--alpha', get_best_trial.outputs['alpha'], '--max_iter', get_best_trial.outputs['max_iter'], '--hptune', 'False' ] train_model = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=train_args) # Evaluate the model on the testing split eval_model = evaluate_model_op( dataset_path=str(create_testing_split.outputs['output_gcs_path']), model_path=str(train_model.outputs['job_dir']), metric_name=evaluation_metric_name) # Deploy the model if the primary metric is better than threshold with kfp.dsl.Condition(eval_model.outputs['metric_value'] > evaluation_metric_threshold): deploy_model = mlengine_deploy_op( model_uri=train_model.outputs['job_dir'], project_id=project_id, model_id=model_id, version_id=version_id, runtime_version=RUNTIME_VERSION, python_version=PYTHON_VERSION, replace_existing_version=replace_existing_version) # Configure the pipeline to run using the service account defined # in the user-gcp-sa k8s secret if USE_KFP_SA == 'True': kfp.dsl.get_pipeline_conf().add_op_transformer( use_gcp_secret('user-gcp-sa'))
apache-2.0
ChanChiChoi/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
xubenben/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/sklearn/preprocessing/data.py
1
67256
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # Giorgio Patrini <[email protected]> # License: BSD 3 clause import numbers import warnings from itertools import chain, combinations import numpy as np from scipy import sparse from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils import deprecated from ..utils.extmath import _incremental_mean_and_var from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, incr_mean_variance_axis, min_max_axis) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] DEPRECATION_MSG_1D = ( "Passing 1d arrays as data is deprecated in 0.17 and will " "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample." ) def _handle_zeros_in_scale(scale, copy=True): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == .0: scale = 1. return scale elif isinstance(scale, np.ndarray): if copy: # New array to avoid side-effects scale = scale.copy() scale[scale == 0.0] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : {array-like, sparse matrix} The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSC matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSC matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSC matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if with_std: _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var, copy=False) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) if with_mean: mean_ = np.mean(X, axis) if with_std: scale_ = np.std(X, axis) # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: scale_ = _handle_zeros_in_scale(scale_, copy=False) Xr /= scale_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even # if mean_1 was close to zero. The problem is thus essentially # due to the lack of precision of mean_. A solution is then to # subtract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. data_min_ : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* instead of deprecated *data_min*. data_max_ : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* instead of deprecated *data_max*. data_range_ : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* instead of deprecated *data_range*. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy @property @deprecated("Attribute data_range will be removed in " "0.19. Use ``data_range_`` instead") def data_range(self): return self.data_range_ @property @deprecated("Attribute data_min will be removed in " "0.19. Use ``data_min_`` instead") def data_min(self): return self.data_min_ def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.min_ del self.n_samples_seen_ del self.data_min_ del self.data_max_ del self.data_range_ def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of min and max on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility. """ feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) if sparse.issparse(X): raise TypeError("MinMaxScaler does no support sparse input. " "You may consider to use MaxAbsScaler instead.") X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) data_min = np.min(X, axis=0) data_max = np.max(X, axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next steps else: data_min = np.minimum(self.data_min_, data_min) data_max = np.maximum(self.data_max_, data_max) self.n_samples_seen_ += X.shape[0] data_range = data_max - data_min self.scale_ = ((feature_range[1] - feature_range[0]) / _handle_zeros_in_scale(data_range)) self.min_ = feature_range[0] - data_min * self.scale_ self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. It cannot be sparse. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. .. versionadded:: 0.17 *minmax_scale* function interface to :class:`sklearn.preprocessing.MinMaxScaler`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ # To allow retro-compatibility, we handle here the case of 1D-input # From 0.17, 1D-input are deprecated in scaler objects # Although, we want to allow the users to keep calling this function # with 1D-input. # Cast input to array, as we need to check ndim. Prior to 0.17, that was # done inside the scaler object fit_transform. # If copy is required, it will be done inside the scaler object. X = check_array(X, copy=False, ensure_2d=False, warn_on_dtype=True, dtype=FLOAT_DTYPES) original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. This scaler can also be applied to sparse CSR or CSC matrices by passing `with_mean=False` to avoid breaking the sparsity structure of the data. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* is recommended instead of deprecated *std_*. mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. var_ : array of floats with shape [n_features] The variance for each feature in the training set. Used to compute `scale_` n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy @property @deprecated("Attribute ``std_`` will be removed in 0.19. Use ``scale_`` instead") def std_(self): return self.scale_ def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.mean_ del self.var_ def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y: Passthrough for ``Pipeline`` compatibility. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. "Algorithms for computing the sample variance: Analysis and recommendations." The American Statistician 37.3 (1983): 242-247: Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y: Passthrough for ``Pipeline`` compatibility. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) # Even in the case of `with_mean=False`, we update the mean anyway # This is needed for the incremental computation of the var # See incr_mean_variance_axis and _incremental_mean_variance_axis if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.with_std: # First pass if not hasattr(self, 'n_samples_seen_'): self.mean_, self.var_ = mean_variance_axis(X, axis=0) self.n_samples_seen_ = X.shape[0] # Next passes else: self.mean_, self.var_, self.n_samples_seen_ = \ incr_mean_variance_axis(X, axis=0, last_mean=self.mean_, last_var=self.var_, last_n=self.n_samples_seen_) else: self.mean_ = None self.var_ = None else: # First pass if not hasattr(self, 'n_samples_seen_'): self.mean_ = .0 self.n_samples_seen_ = 0 if self.with_std: self.var_ = .0 else: self.var_ = None self.mean_, self.var_, self.n_samples_seen_ = \ _incremental_mean_and_var(X, self.mean_, self.var_, self.n_samples_seen_) if self.with_std: self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_)) else: self.scale_ = None return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.scale_ is not None: inplace_column_scale(X, 1 / self.scale_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.scale_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.scale_ is not None: inplace_column_scale(X, self.scale_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.scale_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. .. versionadded:: 0.17 Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. max_abs_ : ndarray, shape (n_features,) Per feature maximum absolute value. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. """ def __init__(self, copy=True): self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.max_abs_ def fit(self, X, y=None): """Compute the maximum absolute value to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of max absolute value of X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y: Passthrough for ``Pipeline`` compatibility. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) max_abs = np.maximum(np.abs(mins), np.abs(maxs)) else: max_abs = np.abs(X).max(axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next passes else: max_abs = np.maximum(self.max_abs_, max_abs) self.n_samples_seen_ += X.shape[0] self.max_abs_ = max_abs self.scale_ = _handle_zeros_in_scale(max_abs) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : {array-like, sparse matrix} The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : {array-like, sparse matrix} The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ # To allow retro-compatibility, we handle here the case of 1D-input # From 0.17, 1D-input are deprecated in scaler objects # Although, we want to allow the users to keep calling this function # with 1D-input. # Cast input to array, as we need to check ndim. Prior to 0.17, that was # done inside the scaler object fit_transform. # If copy is required, it will be done inside the scaler object. X = check_array(X, accept_sparse=('csr', 'csc'), copy=False, ensure_2d=False, dtype=FLOAT_DTYPES) original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MaxAbsScaler(copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. .. versionadded:: 0.17 Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. .. versionadded:: 0.17 *scale_* attribute. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0., 0., 1.], [ 1., 2., 3., 4., 6., 9.], [ 1., 4., 5., 16., 20., 25.]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0.], [ 1., 2., 3., 6.], [ 1., 4., 5., 20.]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array-like, shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X, dtype=FLOAT_DTYPES) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). return_norm : boolean, default False whether to return the computed norms See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X /= norms[:, np.newaxis] if axis == 0: X = X.T if return_norm: return X, norms else: return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K, dtype=FLOAT_DTYPES) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K, copy=copy, dtype=FLOAT_DTYPES) K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : {array, sparse matrix}, shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], dtype=FLOAT_DTYPES) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if isinstance(selected, six.string_types) and selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : number of categorical values per feature. Each feature value should be in ``range(n_values)`` - array : ``n_values[i]`` is the number of categorical values in ``X[:, i]``. Each feature value should be in ``range(n_values[i])`` categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float64, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape [n_samples, n_feature] Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those categorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X.ravel()[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape [n_samples, n_features] Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
mit
0asa/scikit-learn
examples/neighbors/plot_digits_kde_sampling.py
251
2022
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.grid_search import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
bsd-3-clause
chrsrds/scikit-learn
examples/neighbors/plot_nca_illustration.py
1
2974
""" ============================================= Neighborhood Components Analysis Illustration ============================================= An example illustrating the goal of learning a distance metric that maximizes the nearest neighbors classification accuracy. The example is solely for illustration purposes. Please refer to the :ref:`User Guide <nca>` for more information. """ # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.neighbors import NeighborhoodComponentsAnalysis from matplotlib import cm from sklearn.utils.fixes import logsumexp print(__doc__) n_neighbors = 1 random_state = 0 # Create a tiny data set of 9 samples from 3 classes X, y = make_classification(n_samples=9, n_features=2, n_informative=2, n_redundant=0, n_classes=3, n_clusters_per_class=1, class_sep=1.0, random_state=random_state) # Plot the points in the original space plt.figure() ax = plt.gca() # Draw the graph nodes for i in range(X.shape[0]): ax.text(X[i, 0], X[i, 1], str(i), va='center', ha='center') ax.scatter(X[i, 0], X[i, 1], s=300, c=cm.Set1(y[[i]]), alpha=0.4) def p_i(X, i): diff_embedded = X[i] - X dist_embedded = np.einsum('ij,ij->i', diff_embedded, diff_embedded) dist_embedded[i] = np.inf # compute exponentiated distances (use the log-sum-exp trick to # avoid numerical instabilities exp_dist_embedded = np.exp(-dist_embedded - logsumexp(-dist_embedded)) return exp_dist_embedded def relate_point(X, i, ax): pt_i = X[i] for j, pt_j in enumerate(X): thickness = p_i(X, i) if i != j: line = ([pt_i[0], pt_j[0]], [pt_i[1], pt_j[1]]) ax.plot(*line, c=cm.Set1(y[j]), linewidth=5*thickness[j]) # we consider only point 3 i = 3 # Plot bonds linked to sample i in the original space relate_point(X, i, ax) ax.set_title("Original points") ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) ax.axis('equal') # Learn an embedding with NeighborhoodComponentsAnalysis nca = NeighborhoodComponentsAnalysis(max_iter=30, random_state=random_state) nca = nca.fit(X, y) # Plot the points after transformation with NeighborhoodComponentsAnalysis plt.figure() ax2 = plt.gca() # Get the embedding and find the new nearest neighbors X_embedded = nca.transform(X) relate_point(X_embedded, i, ax2) for i in range(len(X)): ax2.text(X_embedded[i, 0], X_embedded[i, 1], str(i), va='center', ha='center') ax2.scatter(X_embedded[i, 0], X_embedded[i, 1], s=300, c=cm.Set1(y[[i]]), alpha=0.4) # Make axes equal so that boundaries are displayed correctly as circles ax2.set_title("NCA embedding") ax2.axes.get_xaxis().set_visible(False) ax2.axes.get_yaxis().set_visible(False) ax2.axis('equal') plt.show()
bsd-3-clause
AIML/scikit-learn
sklearn/utils/tests/test_validation.py
133
18339
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=100, dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, []) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = check_array(42, ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
jblackburne/scikit-learn
sklearn/tree/export.py
12
16020
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # License: BSD 3 clause import numpy as np from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0 else: alpha = int(np.round(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1]), 0)) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(np.round(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0])), 0)) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
toastedcornflakes/scikit-learn
sklearn/utils/tests/test_class_weight.py
50
13151
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) # Raise error when y has items not in classes classes = np.arange(2) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) assert_raises(ValueError, compute_class_weight, {0: 1., 1: 2.}, classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # duplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
russel1237/scikit-learn
sklearn/decomposition/__init__.py
147
1421
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
anirudhjayaraman/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
nicproulx/mne-python
mne/preprocessing/tests/test_xdawn.py
3
7741
# Authors: Alexandre Barachant <[email protected]> # Jean-Remi King <[email protected]> # # License: BSD (3-clause) import numpy as np import os.path as op from nose.tools import assert_equal, assert_raises, assert_true from numpy.testing import assert_array_equal, assert_array_almost_equal from mne import Epochs, read_events, pick_types, compute_raw_covariance from mne.io import read_raw_fif from mne.utils import requires_sklearn, run_tests_if_main from mne.preprocessing.xdawn import Xdawn, _XdawnTransformer base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_name = op.join(base_dir, 'test-eve.fif') tmin, tmax = -0.1, 0.2 event_id = dict(cond2=2, cond3=3) def _get_data(): """Get data.""" raw = read_raw_fif(raw_fname, verbose=False, preload=True) events = read_events(event_name) picks = pick_types(raw.info, meg=False, eeg=True, stim=False, ecg=False, eog=False, exclude='bads')[::8] return raw, events, picks def test_xdawn(): """Test init of xdawn.""" # Init xdawn with good parameters Xdawn(n_components=2, correct_overlap='auto', signal_cov=None, reg=None) # Init xdawn with bad parameters assert_raises(ValueError, Xdawn, correct_overlap=42) def test_xdawn_fit(): """Test Xdawn fit.""" # Get data raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=True, baseline=None, verbose=False) # =========== Basic Fit test ================= # Test base xdawn xd = Xdawn(n_components=2, correct_overlap='auto') xd.fit(epochs) # With these parameters, the overlap correction must be False assert_equal(xd.correct_overlap_, False) # No overlap correction should give averaged evoked evoked = epochs['cond2'].average() assert_array_equal(evoked.data, xd.evokeds_['cond2'].data) # ========== with signal cov provided ==================== # Provide covariance object signal_cov = compute_raw_covariance(raw, picks=picks) xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov) xd.fit(epochs) # Provide ndarray signal_cov = np.eye(len(picks)) xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov) xd.fit(epochs) # Provide ndarray of bad shape signal_cov = np.eye(len(picks) - 1) xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov) assert_raises(ValueError, xd.fit, epochs) # Provide another type signal_cov = 42 xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov) assert_raises(ValueError, xd.fit, epochs) # Fit with baseline correction and overlap correction should throw an # error # XXX This is a buggy test, the epochs here don't overlap epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=True, baseline=(None, 0), verbose=False) xd = Xdawn(n_components=2, correct_overlap=True) assert_raises(ValueError, xd.fit, epochs) def test_xdawn_apply_transform(): """Test Xdawn apply and transform.""" # Get data raw, events, picks = _get_data() raw.pick_types(eeg=True, meg=False) epochs = Epochs(raw, events, event_id, tmin, tmax, proj=False, preload=True, baseline=None, verbose=False) n_components = 2 # Fit Xdawn xd = Xdawn(n_components=n_components, correct_overlap=False) xd.fit(epochs) # Apply on different types of instances for inst in [raw, epochs.average(), epochs]: denoise = xd.apply(inst) # Apply on other thing should raise an error assert_raises(ValueError, xd.apply, 42) # Transform on epochs xd.transform(epochs) # Transform on ndarray xd.transform(epochs._data) # Transform on someting else assert_raises(ValueError, xd.transform, 42) # Check numerical results with shuffled epochs np.random.seed(0) # random makes unstable linalg idx = np.arange(len(epochs)) np.random.shuffle(idx) xd.fit(epochs[idx]) denoise_shfl = xd.apply(epochs) assert_array_almost_equal(denoise['cond2']._data, denoise_shfl['cond2']._data) @requires_sklearn def test_xdawn_regularization(): """Test Xdawn with regularization.""" # Get data raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=True, baseline=None, verbose=False) # Test with overlapping events. # modify events to simulate one overlap events = epochs.events sel = np.where(events[:, 2] == 2)[0][:2] modified_event = events[sel[0]] modified_event[0] += 1 epochs.events[sel[1]] = modified_event # Fit and check that overlap was found and applied xd = Xdawn(n_components=2, correct_overlap='auto', reg='oas') xd.fit(epochs) assert_equal(xd.correct_overlap_, True) evoked = epochs['cond2'].average() assert_true(np.sum(np.abs(evoked.data - xd.evokeds_['cond2'].data))) # With covariance regularization for reg in [.1, 0.1, 'ledoit_wolf', 'oas']: xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=np.eye(len(picks)), reg=reg) xd.fit(epochs) # With bad shrinkage xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=np.eye(len(picks)), reg=2) assert_raises(ValueError, xd.fit, epochs) @requires_sklearn def test_XdawnTransformer(): """Test _XdawnTransformer.""" # Get data raw, events, picks = _get_data() epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, preload=True, baseline=None, verbose=False) X = epochs._data y = epochs.events[:, -1] # Fit xdt = _XdawnTransformer() xdt.fit(X, y) assert_raises(ValueError, xdt.fit, X, y[1:]) assert_raises(ValueError, xdt.fit, 'foo') # Provide covariance object signal_cov = compute_raw_covariance(raw, picks=picks) xdt = _XdawnTransformer(signal_cov=signal_cov) xdt.fit(X, y) # Provide ndarray signal_cov = np.eye(len(picks)) xdt = _XdawnTransformer(signal_cov=signal_cov) xdt.fit(X, y) # Provide ndarray of bad shape signal_cov = np.eye(len(picks) - 1) xdt = _XdawnTransformer(signal_cov=signal_cov) assert_raises(ValueError, xdt.fit, X, y) # Provide another type signal_cov = 42 xdt = _XdawnTransformer(signal_cov=signal_cov) assert_raises(ValueError, xdt.fit, X, y) # Fit with y as None xdt = _XdawnTransformer() xdt.fit(X) # Compare xdawn and _XdawnTransformer xd = Xdawn(correct_overlap=False) xd.fit(epochs) xdt = _XdawnTransformer() xdt.fit(X, y) assert_array_almost_equal(xd.filters_['cond2'][:, :2], xdt.filters_.reshape(2, 2, 8)[0].T) # Transform testing xdt.transform(X[1:, ...]) # different number of epochs xdt.transform(X[:, :, 1:]) # different number of time assert_raises(ValueError, xdt.transform, X[:, 1:, :]) Xt = xdt.transform(X) assert_raises(ValueError, xdt.transform, 42) # Inverse transform testing Xinv = xdt.inverse_transform(Xt) assert_equal(Xinv.shape, X.shape) xdt.inverse_transform(Xt[1:, ...]) xdt.inverse_transform(Xt[:, :, 1:]) # should raise an error if not correct number of components assert_raises(ValueError, xdt.inverse_transform, Xt[:, 1:, :]) assert_raises(ValueError, xdt.inverse_transform, 42) run_tests_if_main()
bsd-3-clause
YISION/yision.github.io
randomforest-决策树与随机森林/f.py
1
2724
#encoding=utf8 from sklearn.ensemble import RandomForestClassifier import pandas as pd import numpy as np import matplotlib.pyplot as plt #导入数据集与设定因变量及响应变量# data=pd.read_csv('data.csv') #data=pd.read_csv('data_p.csv') df=pd.DataFrame(data) df=df.dropna()#去除缺失值# y=df.BAD x=pd.concat([df.LOAN,df.MORTDUE,df.VALUE,df.YOJ,df.DEROG,df.DELINQ,df.CLAGE,df.NINQ,df.CLNO],axis=1) #x=pd.concat([df.LOAN,df.MORTDUE,df.VALUE,df.YOJ,df.DEROG,df.DELINQ,df.CLAGE,df.NINQ,df.CLNO,df.Resn_HomeImp,df.Resn_DebtCon,df.Job_Mgr,df.Job_Office,df.Job_Self,df.Job_ProfExe,df.Job_Sales,df.Job_Other],axis=1) print df.head() #分差训练集与测试集# from sklearn.cross_validation import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=1) #使用决策树# from sklearn import tree, cross_validation clf=tree.DecisionTreeClassifier(criterion='entropy',min_samples_leaf=8) #print (clf) print clf.fit(x_train,y_train) #对测试集进行验证# print("决策树准确率:{:.16f}".format(clf.score(x_test,y_test))) print("决策树训练集:{:.16f}".format(clf.score(x_train,y_train))) #生成特征图# feature_importance=clf.feature_importances_ important_features=x_train.columns.values[0::] feature_importance=100.0*(feature_importance/feature_importance.max()) sorted_idx=np.argsort(feature_importance)[::-1] pos=np.arange(sorted_idx.shape[0])+.5 plt.title('Feature Importance') plt.barh(pos,feature_importance[sorted_idx[::-1]],color='r',align='center') plt.yticks(pos,important_features) plt.xlabel('Relative Importance') plt.draw() plt.show() #描绘决策树# import pydot,StringIO dot_data = StringIO.StringIO() tree.export_graphviz(clf, out_file=dot_data, feature_names=['LOAN','MORTDUE','VALUE','YOJ','DEROG','DELINQ','CLAGE','NINQ','CLNO']) dot_data.getvalue() pydot.graph_from_dot_data(dot_data.getvalue()) graph = pydot.graph_from_dot_data(dot_data.getvalue()) graph.write_png('tree.png') from IPython.core.display import Image Image(filename='tree.png') #对模型进行交叉验证# score1=cross_validation.cross_val_score(clf, x, y,cv=10) print score1 #随机森林# clf2=RandomForestClassifier(n_estimators=1000,criterion='entropy',min_samples_leaf=8,random_state=1,n_jobs=5) #print (clf2) print clf2.fit(x_train,y_train) #对测试集进行验证# print("随机森林准确率:{:.16f}".format(clf2.score(x_test,y_test))) print("随机森林训练集:{:.16f}".format(clf2.score(x_train,y_train))) #两者模型比较,交叉验证# score2=cross_validation.cross_val_score(clf2,x,y,cv=10) print score2 print ("决策树交叉验证:") print score1.mean() print ("随机森林交叉验证:") print score2.mean()
mit
466152112/scikit-learn
sklearn/utils/tests/test_sparsefuncs.py
57
13752
import numpy as np import scipy.sparse as sp from scipy import linalg from numpy.testing import assert_array_almost_equal, assert_array_equal from sklearn.datasets import make_classification from sklearn.utils.sparsefuncs import (mean_variance_axis, inplace_column_scale, inplace_row_scale, inplace_swap_row, inplace_swap_column, min_max_axis, count_nonzero, csc_median_axis_0) from sklearn.utils.sparsefuncs_fast import assign_rows_csr from sklearn.utils.testing import assert_raises def test_mean_variance_axis0(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) X_means, X_vars = mean_variance_axis(X_csc, axis=0) assert_array_almost_equal(X_means, np.mean(X, axis=0)) assert_array_almost_equal(X_vars, np.var(X, axis=0)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=0) def test_mean_variance_illegal_axis(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_csr = sp.csr_matrix(X) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-3) assert_raises(ValueError, mean_variance_axis, X_csr, axis=2) assert_raises(ValueError, mean_variance_axis, X_csr, axis=-1) def test_mean_variance_axis1(): X, _ = make_classification(5, 4, random_state=0) # Sparsify the array a little bit X[0, 0] = 0 X[2, 1] = 0 X[4, 3] = 0 X_lil = sp.lil_matrix(X) X_lil[1, 0] = 0 X[1, 0] = 0 X_csr = sp.csr_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_csc = sp.csc_matrix(X_lil) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) X = X.astype(np.float32) X_csr = X_csr.astype(np.float32) X_csc = X_csr.astype(np.float32) X_means, X_vars = mean_variance_axis(X_csr, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) X_means, X_vars = mean_variance_axis(X_csc, axis=1) assert_array_almost_equal(X_means, np.mean(X, axis=1)) assert_array_almost_equal(X_vars, np.var(X, axis=1)) assert_raises(TypeError, mean_variance_axis, X_lil, axis=1) def test_densify_rows(): X = sp.csr_matrix([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) rows = np.array([0, 2, 3], dtype=np.intp) out = np.ones((rows.shape[0], X.shape[1]), dtype=np.float64) assign_rows_csr(X, rows, np.arange(out.shape[0], dtype=np.intp)[::-1], out) assert_array_equal(out, X[rows].toarray()[::-1]) def test_inplace_column_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(200) XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale inplace_column_scale(Xc, scale) inplace_column_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_row_scale(): rng = np.random.RandomState(0) X = sp.rand(100, 200, 0.05) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() scale = rng.rand(100) XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) X = X.astype(np.float32) scale = scale.astype(np.float32) Xr = X.tocsr() Xc = X.tocsc() XA = X.toarray() XA *= scale.reshape(-1, 1) inplace_row_scale(Xc, scale) inplace_row_scale(Xr, scale) assert_array_almost_equal(Xr.toarray(), Xc.toarray()) assert_array_almost_equal(XA, Xc.toarray()) assert_array_almost_equal(XA, Xr.toarray()) assert_raises(TypeError, inplace_column_scale, X.tolil(), scale) def test_inplace_swap_row(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[0], X[-1] = swap(X[0], X[-1]) inplace_swap_row(X_csr, 0, -1) inplace_swap_row(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[2], X[3] = swap(X[2], X[3]) inplace_swap_row(X_csr, 2, 3) inplace_swap_row(X_csc, 2, 3) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_row, X_csr.tolil()) def test_inplace_swap_column(): X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) swap = linalg.get_blas_funcs(('swap',), (X,)) swap = swap[0] X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1]) inplace_swap_column(X_csr, 0, -1) inplace_swap_column(X_csc, 0, -1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1]) inplace_swap_column(X_csr, 0, 1) inplace_swap_column(X_csc, 0, 1) assert_array_equal(X_csr.toarray(), X_csc.toarray()) assert_array_equal(X, X_csc.toarray()) assert_array_equal(X, X_csr.toarray()) assert_raises(TypeError, inplace_swap_column, X_csr.tolil()) def test_min_max_axis0(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=0) assert_array_equal(mins_csr, X.min(axis=0)) assert_array_equal(maxs_csr, X.max(axis=0)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=0) assert_array_equal(mins_csc, X.min(axis=0)) assert_array_equal(maxs_csc, X.max(axis=0)) def test_min_max_axis1(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) X = X.astype(np.float32) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) mins_csr, maxs_csr = min_max_axis(X_csr, axis=1) assert_array_equal(mins_csr, X.min(axis=1)) assert_array_equal(maxs_csr, X.max(axis=1)) mins_csc, maxs_csc = min_max_axis(X_csc, axis=1) assert_array_equal(mins_csc, X.min(axis=1)) assert_array_equal(maxs_csc, X.max(axis=1)) def test_min_max_axis_errors(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) assert_raises(TypeError, min_max_axis, X_csr.tolil(), axis=0) assert_raises(ValueError, min_max_axis, X_csr, axis=2) assert_raises(ValueError, min_max_axis, X_csc, axis=-3) def test_count_nonzero(): X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64) X_csr = sp.csr_matrix(X) X_csc = sp.csc_matrix(X) X_nonzero = X != 0 sample_weight = [.5, .2, .3, .1, .1] X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None] for axis in [0, 1, -1, -2, None]: assert_array_almost_equal(count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)) assert_array_almost_equal(count_nonzero(X_csr, axis=axis, sample_weight=sample_weight), X_nonzero_weighted.sum(axis=axis)) assert_raises(TypeError, count_nonzero, X_csc) assert_raises(ValueError, count_nonzero, X_csr, axis=2) def test_csc_row_median(): # Test csc_row_median actually calculates the median. # Test that it gives the same output when X is dense. rng = np.random.RandomState(0) X = rng.rand(100, 50) dense_median = np.median(X, axis=0) csc = sp.csc_matrix(X) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test that it gives the same output when X is sparse X = rng.rand(51, 100) X[X < 0.7] = 0.0 ind = rng.randint(0, 50, 10) X[ind] = -X[ind] csc = sp.csc_matrix(X) dense_median = np.median(X, axis=0) sparse_median = csc_median_axis_0(csc) assert_array_equal(sparse_median, dense_median) # Test for toy data. X = [[0, -2], [-1, -1], [1, 0], [2, 1]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5])) X = [[0, -2], [-1, -5], [1, -3]] csc = sp.csc_matrix(X) assert_array_equal(csc_median_axis_0(csc), np.array([0., -3])) # Test that it raises an Error for non-csc matrices. assert_raises(TypeError, csc_median_axis_0, sp.csr_matrix(X))
bsd-3-clause
abandons/jieba
test/extract_topic.py
65
1463
import sys sys.path.append("../") from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn import decomposition import jieba import time import glob import sys import os import random if len(sys.argv)<2: print("usage: extract_topic.py directory [n_topic] [n_top_words]") sys.exit(0) n_topic = 10 n_top_words = 25 if len(sys.argv)>2: n_topic = int(sys.argv[2]) if len(sys.argv)>3: n_top_words = int(sys.argv[3]) count_vect = CountVectorizer() docs = [] pattern = os.path.join(sys.argv[1],"*.txt") print("read "+pattern) for f_name in glob.glob(pattern): with open(f_name) as f: print("read file:", f_name) for line in f: #one line as a document words = " ".join(jieba.cut(line)) docs.append(words) random.shuffle(docs) print("read done.") print("transform") counts = count_vect.fit_transform(docs) tfidf = TfidfTransformer().fit_transform(counts) print(tfidf.shape) t0 = time.time() print("training...") nmf = decomposition.NMF(n_components=n_topic).fit(tfidf) print("done in %0.3fs." % (time.time() - t0)) # Inverse the vectorizer vocabulary to be able feature_names = count_vect.get_feature_names() for topic_idx, topic in enumerate(nmf.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print("")
mit
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/decomposition/tests/test_nmf.py
33
6189
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): """Test NNDSVD behaviour on negative input""" nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): """Test that NNDSVD does not return negative values""" data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): """Test NNDSVD error Test that _initialize_nmf error is less than the standard deviation of the entries in the matrix. """ A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): """Test NNDSVD variants correctness Test that the variants 'a' and 'ar' differ from basic NNDSVD only where the basic version has zeros. """ data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): """Test model fit behaviour on negative input""" A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): """Test that the decomposition does not contain negative values""" A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): """Test that the fit is not too far away""" pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): """Test that NLS solver doesn't return negative values""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): """Test that the NLS results should be close""" A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): """Test that NMF.transform returns close values (transform uses scipy.optimize.nnls for now) """ A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): """Smoke test for the case of more components than features.""" A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): """Test sparseness Test that sparsity constraints actually increase sparseness in the part where they are applied. """ A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): """Test that sparse matrices are accepted as input""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): """Test that transform works on sparse data. Issue #2124""" from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF() A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
apache-2.0
hainm/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
PrashntS/scikit-learn
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause
evgchz/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/en/neighbors/plot_digits_kde_sampling.py
108
2026
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
gpl-3.0
esteinig/netviewP
program/linux/0.7/netview.py
1
28716
#!/usr/bin/env python # NetView P v.0.7 - Linux # Dependencies: PLINK # Eike Steinig # Zenger Lab, JCU # https://github.com/esteinig/netview import os import time import shutil import argparse import subprocess import numpy as np import multiprocessing as mp import scipy.sparse.csgraph as csg import scipy.spatial.distance as sd from sklearn.neighbors import NearestNeighbors def main(): commands = CommandLine() dat = Data() dat.prefix = commands.arg_dict['prefix'] dat.ploidy = commands.arg_dict['ploidy'] dat.missing = commands.arg_dict['missing'] if commands.arg_dict['visual']: print('\nGenerated node attribute files only.\n') dat.readData(commands.arg_dict['attribute_file'], f='attributes', sep=',') dat.writeData(f='attributes') makeProject(commands.arg_dict['project'] + '_attributes', commands.arg_dict['prefix']) exit(1) print() print(get_time() + "\t" + "---------------------------------") print(get_time() + "\t" + " NETVIEW P v.0.7 ") print(get_time() + "\t" + "---------------------------------") print(get_time() + "\t" + "File =", commands.arg_dict['data_file'].upper()) if commands.arg_dict['plink']: dat.filetype = 'plink' dat.readData(commands.arg_dict['data_file'], f='plink', sep=commands.arg_dict['sep']) elif commands.arg_dict['snps']: dat.filetype = 'snps' dat.readData(commands.arg_dict['data_file'], f='snp_mat', sep=commands.arg_dict['sep']) else: dat.filetype = 'dist' dat.readData(commands.arg_dict['data_file'], f='matrix', sep=commands.arg_dict['sep']) dat.readData(commands.arg_dict['attribute_file'], f='attributes', sep=',') if dat.ploidy == 'diploid': nsnp = dat.nSNP//2 else: nsnp = dat.nSNP print(get_time() + "\t" + "N =", str(dat.n).upper()) print(get_time() + "\t" + "SNPs =", str(nsnp).upper()) print(get_time() + "\t" + "Ploidy =", dat.ploidy.upper()) print(get_time() + "\t" + "---------------------------------") print(get_time() + "\t" + "Quality Control =", str(commands.arg_dict['qc']).upper()) pipeline = Analysis(dat) qc = False if commands.arg_dict['qc'] and pipeline.data.filetype != 'dist': qc_params = {'--mind': commands.arg_dict['mind'], '--geno': commands.arg_dict['geno'], '--maf': commands.arg_dict['maf'], '--hwe': commands.arg_dict['hwe']} pipeline.runPLINK(qc_parameters=qc_params, quality=True) qc = True if commands.arg_dict['mat'] and pipeline.data.filetype != 'dist': pipeline.getDistance(distance=commands.arg_dict['distance']) pipeline.data.writeData(file=commands.arg_dict['prefix'] + '_mat.dist', f='matrix') makeProject(commands.arg_dict['project'] + '_dist', commands.arg_dict['prefix']) print(get_time() + "\t" + "---------------------------------\n") exit(1) elif commands.arg_dict['mat'] and pipeline.data.filetype == 'dist': print('\nError. Input is already a Distance Matrix.\n') exit(1) if not commands.arg_dict['off']: if pipeline.data.filetype != 'dist': pipeline.getDistance(distance=commands.arg_dict['distance']) pipeline.runNetView(tree=commands.arg_dict['tree'], start=commands.arg_dict['start'], stop=commands.arg_dict['stop'], step=commands.arg_dict['step'], algorithm=commands.arg_dict['algorithm']) if qc: pipeline.updateNodeAttributes(commands.arg_dict['attribute_file']) pipeline.data.writeData(f='attributes') makeProject(commands.arg_dict['project'], commands.arg_dict['prefix']) print(get_time() + "\t" + "---------------------------------\n") def makeProject(project, prefix): cwd = os.getcwd() project_path = os.path.realpath(os.path.join(os.getcwd(), project)) plink_path = os.path.realpath(os.path.join(project_path, 'plink')) network_path = os.path.realpath(os.path.join(project_path, 'networks')) other_path = os.path.realpath(os.path.join(project_path, 'other')) node_path = os.path.realpath(os.path.join(project_path, 'nodes')) if os.path.exists(project_path): shutil.rmtree(project_path) architecture = [project_path, plink_path, network_path, other_path, node_path] for directory in architecture: try: os.makedirs(directory) except OSError: if not os.path.isdir(directory): raise for name in os.listdir(cwd): if name.endswith('.edges'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): shutil.move(pathname, network_path) if name.endswith('.dist'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): shutil.move(pathname, other_path) if name.endswith('.nat'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): shutil.move(pathname, node_path) elif name.startswith(prefix + '_plink_in'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): os.remove(pathname) elif name.startswith(prefix + '_plink'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): shutil.move(pathname, plink_path) elif name.endswith('_qc.csv'): pathname = os.path.join(cwd, name) if os.path.isfile(pathname): shutil.move(pathname, other_path) #### Functions for Multiprocessing #### def netview(matrix, k, mst, algorithm, tree): nbrs = NearestNeighbors(n_neighbors=k+1, algorithm=algorithm).fit(matrix) adj_knn = nbrs.kneighbors_graph(matrix).toarray() np.fill_diagonal(adj_knn, 0) adj_mknn = (adj_knn == adj_knn.T) * adj_knn if tree: adj = mst + adj_mknn else: adj = adj_mknn adjacency = np.tril(adj) mst_edges = np.argwhere(adjacency < 1) adjacency[adjacency > 0] = 1. edges = np.argwhere(adjacency != 0) weights = matrix[edges[:, 0], edges[:, 1]] return [k, edges, weights, adjacency, mst_edges] def netview_callback(k): print(get_time() + "\t" + ' k=' + str(k[0])) def get_time(): return time.strftime("[%H:%M:%S]") #### Command Line Module #### class CommandLine: def __init__(self): self.parser = argparse.ArgumentParser(description='NetView P v0.7', add_help=True) self.setParser() self.args = self.parser.parse_args() self.arg_dict = vars(self.args) def setParser(self): data_type = self.parser.add_mutually_exclusive_group(required=True) # Required Options self.parser.add_argument('-f', dest='data_file', required=True, type=str, help="Name of Data File") data_type.add_argument('-p', dest='plink', action='store_true', help="PLINK format (.ped/.map)") data_type.add_argument('-s', dest='snps', action='store_true', help="SNP matrix (N x SNPs)") data_type.add_argument('-m', dest='dist', action='store_true', help="Distance matrix (N x N)") self.parser.add_argument('-a', dest='attribute_file', default='', type=str, required=True, help="Node attribute file (.csv)") # MAIN Options self.parser.add_argument('--quality', dest='qc', action='store_true', default=False, help="Quality control in PLINK (OFF)") self.parser.add_argument('--distance', dest='distance', default='asd', type=str, help="Distance measure for SNPs: hamming, asd, correlation... (asd)") self.parser.add_argument('--algorithm', dest='algorithm', default='auto', type=str, help="Algorithm for NN: auto, ball_tree, kd_tree, brute (brute)") self.parser.add_argument('--mst-off', dest='tree', action='store_false', default=True, help="Disable minimum spanning tree (OFF)") self.parser.add_argument('--ploidy', dest='ploidy', default='diploid', type=str, help="Set ploidy: haploid, diploid (diploid.") self.parser.add_argument('--missing', dest='missing', default='0', type=str, help="Set missing character (0)") self.parser.add_argument('--prefix', dest='prefix', default='project', type=str, help="Set prefix (project)") self.parser.add_argument('--project', dest='project', default=time.strftime("%d-%m-%Y_%H-%M-%S"), type=str, help="Output project name (timestamp)") self.parser.add_argument('--sep', dest='sep', default='\t', type=str, help="Delimiter for data file (\\t).") # PARAMETER Options self.parser.add_argument('--mind', dest='mind', default=0.1, type=float, help="Filter samples > missing rate (0.1)") self.parser.add_argument('--geno', dest='geno', default=0.1, type=float, help="Filter SNPs > missing rate (0.1)") self.parser.add_argument('--maf', dest='maf', default=0.01, type=float, help="Filter SNPs < minor allele frequency (0.01)") self.parser.add_argument('--hwe', dest='hwe', default=0.001, type=float, help="Filter SNPs failing HWE test at P < (0.001)") self.parser.add_argument('--start', dest='start', default=10, type=int, help="Start at k = (10)") self.parser.add_argument('--stop', dest='stop', default=40, type=int, help="Stop at k = (40)") self.parser.add_argument('--step', dest='step', default=10, type=int, help="Step by k = (10)") # PIPELINE Options self.parser.add_argument('--visual', dest='visual', action='store_true', default=False, help="Node attributes ONLY (OFF)") self.parser.add_argument('--off', dest='off', action='store_true', default=False, help="Switch off NetView and run only QC (OFF).") self.parser.add_argument('--matrix', dest='mat', action='store_true', default=False, help="Generate distance matrix ONLY (OFF).") #### Data Module #### class Data: ### DATA ATTRIBUTES ### def __init__(self): self.prefix = "project" self.ploidy = 'diploid' self.missing = "0" self.n = 0 self.nSNP = 0 self.ids = [] # IDs self.alleles = [] self.snps = np.arange(5) # Array (N x SNPs) self.biodata = [] # List/Alignment of BioPython SeqRecords self.meta_data = {} self.snp_data = {} self.matrices = {} self.networks = {} self.matrix = np.arange(5) # Current Matrix self.netview_runs = 0 self.filetype = '' ### DATA READER ### def readData(self, file, f, sep="\t", header=False, add_col=0): def _read_nexus(file, sep=sep): snp_position = [] snps = [] matrix = False for line in file: content = line.strip().split(sep) if matrix == True: if ";" in line: break snp_position.append(content[0]) snps.append(content[1:]) else: if "dimensions" in line: self.n = int(content[1].split("=")[1]) self.nSNP = int(content[2].split("=")[1][:-1]) elif "taxlabels" in line: self.ids = content[1:] elif "matrix" in line: matrix = True self.snps = np.array([list(i) for i in zip(*snps)]) # ordered by N self.snp_data['snp_id'] = [''.join(p.split("_")[:-1]) for p in snp_position] self.snp_data['snp_position'] = [p.split("_")[-1] for p in snp_position] self.filetype = 'nexus' def _read_raxml(file, sep=sep): header = [] ids = [] snps = [] for line in file: content = line.strip().split(sep) if header: ids.append(content[0]) snps.append(content[1]) else: header = content self.n = header[0] self.nSNP = header[1] self.ids = ids self.snps = np.array(snps) self.filetype = 'raxml' def _read_plink(file, filename, sep=sep): map_name = filename.split(".")[0] + ".map" map_file = open(map_name) ids = [] meta = [] snps = [] for line in file: content = line.strip().split(sep) ids.append(content[1]) snps.append(content[6:]) meta.append(content[:6]) self.ids = ids self.snps = np.array(snps) self.nSNP = len(self.snps[0]) self.n = len(self.ids) self.meta_data["pop"] = [i[0] for i in meta] self.meta_data["dam"] = [i[2] for i in meta] self.meta_data["sire"] = [i[3] for i in meta] self.meta_data["sex"] = [i[4] for i in meta] self.meta_data["phenotype"] = [i[5] for i in meta] map_content = [line.strip().split() for line in map_file] map_content = list(zip(*map_content)) self.snp_data['snp_chromosome'] = list(map_content[0]) self.snp_data['snp_id'] = list(map_content[1]) self.snp_data['snp_genetic_distance'] = list(map_content[2]) self.snp_data['snp_position'] = list(map_content[3]) map_file.close() self.filetype = 'plink' def _read_matrix(file, header=header, add_col=add_col, sep=sep): content = [line.strip().split(sep)[add_col:] for line in file] if header: content = content[1:] matrix = np.array([list(map(float, ind)) for ind in content]) self.matrix = matrix self.matrices['input'] = matrix return matrix def _read_snp_mat(file, sep): matrix = np.array([line.strip().split(sep) for line in file]) self.snps = matrix self.n = len(matrix[:, 1]) self.nSNP = len(matrix[1, :]) if self.ploidy == 'diploid': self.snp_data['snp_id'] = [str(i) for i in range(self.nSNP//2)] else: self.snp_data['snp_id'] = [str(i) for i in range(self.nSNP)] def _read_attributes(file, sep=sep): content = [line.strip().split(sep) for line in file] head = content[0] content = list(zip(*content[1:])) for i in range(len(head)): self.meta_data[head[i]] = content[i] self.ids = list(content[0]) ## Main Read ## infile = open(file) f = f.lower() if f == "nexus": _read_nexus(infile, sep) elif f =="raxml": _read_raxml(infile, sep) elif f == "plink": _read_plink(infile, file, sep) elif f == "matrix": matrix = _read_matrix(infile, header, add_col, sep) elif f == 'snp_mat': _read_snp_mat(infile, sep) elif f == 'attributes': _read_attributes(infile, sep) else: print("File format not supported.") raise IOError infile.close() if f != 'attributes': alleles = np.unique(self.snps).tolist() if self.missing in alleles: alleles.remove(self.missing) self.alleles = alleles if f == 'matrix': return matrix ### DATA WRITER ### def writeData(self, f, file='data.out', sep="\t"): def _write_raxml(outfile, sep): outfile.write(str(self.n) + sep + str(self.nSNP) + "\n") for i in range(self.n): outfile.write(self.ids[i] + sep + ''.join(self.snps[i]) + "\n") def _write_nexus(outfile, sep): taxlabels = " ".join(self.ids) header = '#nexus\nbegin data;\ndimensions ntax=' + str(self.n) + ' nchar=' + str(self.nSNP) + \ ';\nformat symbols="AGCT" gap=. datatype=nucleotide;\ntaxlabels ' + taxlabels + ';\nmatrix\n' tail = ";\nend;" snps = list(zip(*self.snps)) outfile.write(header) for i in range(self.nSNP): if 'snp_chromosome' in self.snp_data.keys(): outfile.write(self.snp_data['snp_chromosome'][i] + "_") else: outfile.write(sep) if 'snp_id' in self.snp_data.keys(): outfile.write(self.snp_data['snp_id'][i] + sep) else: outfile.write("SNP" + str(i) + sep) outfile.write(sep.join(snps[i]) + "\n") outfile.write(tail) def _write_plink(outfile, filename, sep): mapname = filename.split('.')[0] + ".map" for i in range(self.n): if 'pop' in self.meta_data.keys(): outfile.write(self.meta_data['pop'][i] + sep) else: outfile.write("NA" + sep) if self.ids: outfile.write(self.ids[i] + sep) else: outfile.write("N" + str(i+1) + sep) if 'dam' in self.meta_data.keys(): outfile.write(self.meta_data['dam'][i] + sep) else: outfile.write("0" + sep) if 'sire' in self.meta_data.keys(): outfile.write(self.meta_data['sire'][i] + sep) else: outfile.write("0" + sep) if 'sex' in self.meta_data.keys(): outfile.write(self.meta_data['sex'][i] + sep) else: outfile.write("0" + sep) if 'phenotype' in self.meta_data.keys(): outfile.write(self.meta_data['phenotype'][i] + sep) else: outfile.write("0" + sep) outfile.write(sep.join(self.snps[i]) + "\n") map_file = open(mapname, "w") if 'snp_id' in self.snp_data: for i in range(len(self.snp_data['snp_id'])): if 'snp_chromosome' in self.snp_data.keys(): map_file.write(self.snp_data['snp_chromosome'][i] + sep) else: map_file.write("0" + sep) if 'snp_id' in self.snp_data.keys(): map_file.write(self.snp_data['snp_id'][i] + sep) else: map_file.write("SNP" + str(i+1) + sep) if 'snp_genetic_distance' in self.snp_data.keys(): map_file.write(self.snp_data['snp_genetic_distance'][i] + sep) else: map_file.write("0" + sep) if 'snp_position' in self.snp_data.keys(): map_file.write(self.snp_data['snp_position'][i] + sep + "\n") else: map_file.write("0" + sep + "\n") map_file.close() def _write_metadata(outfile, sep): outfile.write("#" + sep + "n=" + str(self.n) + sep + "nSNP=" + str(self.nSNP) + sep + "(" + self.ploidy + ")\n") ordered_keys = sorted([key for key in self.meta_data.keys()]) outfile.write("Isolate") for key in ordered_keys: outfile.write(sep + key) outfile.write("\n") for i in range(self.n): if self.ids: outfile.write(self.ids[i]) else: outfile.write("N" + str(1)) for key in ordered_keys: outfile.write(sep + self.meta_data[key][i]) outfile.write("\n") def _write_snpdata(outfile, sep): outfile.write("#" + sep + "n=" + str(self.n) + sep + "nSNP=" + str(self.nSNP) + sep + "(" + self.ploidy + ")\n") snp_data = dict(self.snp_data) ordered_keys = sorted([key for key in snp_data.keys()]) outfile.write("SNP" + sep) for key in ordered_keys: outfile.write(sep + key) outfile.write("\n") for i in range(self.nSNP): outfile.write("SNP_" + str(i)) for key in ordered_keys: outfile.write(sep + snp_data[key][i]) outfile.write("\n") def _write_attributes(): for key, value in self.meta_data.items(): outname = self.prefix + '_' + key + '.nat' out = open(outname, 'w') out.write('ID\t' + self.prefix + '_' + key + '\n') for i in range(len(value)): out.write(self.ids[i] + '\t' + value[i] + '\n') out.close() ## Main Write ## if f == 'attributes': _write_attributes() else: filename = file outfile = open(filename, "w") f = f.lower() if f == "nexus": _write_nexus(outfile, sep) elif f =="raxml": _write_raxml(outfile, sep) elif f == "plink": _write_plink(outfile, file, sep) elif f == "matrix": np.savetxt(filename, self.matrix, fmt='%.9f', delimiter=sep) elif f == "meta": _write_metadata(outfile, sep) elif f == "snp": _write_snpdata(outfile, sep) else: raise IOError("File format not supported.") outfile.close() def __str__(self): return ('-----------\nNumber of Individuals: %i\nNumber of SNPs: %i\nPloidy: %s\n-----------\n') % \ (self.n, self.nSNP, self.ploidy) #### Analysis Module #### class Analysis: def __init__(self, data): self.data = data def getDistance(self, target='snps', distance='hamming'): print(get_time() + "\t" + 'Distance = ' + distance.upper()) if self.data.filetype == 'dist': target = 'matrix' if target == 'matrix': matrix = np.array(self.data.matrix) else: # Convert alleles to numbers (e.g. A -> 1, B -> 2) for use in scipy.spatial.distance.pdist() allele_codes = {} for i in range(len(self.data.alleles)): allele_codes[self.data.alleles[i]] = int(i+1) allele_codes[self.data.missing] = 0 # missing can not be 1 to i snps = self.data.snps for a, code in allele_codes.items(): snps[snps == a] = code matrix = snps if distance == 'asd': self.runPLINK(asd=True) self.data.readData(file=self.data.prefix + '_plink.mdist', f='matrix', sep=' ') else: matrix = sd.squareform(sd.pdist(matrix, distance)) self.data.matrix = matrix self.data.matrices[distance] = self.data.matrix return matrix def runPLINK(self, qc_parameters={}, commandstring='', asd=False, quality=False): if self.data.ploidy == 'haploid': raise AttributeError('Haploid genotypes not supported for PLINK.') if commandstring: subprocess.call(commandstring) else: self.data.writeData(file=self.data.prefix + '_plink_in.ped', f='plink') if quality and qc_parameters: command = ['plink', '--noweb', '--file', self.data.prefix + '_plink_in'] for key, value in qc_parameters.items(): command.append(key) command.append(str(value)) command.append('--recode') command.append('--out') command.append(self.data.prefix + '_plink_qc') subprocess.call(command, stdout=subprocess.DEVNULL) if os.path.exists(self.data.prefix + '_plink_qc.ped'): self.data.readData(file=self.data.prefix + '_plink_qc.ped', f='plink', sep=' ') if asd: subprocess.call(['plink', '--noweb', '--file', self.data.prefix + '_plink_in', '--cluster', '--distance-matrix', '--out', self.data.prefix + '_plink'], stdout=subprocess.DEVNULL) def updateNodeAttributes(self, attribute_file): if os.path.isfile(self.data.prefix + '_plink_qc.irem'): infile = open(self.data.prefix + '_plink_qc.irem') to_remove = [line.strip().split()[1] for line in infile] infile.close() infile = open(attribute_file) outname = attribute_file.split('.')[0] + '_qc.csv' outfile = open(outname, 'w') for line in infile: content = line.strip().split(',') if content[0] not in to_remove: outfile.write(line) infile.close() outfile.close() self.data.readData(file=outname, f='attributes', sep=',') def runNetView(self, tree=True, start=10, stop=40, step=10, algorithm='auto'): print(get_time() + "\t" + "Minimum Spanning Tree = " + str(tree).upper()) print(get_time() + "\t" + "Nearest Neighbour = " + algorithm.upper()) print(get_time() + "\t" + "k = " + str(start) + " - " + str(stop) + ' (by ' + str(step) + ')') print(get_time() + "\t" + "---------------------------------") self.data.netview_runs += 1 matrix = self.data.matrix if tree: mst = csg.minimum_spanning_tree(matrix) mst = mst.toarray() self.data.networks['mst_' + str(self.data.netview_runs)] = mst mst = mst + mst.T else: mst = None pool = mp.Pool() networks = [pool.apply_async(netview, args=(matrix, k, mst, algorithm, tree,), callback=netview_callback) for k in range(start, stop+1, step)] pool.close() pool.join() for item in networks: result = item.get() edges_array = result[1] edges = result[1].tolist() mst_edges = result[4].tolist() self.data.networks['netview_k' + str(result[0]) + '_' + str(self.data.netview_runs)] = result[1:] filename = self.data.prefix + '_netview_k' + str(result[0]) +\ "_" + str(self.data.netview_runs) + '.edges' out = open(filename, "w") out.write('Source\tTarget\tDistance\tMST\n') for i in range(len(edges)): out.write(str(self.data.ids[edges[i][0]]) + "\t" + str(self.data.ids[edges[i][1]]) + "\t" + str(matrix[edges[i][0], edges[i][1]])) if tree: if edges[i] in mst_edges: out.write('\t' + 'red\n') else: out.write('\t' + 'grey\n') else: out.write("\n") if not tree: singletons = np.setdiff1d(np.arange(self.data.n), edges_array.flatten()).tolist() if singletons: for node in singletons: out.write(str(node) + '\n') out.close() main()
gpl-2.0
analysiscenter/dataset
batchflow/opensets/imagenette.py
1
5401
""" Contains Imagenette and Imagewoof datasets """ import os from os.path import dirname, basename import tempfile import logging import urllib.request import tarfile from io import BytesIO import PIL import tqdm import numpy as np from sklearn.preprocessing import LabelEncoder from . import ImagesOpenset logger = logging.getLogger('SmallImagenet') class Imagenette(ImagesOpenset): """ Imagenette dataset. Contains 12894 train and 500 test images. Total size 1.4GB. Notes ----- - Datasets contain both grayscale and colored images, ratio ~ 1:100 Argument `drop_grayscale` controls whether grayscale images should be dropped. """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagenette.tgz' num_classes = 10 def __init__(self, *args, drop_grayscale=True, bar=False, preloaded=None, train_test=True, **kwargs): self.bar = tqdm.tqdm(total=2) if bar else None self.drop_grayscale = drop_grayscale super().__init__(*args, preloaded=preloaded, train_test=train_test, **kwargs) if self.bar: self.bar.close() def download(self, path=None): """ Load data from website and extract it into numpy arrays """ def _image_class(filepath): """ Image's class is determined by the parent folder of the image """ return basename(dirname(filepath)) def _is_train(filepath): """ Whether image belongs to train or val parts can be determined by the level 2 parent folder of the image """ return basename(dirname(dirname(filepath))) == 'train' def _extract(archive, member): data = archive.extractfile(member).read() return PIL.Image.open(BytesIO(data)) def _is_file_rgb(archive, member): """ Check whether archive member is a file. In case `drop_grayscale` set to `True` it verifies that the member is the RGB mode image as well. """ if not self.drop_grayscale: return member.isfile() return member.isfile() and _extract(archive, member).mode == 'RGB' def _gather_extracted(archive, files): images = np.array([_extract(archive, file) for file in files], dtype=object) labels = np.array([_image_class(file.name) for file in files]) labels_encoded = LabelEncoder().fit_transform(labels) return images, labels_encoded if path is None: path = tempfile.gettempdir() filename = os.path.basename(self.SOURCE_URL) localname = os.path.join(path, filename) if not os.path.isfile(localname): logger.info("Downloading %s", filename) urllib.request.urlretrieve(self.SOURCE_URL, localname) logger.info("Downloaded %s", filename) if self.bar: self.bar.update(1) logger.info("Extracting...") with tarfile.open(localname, "r:gz") as archive: files_in_archive = archive.getmembers() train_files = [file for file in files_in_archive if _is_file_rgb(archive, file) and _is_train(file.name)] train_data = _gather_extracted(archive, train_files) test_files = [file for file in files_in_archive if _is_file_rgb(archive, file) and not _is_train(file.name)] test_data = _gather_extracted(archive, test_files) logger.info("Extracted") if self.bar: self.bar.update(1) images = np.concatenate([train_data[0], test_data[0]]) labels = np.concatenate([train_data[1], test_data[1]]) preloaded = images, labels train_len, test_len = len(train_data[0]), len(test_data[0]) index, train_index, test_index = self._infer_train_test_index(train_len, test_len) return preloaded, index, train_index, test_index class Imagenette320(Imagenette): """ The '320px' version of Imagenette. The shortest size resized to that size with their aspect ratio maintained. Contains 12894 train and 500 test images. Total size 325MB. """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagenette-320.tgz' class Imagenette160(Imagenette): """ The '160px' version of Imagenette. The shortest size resized to that size with their aspect ratio maintained. Contains 12894 train and 500 test images. Total size 98MB. """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagenette-160.tgz' class ImageWoof(Imagenette): """ Imagewoof dataset. See the https://github.com/fastai/imagenette for details. Contains 12454 train and 500 test images. Total size 1.3GB """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagewoof.tgz' class ImageWoof320(Imagenette): """ The '320px' version of Imagewoof. The shortest size resized to that size with their aspect ratio maintained. Contains 12454 train and 500 test images. Total size 313MB. """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagewoof-320.tgz' class ImageWoof160(Imagenette): """ The '160px' version of Imagewoof. The shortest size resized to that size with their aspect ratio maintained. Contains 12454 train and 500 test images. Total size 88MB """ SOURCE_URL = 'https://s3.amazonaws.com/fast-ai-imageclas/imagewoof-160.tgz'
apache-2.0
jkibele/OpticalRS
OpticalRS/DepthEstimator.py
1
9986
# -*- coding: utf-8 -*- """ DepthEstimator ============== Code for handling required data and producing depth estimates from multispectral satellite imagery. KNN (Kibele and Shears, In Review) and linear methods (Lyzenga et al., 2006) are currently supported. References ---------- Kibele, J., Shears, N.T., In Press. Non-parametric empirical depth regression for bathymetric mapping in coastal waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Lyzenga, D.R., Malinas, N.P., Tanis, F.J., 2006. Multispectral bathymetry using a simple physically based algorithm. Geoscience and Remote Sensing, IEEE Transactions on 44, 2251–2259. doi:10.1109/TGRS.2006.872909 """ from RasterDS import RasterDS from ArrayUtils import mask3D_with_2D, equalize_array_masks, equalize_band_masks import KNNDepth from Lyzenga2006 import dark_pixel_array, fit_and_predict, deep_water_means import numpy as np from sklearn.cross_validation import train_test_split class DepthEstimator(object): """ Once initialized, this object can do a bunch of tasks related to depth estimation. Parameters ---------- img : OpticalRS.RasterDS, numpy image array, or file path to image This is the multispectral image for which depth is to be estimated. known_depths : OpticalRS.RasterDS, numpy image array, or file path to image A raster of known depths. Notes ----- Assumptions: - size of known_depths array = size of a single band of img - unmasked known_depths pixels are a subset of unmasked img pixels """ def __init__(self,img,known_depths): self.img_original = img self.imrds = None try: self.imlevel = img.ndim except AttributeError: if type(img).__name__ == 'RasterDS': self.imlevel = 4 self.imrds = img else: # next line should raise exception if `img` can't make RasterDS self.imrds = RasterDS(img) self.imlevel = 4 self.known_original = known_depths if type(self.known_original).__name__=='RasterDS': self.kdrds = known_depths elif np.ma.isMaskedArray(self.known_original): self.kdrds = None else: self.kdrds = RasterDS(self.known_original) self.known_depth_arr = self.__known_depth_arr() self.imarr = self.__imarr() self.__mask_depths_with_no_image() self.nbands = self.imarr_flat.shape[-1] # Check that the numbers of pixels are compatible impix = self.imarr_flat.size / self.nbands dpix = self.known_depth_arr_flat.size errstr = "{} image pixels and {} depth pixels. Need the same number of pixels." assert impix == dpix, errstr.format(impix,dpix) def __imarr(self): """ Return 3D (R,C,nBands) image array if possible. If only 2D (pixels,nBands) array is available, return `None`. Returned array will be np.ma.MaskedArray type even if no pixels are masked. """ try: self.imarr except AttributeError: if self.imlevel == 4: arr = np.ma.masked_invalid(self.imrds.band_array) self.imarr = arr elif self.imlevel == 3: arr = np.ma.masked_invalid(self.img_original) self.imarr = arr else: # level 2 self.imarr = None return self.imarr def __known_depth_arr(self): """ Return a 2D (R,C) masked array of known depths if possible. If flat array was handed in instead, return `None`. """ try: self.known_depth_arr except AttributeError: if self.kdrds: arr = self.kdrds.band_array.squeeze() self.known_depth_arr = np.ma.masked_invalid(arr) elif isinstance(self.known_original,np.ndarray): arr = self.known_original.squeeze() if arr.ndim > 1: self.known_depth_arr = np.ma.masked_invalid(arr) else: self.known_depth_arr = None else: # I can't think of a case where we'd get here but... self.known_depth_arr = None return self.known_depth_arr def __mask_depths_with_no_image(self): """ Mask depths that have no corresponding pixels. Only works for non-flat arrays. """ if np.ma.is_masked(self.imarr) and np.ma.is_masked(self.known_depth_arr): # I'm assuming all image bands have the same mask. ...they should. immask = self.imarr[...,0].mask self.known_depth_arr = np.ma.masked_where(immask, self.known_depth_arr) @property def known_depth_arr_flat(self): if np.ma.isMA(self.known_depth_arr): return self.known_depth_arr.ravel() else: return self.known_original @property def imarr_flat(self): """ Return all the image pixels in (pixels,bands) shape. """ if self.imlevel > 2: return self.imarr.reshape(-1,self.imarr.shape[-1]) else: return self.img_original @property def imarr_compressed(self): """ Return unmasked pixels in (pixels,bands) shape. """ return self.imarr_flat.compressed().reshape(-1,self.nbands) @property def known_imarr(self): """ Return 3D (R,C,nBands) image array with pixels masked where no known depth is available. If no 3D image array is available, return `None`. """ if np.ma.isMA(self.imarr) and np.ma.isMA(self.known_depth_arr): return mask3D_with_2D(self.imarr,self.known_depth_arr.mask) else: return None @property def known_imarr_flat(self): """ The flattend (pix,bands) image array with all pixels of unknown depth masked. """ if np.ma.isMA(self.known_imarr): return self.known_imarr.reshape(-1,self.nbands) else: mask1b = self.known_depth_arr_flat.mask mask = np.repeat(np.atleast_2d(mask1b).T,self.nbands,1) return np.ma.masked_where(mask,self.imarr_flat) def training_split(self,train_size=0.4,random_state=0): """ Split your `DepthEstimator` into training and test subsets. This is a wrapper on the scikit-learn `cross_validation.train_test_split`. More info: http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html Parameters ---------- train_size : float, int, or None (default is 0.4) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to 0.75. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- (train_DE,test_DE) : tuple of DepthEstimators Two `DepthEstimator` objects made with compressed and flattened arrays. Suitable for training and/or testing depth estimators but not for producing images. """ im_train, im_test, dep_train, dep_test = train_test_split( self.known_imarr_flat, self.known_depth_arr_flat, train_size=train_size,random_state=random_state) return DepthEstimator(im_train,dep_train),DepthEstimator(im_test,dep_test) def knn_depth_model(self,k=5,weights='uniform',metric='minkowski', n_jobs=4, **kwargs): """ Return a trained KNN depth model. See `OpticalRS.KNNDepth.train_model` for more information. This is really just a wrapper over the KNeighborsRegressor model in scikit-learn. """ return KNNDepth.train_model(self.known_imarr_flat.compressed().reshape(-1,self.nbands), self.known_depth_arr_flat.compressed(), k=k, weights=weights, metric=metric, n_jobs=n_jobs, **kwargs) def knn_depth_estimation(self,k=5,weights='uniform', metric='minkowski',n_jobs=4, **kwargs): """ Train a KNN regression model with `known_depths` and corresponding pixels from `img`. Then use that model to predict depths for all pixels in `img`. Return a single band array of estimated depths. """ out = self.imarr[...,0].copy() knnmodel = self.knn_depth_model(k=k, weights=weights, metric=metric, n_jobs=n_jobs, **kwargs) ests = knnmodel.predict(self.imarr_compressed) out[~out.mask] = ests return out def lyzenga_depth_estimation(self, Rinf=None, bands=None, n_std=0, n_jobs=4): """ This will implement the linear depth estimation method described in Lyzenga et al. 2006. This doc string needs a bit more detail but I don't have time right now. Check `OpticalRS.Lyzenga2006` for more detail. This method just wraps some of the code from that module to make it easier to run. """ if bands is None: bands = self.nbands if Rinf is None: Rinf = deep_water_means(self.imarr[...,:bands], n_std=n_std) X = np.ma.log(self.imarr[...,:bands] - Rinf) X = equalize_band_masks(X) # need to re-equalize, might have lost pixels in log transform Xtrain, deparr = equalize_array_masks(X, self.known_depth_arr) return fit_and_predict(Xtrain, deparr, X, n_jobs=n_jobs)
bsd-3-clause
LiaoPan/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
zhenv5/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
230
2823
import numpy as np from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.metrics.cluster.unsupervised import silhouette_score from sklearn.metrics import pairwise_distances from sklearn.utils.testing import assert_false, assert_almost_equal from sklearn.utils.testing import assert_raises_regexp def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X = dataset.data y = dataset.target D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) # Test without calculating D silhouette_metric = silhouette_score(X, y, metric='euclidean') assert_almost_equal(silhouette, silhouette_metric) # Test with sampling silhouette = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) silhouette_metric = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert(silhouette > 0) assert(silhouette_metric > 0) assert_almost_equal(silhouette_metric, silhouette) # Test with sparse X X_sparse = csr_matrix(X) D = pairwise_distances(X_sparse, metric='euclidean') silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y)
bsd-3-clause
ctherien/pysptools
pysptools/skl/km.py
1
4885
# #------------------------------------------------------------------------------ # Copyright (c) 2013-2014, Christian Therien # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ # # km.py - This file is part of the PySptools package. # """ KMeans class """ import numpy as np import sklearn.cluster as cluster #from . import out #from .inval import * from pysptools.classification.out import Output from pysptools.classification.inval import * class KMeans(object): """ KMeans clustering algorithm adapted to hyperspectral imaging """ def __init__(self): self.cluster = None self.n_clusters = None self.output = Output('KMeans') @PredictInputValidation('KMeans') def predict(self, M, n_clusters=5, n_jobs=1, init='k-means++'): """ KMeans clustering algorithm adapted to hyperspectral imaging. It is a simple wrapper to the scikit-learn version. Parameters: M: `numpy array` A HSI cube (m x n x p). n_clusters: `int [default 5]` The number of clusters to generate. n_jobs: `int [default 1]` Taken from scikit-learn doc: The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. init: `string or array [default 'k-means++']` Taken from scikit-learn doc: Method for initialization, defaults to `k-means++`: `k-means++` : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. `random`: choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. Returns: `numpy array` A cluster map (m x n x c), c is the clusters number . """ h, w, numBands = M.shape self.n_clusters = n_clusters X = np.reshape(M, (w*h, numBands)) clf = cluster.KMeans(n_clusters=n_clusters, n_jobs=n_jobs, init=init) cls = clf.fit_predict(X) self.cluster = np.reshape(cls, (h, w)) return self.cluster @PlotInputValidation3('KMeans') def plot(self, path, interpolation='none', colorMap='Accent', suffix=None): """ Plot the cluster map. Parameters: path: `string` The path where to put the plot. interpolation: `string [default none]` A matplotlib interpolation method. colorMap: `string [default 'Accent']` A color map element of ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3'], "Accent" is the default and it fall back on "Jet". suffix: `string [default None]` Add a suffix to the file name. """ self.output.plot(self.cluster, self.n_clusters, path=path, interpolation=interpolation, colorMap=colorMap, suffix=suffix) @DisplayInputValidation3('KMeans') def display(self, interpolation='none', colorMap='Accent', suffix=None): """ Display the cluster map. Parameters: path: `string` The path where to put the plot. interpolation: `string [default none]` A matplotlib interpolation method. colorMap: `string [default 'Accent']` A color map element of ['Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3'], "Accent" is the default and it fall back on "Jet". suffix: `string [default None]` Add a suffix to the title. """ self.output.plot(self.cluster, self.n_clusters, interpolation=interpolation, colorMap=colorMap, suffix=suffix)
apache-2.0
zhenv5/scikit-learn
sklearn/decomposition/__init__.py
147
1421
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
huzq/scikit-learn
sklearn/neighbors/_nearest_centroid.py
4
7789
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_is_fitted from ..utils.validation import _deprecate_positional_args from ..utils.sparsefuncs import csc_median_axis_0 from ..utils.multiclass import check_classification_targets class NearestCentroid(ClassifierMixin, BaseEstimator): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric : str or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. .. versionchanged:: 0.19 ``metric='precomputed'`` was deprecated and now raises an error shrink_threshold : float, default=None Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like of shape (n_classes, n_features) Centroid of each class. classes_ : array of shape (n_classes,) The unique classes labels. Examples -------- >>> from sklearn.neighbors import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid() >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ @_deprecate_positional_args def __init__(self, metric='euclidean', *, shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array-like of shape (n_samples,) Target values (integers) """ if self.metric == 'precomputed': raise ValueError("Precomputed is not supported.") # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = self._validate_data(X, y, accept_sparse=['csc']) else: X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") check_classification_targets(y) n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('The number of classes has to be greater than' ' one; got %d class' % (n_classes)) # Mask mapping each class to its members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) - (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) np.clip(deviation, 0, None, out=deviation) deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like of shape (n_samples, n_features) Returns ------- C : ndarray of shape (n_samples,) Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self) X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
JeanKossaifi/scikit-learn
benchmarks/bench_plot_nmf.py
90
5742
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, init='random'): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) init : string Method used to initialize the procedure. Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape W, H = _initialize_nmf(V, r, init, random_state=0) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init='random', max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, init='random', tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization' 'benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
sylvan5/PRML
ch5/digits.py
2
2415
#coding:utf-8 import numpy as np from mlp import MultiLayerPerceptron from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import confusion_matrix, classification_report """ 簡易手書き数字データの認識 scikit-learnのインストールが必要 http://scikit-learn.org/ """ if __name__ == "__main__": # scikit-learnの簡易数字データをロード # 1797サンプル, 8x8ピクセル digits = load_digits() # 訓練データを作成 X = digits.data y = digits.target # ピクセルの値を0.0-1.0に正規化 X /= X.max() # 多層パーセプトロン mlp = MultiLayerPerceptron(64, 100, 10, act1="tanh", act2="sigmoid") # 訓練データ(90%)とテストデータ(10%)に分解 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) # 教師信号の数字を1-of-K表記に変換 # 0 => [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 1 => [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] # ... # 9 => [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) # 訓練データを用いてニューラルネットの重みを学習 mlp.fit(X_train, labels_train, learning_rate=0.01, epochs=10000) # テストデータを用いて予測精度を計算 predictions = [] for i in range(X_test.shape[0]): o = mlp.predict(X_test[i]) # 最大の出力を持つクラスに分類 predictions.append(np.argmax(o)) print confusion_matrix(y_test, predictions) print classification_report(y_test, predictions) # 誤認識したデータのみ描画 # 誤認識データ数と誤っているテストデータのidxを収集 cnt = 0 error_idx = [] for idx in range(len(y_test)): if y_test[idx] != predictions[idx]: print "error: %d : %d => %d" % (idx, y_test[idx], predictions[idx]) error_idx.append(idx) cnt += 1 # 描画 import pylab for i, idx in enumerate(error_idx): pylab.subplot(cnt/5 + 1, 5, i + 1) pylab.axis('off') pylab.imshow(X_test[idx].reshape((8, 8)), cmap=pylab.cm.gray_r) pylab.title('%d : %i => %i' % (idx, y_test[idx], predictions[idx])) pylab.show()
mit
evgchz/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
355
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
WojciechMigda/TCO-PCFStupskiPrize1
src/cell_patches_dbscan.py
1
8930
#!/opt/anaconda2/bin/python # -*- coding: utf-8 -*- """ ################################################################################ # # Copyright (c) 2015 Wojciech Migda # All rights reserved # Distributed under the terms of the MIT license # ################################################################################ # # Filename: cell_patches_kmeans.py # # Decription: # Cell patches from images (with KMeans) # # Authors: # Wojciech Migda # ################################################################################ # # History: # -------- # Date Who Ticket Description # ---------- --- --------- ------------------------------------------------ # 2015-12-20 wm Initial version # ################################################################################ """ from __future__ import print_function DEBUG = False __all__ = [] __version__ = 0.1 __date__ = '2015-12-20' __updated__ = '2015-12-20' from sys import path as sys_path sys_path.insert(0, './Pipe') import pipe as P def pois(im, num_peaks, footprint_radius=2.5, min_dist=8, thr_abs=0.7): from skimage.draw import circle FOOTPRINT_RADIUS = footprint_radius cxy = circle(4, 4, FOOTPRINT_RADIUS) from numpy import zeros cc = zeros((9, 9), dtype=int) cc[cxy] = 1 from skimage.feature import peak_local_max MIN_DIST = min_dist THR_ABS = thr_abs coordinates = [ peak_local_max( im[:, :, layer], min_distance=MIN_DIST, footprint=cc, threshold_abs=THR_ABS, num_peaks=num_peaks) for layer in range(im.shape[2])] return coordinates @P.Pipe def cluster(seq, window, epsilon, with_polar): from numpy import where,array from skimagepipes import cart2polar_ w2 = window / 2 for im, pois in seq: for layer in range(im.shape[2]): p = pois[layer] p = p[where( (p[:, 0] >= w2) & (p[:, 0] < (im.shape[0] - w2)) & (p[:, 1] >= w2) & (p[:, 1] < (im.shape[1] - w2)) ) ] print(str(p.shape[0]) + " pois") patches = array([im[cx - w2:cx + w2, cy - w2:cy + w2, layer].ravel() for cx, cy in p]) if with_polar: patches = array([cart2polar_(im[cx - w2:cx + w2, cy - w2:cy + w2, layer]).ravel() for cx, cy in p]) pass from sklearn.cluster import DBSCAN #clf = DBSCAN(min_samples=5, eps=3.6) #clf = DBSCAN(min_samples=5, eps=3.3) # 16x16 [51,148,105] #clf = DBSCAN(min_samples=5, eps=3.2) # 16x16 [42,105,66] #clf = DBSCAN(min_samples=5, eps=3.1) # 16x16 [36,57,33] #clf = DBSCAN(min_samples=5, eps=2.8) # 14x14 [70,259,128] #clf = DBSCAN(min_samples=5, eps=2.6) # 14x14 [50,104,42*] #clf = DBSCAN(min_samples=5, eps=2.4) # 14x14 [34,34,11] #clf = DBSCAN(min_samples=5, eps=2.2) # 12x12 [84*,248,84] #clf = DBSCAN(min_samples=5, eps=2.1) # 12x12 [69*,155,48] clf = DBSCAN(eps=epsilon, leaf_size=1000) clf.fit(patches) print(clf.components_.shape) nclust = clf.components_.shape[0] VISUALIZE = True VISUALIZE = False if VISUALIZE: from skimage.exposure import rescale_intensity from matplotlib import pyplot as plt fig, ax = plt.subplots(1, nclust, figsize=(8, 3), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'}) for i in range(nclust): ax[i].imshow( rescale_intensity( clf.components_[i].reshape((window, window)) ) ,interpolation='nearest' #,cmap=plt.cm.gray ) ax[i].axis('off') pass fig.subplots_adjust(wspace=0.02, hspace=0.02, top=0.9, bottom=0.02, left=0.02, right=0.98) plt.show() pass yield clf.components_ pass return def work(in_csv_file, out_csv_file, max_n_pois, patch_size, epsilon, with_polar): from pypipes import as_csv_rows,iformat,loopcount,itime,iattach from nppipes import itake,iexpand_dims from skimagepipes import as_image,as_float,equalize_hist,imshow,trim,rgb_as_hed from tcopipes import clean features = ( in_csv_file | as_csv_rows #| P.skip(1) #| P.take(3) | itake(0) | P.tee | iformat('../../data/DX/{}-DX.png') | as_image | itime | loopcount | trim(0.2) | as_float | clean | rgb_as_hed | itake(0, axis=2) | iexpand_dims(axis=2) | equalize_hist | imshow("H layer", cmap='gray') | iattach(pois, max_n_pois) | cluster(patch_size, epsilon, with_polar) | P.as_list ) #print(type(next(features, None))) #print(next(features, None).shape) from numpy import vstack from numpy import savetxt #print(vstack(features).shape) savetxt(out_csv_file, vstack(features), delimiter=',', fmt='%f') pass def main(argv=None): # IGNORE:C0111 '''Command line options.''' from sys import argv as Argv if argv is None: argv = Argv pass else: Argv.extend(argv) pass from os.path import basename program_name = basename(Argv[0]) program_version = "v%s" % __version__ program_build_date = str(__updated__) program_version_message = '%%(prog)s %s (%s)' % (program_version, program_build_date) program_shortdesc = __import__('__main__').__doc__.split("\n")[1] program_license = '''%s Created by Wojciech Migda on %s. Copyright 2015 Wojciech Migda. All rights reserved. Licensed under the MIT License Distributed on an "AS IS" basis without warranties or conditions of any kind, either express or implied. USAGE ''' % (program_shortdesc, str(__date__)) try: from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter from argparse import FileType from sys import stdout,stdin # Setup argument parser parser = ArgumentParser(description=program_license, formatter_class=RawDescriptionHelpFormatter) #parser.add_argument("-D", "--data-dir", # type=str, action='store', dest="data_dir", required=True, # help="directory with input CSV files, BMP 'train' and 'test' subfolders, and where H5 will be stored") parser.add_argument("-i", "--in-csv", action='store', dest="in_csv_file", default=stdin, type=FileType('r'), help="input CSV file name") parser.add_argument("-o", "--out-csv", action='store', dest="out_csv_file", default=stdout, type=FileType('w'), help="output CSV file name") parser.add_argument("-p", "--patch-size", type=int, default=12, action='store', dest="patch_size", help="size of square patch to build the codebook upon, in pixels") parser.add_argument("-N", "--max-pois", type=int, default=5000, action='store', dest="max_n_pois", help="max number of PoIs to collect (num_peaks of peak_local_max)") parser.add_argument("-e", "--epsilon", type=float, default=2.1, action='store', dest="epsilon", help="epsilon for DBSCAN") parser.add_argument("-P", "--with-polar", default=False, action='store_true', dest="with_polar", help="convert patches to polar coordinates") # Process arguments args = parser.parse_args() for k, v in args.__dict__.items(): print(str(k) + ' => ' + str(v)) pass work(args.in_csv_file, args.out_csv_file, args.max_n_pois, args.patch_size, args.epsilon, args.with_polar) return 0 except KeyboardInterrupt: ### handle keyboard interrupt ### return 0 except Exception as e: if DEBUG: raise(e) pass indent = len(program_name) * " " from sys import stderr stderr.write(program_name + ": " + repr(e) + "\n") stderr.write(indent + " for help use --help") return 2 pass if __name__ == "__main__": if DEBUG: from sys import argv argv.append("--in-csv=../../data/training.csv") argv.append("--max-pois=5000") pass from sys import exit as Exit Exit(main()) pass
mit
alexsavio/scikit-learn
sklearn/gaussian_process/gpr.py
13
18747
"""Gaussian processes regression. """ # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import warnings from operator import itemgetter import numpy as np from scipy.linalg import cholesky, cho_solve, solve_triangular from scipy.optimize import fmin_l_bfgs_b from sklearn.base import BaseEstimator, RegressorMixin, clone from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils import check_random_state from sklearn.utils.validation import check_X_y, check_array class GaussianProcessRegressor(BaseEstimator, RegressorMixin): """Gaussian process regression (GPR). The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. In addition to standard scikit-learn estimator API, GaussianProcessRegressor: * allows prediction without prior fitting (based on the GP prior) * provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or posterior) at given inputs * exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo. Read more in the :ref:`User Guide <gaussian_process>`. .. versionadded:: 0.18 Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. alpha : float or array-like, optional (default: 1e-10) Value added to the diagonal of the kernel matrix during fitting. Larger values correspond to increased noise level in the observations and reduce potential numerical issue during fitting. If an array is passed, it must have the same number of entries as the data used for fitting and is used as datapoint-dependent noise level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify the noise level directly as a parameter is mainly for convenience and for consistency with Ridge. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer : int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that one run is performed. normalize_y : boolean, optional (default: False) Whether the target values y are normalized, i.e., the mean of the observed target values become zero. This parameter should be set to True if the target values' mean is expected to differ considerable from zero. When enabled, the normalization effectively modifies the GP's prior based on the data, which contradicts the likelihood principle; normalization is thus disabled per default. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- X_train_ : array-like, shape = (n_samples, n_features) Feature values in training data (also required for prediction) y_train_ : array-like, shape = (n_samples, [n_output_dims]) Target values in training data (also required for prediction) kernel_ : kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters L_ : array-like, shape = (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in ``X_train_`` alpha_ : array-like, shape = (n_samples,) Dual coefficients of training data points in kernel space log_marginal_likelihood_value_ : float The log-marginal-likelihood of ``self.kernel_.theta`` """ def __init__(self, kernel=None, alpha=1e-10, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None): self.kernel = kernel self.alpha = alpha self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.normalize_y = normalize_y self.copy_X_train = copy_X_train self.random_state = random_state def fit(self, X, y): """Fit Gaussian process regression model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples, [n_output_dims]) Target values Returns ------- self : returns an instance of self. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") \ * RBF(1.0, length_scale_bounds="fixed") else: self.kernel_ = clone(self.kernel) self.rng = check_random_state(self.random_state) X, y = check_X_y(X, y, multi_output=True, y_numeric=True) # Normalize target value if self.normalize_y: self.y_train_mean = np.mean(y, axis=0) # demean y y = y - self.y_train_mean else: self.y_train_mean = np.zeros(1) if np.iterable(self.alpha) \ and self.alpha.shape[0] != y.shape[0]: if self.alpha.shape[0] == 1: self.alpha = self.alpha[0] else: raise ValueError("alpha must be a scalar or an array" " with same number of entries as y.(%d != %d)" % (self.alpha.shape[0], y.shape[0])) self.X_train_ = np.copy(X) if self.copy_X_train else X self.y_train_ = np.copy(y) if self.copy_X_train else y if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True) return -lml, -grad else: return -self.log_marginal_likelihood(theta) # First optimize starting from theta specified in kernel optima = [(self._constrained_optimization(obj_func, self.kernel_.theta, self.kernel_.bounds))] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite.") bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = \ self.rng.uniform(bounds[:, 0], bounds[:, 1]) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds)) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = \ self.log_marginal_likelihood(self.kernel_.theta) # Precompute quantities required for predictions which are independent # of actual query points K = self.kernel_(self.X_train_) K[np.diag_indices_from(K)] += self.alpha self.L_ = cholesky(K, lower=True) # Line 2 self.alpha_ = cho_solve((self.L_, True), self.y_train_) # Line 3 return self def predict(self, X, return_std=False, return_cov=False): """Predict using the Gaussian process regression model We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note that at most one of the two can be requested. Parameters ---------- X : array-like, shape = (n_samples, n_features) Query points where the GP is evaluated return_std : bool, default: False If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean. return_cov : bool, default: False If True, the covariance of the joint predictive distribution at the query points is returned along with the mean Returns ------- y_mean : array, shape = (n_samples, [n_output_dims]) Mean of predictive distribution a query points y_std : array, shape = (n_samples,), optional Standard deviation of predictive distribution at query points. Only returned when return_std is True. y_cov : array, shape = (n_samples, n_samples), optional Covariance of joint predictive distribution a query points. Only returned when return_cov is True. """ if return_std and return_cov: raise RuntimeError( "Not returning standard deviation of predictions when " "returning full covariance.") X = check_array(X) if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior y_mean = np.zeros(X.shape[0]) if return_cov: y_cov = self.kernel(X) return y_mean, y_cov elif return_std: y_var = self.kernel.diag(X) return y_mean, np.sqrt(y_var) else: return y_mean else: # Predict based on GP posterior K_trans = self.kernel_(X, self.X_train_) y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star) y_mean = self.y_train_mean + y_mean # undo normal. if return_cov: v = cho_solve((self.L_, True), K_trans.T) # Line 5 y_cov = self.kernel_(X) - K_trans.dot(v) # Line 6 return y_mean, y_cov elif return_std: # compute inverse K_inv of K based on its Cholesky # decomposition L and its inverse L_inv L_inv = solve_triangular(self.L_.T, np.eye(self.L_.shape[0])) K_inv = L_inv.dot(L_inv.T) # Compute variance of predictive distribution y_var = self.kernel_.diag(X) y_var -= np.einsum("ki,kj,ij->k", K_trans, K_trans, K_inv) # Check if any of the variances is negative because of # numerical issues. If yes: set the variance to 0. y_var_negative = y_var < 0 if np.any(y_var_negative): warnings.warn("Predicted variances smaller than 0. " "Setting those variances to 0.") y_var[y_var_negative] = 0.0 return y_mean, np.sqrt(y_var) else: return y_mean def sample_y(self, X, n_samples=1, random_state=0): """Draw samples from Gaussian process and evaluate at X. Parameters ---------- X : array-like, shape = (n_samples_X, n_features) Query points where the GP samples are evaluated n_samples : int, default: 1 The number of samples drawn from the Gaussian process random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- y_samples : array, shape = (n_samples_X, [n_output_dims], n_samples) Values of n_samples samples drawn from Gaussian process and evaluated at query points. """ rng = check_random_state(random_state) y_mean, y_cov = self.predict(X, return_cov=True) if y_mean.ndim == 1: y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T else: y_samples = \ [rng.multivariate_normal(y_mean[:, i], y_cov, n_samples).T[:, np.newaxis] for i in range(y_mean.shape[1])] y_samples = np.hstack(y_samples) return y_samples def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ kernel = self.kernel_.clone_with_theta(theta) if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) K[np.diag_indices_from(K)] += self.alpha try: L = cholesky(K, lower=True) # Line 2 except np.linalg.LinAlgError: return (-np.inf, np.zeros_like(theta)) \ if eval_gradient else -np.inf # Support multi-dimensional output of self.y_train_ y_train = self.y_train_ if y_train.ndim == 1: y_train = y_train[:, np.newaxis] alpha = cho_solve((L, True), y_train) # Line 3 # Compute log-likelihood (compare line 7) log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha) log_likelihood_dims -= np.log(np.diag(L)).sum() log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi) log_likelihood = log_likelihood_dims.sum(-1) # sum over dimensions if eval_gradient: # compare Equation 5.9 from GPML tmp = np.einsum("ik,jk->ijk", alpha, alpha) # k: output-dimension tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis] # Compute "0.5 * trace(tmp.dot(K_gradient))" without # constructing the full matrix tmp.dot(K_gradient) since only # its diagonal is required log_likelihood_gradient_dims = \ 0.5 * np.einsum("ijl,ijk->kl", tmp, K_gradient) log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1) if eval_gradient: return log_likelihood, log_likelihood_gradient else: return log_likelihood def _constrained_optimization(self, obj_func, initial_theta, bounds): if self.optimizer == "fmin_l_bfgs_b": theta_opt, func_min, convergence_dict = \ fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds) if convergence_dict["warnflag"] != 0: warnings.warn("fmin_l_bfgs_b terminated abnormally with the " " state: %s" % convergence_dict) elif callable(self.optimizer): theta_opt, func_min = \ self.optimizer(obj_func, initial_theta, bounds=bounds) else: raise ValueError("Unknown optimizer %s." % self.optimizer) return theta_opt, func_min
bsd-3-clause
rseubert/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
bluemonk482/tdparse
src/sklearnSVM.py
1
3651
import os, time from argparse import ArgumentParser import numpy as np from sklearn import svm, metrics from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit, GroupKFold from sklearn.datasets import load_svmlight_file from sklearn.externals import joblib from utilities import readfeats, readfeats_sklearn, twoclass_fscore, frange, writingfile # from liblinear import scaling def macro_averaged_precision(y_true, y_predicted): p = metrics.precision_score(y_true, y_predicted, average='macro') return p def predict(clf, x_train, y_train, x_test, y_test): y_predicted = clf.predict(x_test) print 'Macro-F1 score: ', metrics.f1_score(y_test, y_predicted, average='macro') print 'Accuracy score: ', metrics.accuracy_score(y_test, y_predicted) print "Macro-F1 score (2 classes):", (metrics.f1_score(y_test, y_predicted, average=None)[0]+metrics.f1_score(y_test, y_predicted, average=None)[-1])/2 return y_predicted def CV(x_train, y_train): c=[] crange=frange(0.00001,1,10) c.extend([i for i in crange]) crange=frange(0.00003,3,10) c.extend([i for i in crange]) crange=frange(0.00005,5,10) c.extend([i for i in crange]) crange=frange(0.00007,7,10) c.extend([i for i in crange]) crange=frange(0.00009,10,10) c.extend([i for i in crange]) c.sort() #Cost parameter values; use a bigger search space for better performance cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0).split(x_train, y_train) # ids = readfeats('../data/election/output/id_train') # only for election data # cv = GroupKFold(n_splits=5).split(x_train, y_train, ids) clf = svm.LinearSVC() param_grid = [{'C': c}] twoclass_f1_macro = metrics.make_scorer(twoclass_fscore, greater_is_better=True) precision_macro = metrics.make_scorer(macro_averaged_precision, greater_is_better=True) grid_search = GridSearchCV(clf, param_grid=param_grid, cv=cv, verbose=0, scoring='f1_macro') grid_search.fit(x_train, y_train) print("Best parameters set:") print '\n' print(grid_search.best_estimator_) print '\n' print(grid_search.best_score_) print(grid_search.best_params_) print '\n' return grid_search.best_estimator_ def save_model(clf, filepath): joblib.dump(clf, filepath) def main(output_dir): trfile = '../data/'+output_dir+'/train.scale' tfile = '../data/'+output_dir+'/test.scale' pfile = '../data/'+output_dir+'/predresults' truefile = '../data/'+output_dir+'/y_test' # print "scaling features" # scaling(output_dir) print "loading features for training" x_train, y_train = readfeats_sklearn(trfile) print "loading features for testing" x_test, y_test = readfeats_sklearn(tfile) print "cross-validation" clf = CV(x_train, y_train) # Comment this if parameter tuning is not desired # print "training classifier" # clf = svm.LinearSVC(C=1, class_weight='balanced') # Manually select C-parameter for training SVM # clf.fit(x_train, y_train) # print "saving trained model" # save_model(clf, '../models/sklearn_saved.model') print "evaluation" preds = predict(clf, x_train, y_train, x_test, y_test) print "writing labels" writingfile(pfile, preds) if __name__ == "__main__": start = time.clock() parser = ArgumentParser() parser.add_argument("--data", dest="d", help="Output folder name", default='election') args = parser.parse_args() output_dir = args.d + '/output' main(output_dir) print "\n" print "Time taken:", time.clock() - start
mit
rohangoel96/IRCLogParser
IRCLogParser/lib/analysis/user.py
1
18354
import networkx as nx import re import sys from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction import text from nltk.stem.wordnet import WordNetLemmatizer import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans, MiniBatchKMeans from time import time from sklearn.decomposition import TruncatedSVD from sklearn.preprocessing import Normalizer from sklearn.pipeline import make_pipeline from scipy.spatial.distance import cdist import matplotlib.pyplot as plt import lib.util as util sys.path.append('../lib') import lib.config as config import ext.common_english_words as common_english_words import ext.extend_stop_words as custom_stop_words def nick_change_graph(log_dict, DAY_BY_DAY_ANALYSIS=False): """ creates a graph which tracks the nick changes of the users where each edge has a time stamp denoting the time at which the nick was changed by the user Args: log_dict (str): Dictionary of logs created using reader.py Returns: list of the day_to_day nick changes if config.DAY_BY_DAY_ANALYSIS=True or else an aggregate nick change graph for the given time period. """ rem_time = None #remembers the time of the last message of the file parsed before the current file nick_change_day_list = [] aggregate_nick_change_graph = nx.MultiDiGraph() # graph for nick changes in the whole time span (not day to day) for day_content_all_channels in log_dict.values(): for day_content in day_content_all_channels: day_log = day_content["log_data"] today_nick_change_graph = nx.MultiDiGraph() #using networkx current_line_no = -1 for line in day_log: current_line_no = current_line_no + 1 if(line[0] == '=' and "changed the topic of" not in line): #excluding the condition when user changes the topic. Search for only nick changes nick1 = util.splice_find(line, "=", " is", 3) nick2 = util.splice_find(line, "wn as", "\n", 5) earlier_line_no = current_line_no while earlier_line_no >= 0: #to find the line just before "=="" so as to find time of Nick Change earlier_line_no = earlier_line_no - 1 if(day_log[earlier_line_no][0] != '='): year, month, day = util.get_year_month_day(day_content) util.build_graphs(nick1, nick2, day_log[earlier_line_no][1:6], year, month, day, today_nick_change_graph, aggregate_nick_change_graph) break if(earlier_line_no == -1): today_nick_change_graph.add_edge(nick1, nick2, weight=rem_time) aggregate_nick_change_graph.add_edge(nick1, nick2, weight = rem_time) count = len(day_log) - 1 #setting up the rem_time for next file, by noting the last message sent on that file. while(count >= 0): if(day_log[count][0] != '='): rem_time = day_log[count][1:6] break count = count-1 nick_change_day_list.append(today_nick_change_graph) if DAY_BY_DAY_ANALYSIS: return nick_change_day_list else: return aggregate_nick_change_graph def top_keywords_for_nick(user_keyword_freq_dict, nick, threshold, min_words_spoken): """ outputs top keywords for a particular nick Args: user_keyword_freq_dict(dict): dictionary for each user having keywords and their frequency nick(str) : user to do analysis on threshold(float): threshold on normalised values to seperate meaningful words min_words_spoken(int): threhold on the minumum number of words spoken by a user to perform analysis on Returns: null """ keywords = None for dicts in user_keyword_freq_dict: if dicts['nick'] == nick: keywords = dicts['keywords'] break total_freq = 0.0 for freq_tuple in keywords: total_freq += freq_tuple[1] top_keywords = [] top_keywords_normal_freq = [] if total_freq > min_words_spoken: if keywords: for keyword in keywords: if keyword[2] >= threshold: top_keywords.append(keyword[0].encode('ascii', 'ignore')) top_keywords_normal_freq.append(keyword[2]) if len(top_keywords) == 0: if config.DEBUGGER: print "No word's normalised score crosses the value of", threshold top_keywords = None else: if config.DEBUGGER: print "No message sent by nick", nick pass else: if config.DEBUGGER: print "Not enough words spoken by", nick, "; spoke" ,int(total_freq), "words only, required", min_words_spoken pass return (top_keywords, top_keywords_normal_freq) def keywords(log_dict, nicks, nick_same_list): """ Returns keywods for all users Args: log_dict (str): Dictionary of logs data created using reader.py nicks(List) : list of nickname created using nickTracker.py nick_same_list :List of same_nick names created using nickTracker.py Returns keywords_filtered: filtered keywords for user user_keyword_freq_dict: dictionary for each user having keywords and their frequency user_words_dict: keywods for user nicks_for_stop_words: stop words """ user_words_dict = [] user_keyword_freq_dict = [] keywords_filtered = [] no_messages = 0 def get_nick_receiver(nick_receiver, rec, nick_to_compare, nick_name, nicks, nick_same_list): if(rec == nick_name): if(nick_to_compare != nick_name): nick_receiver = iter_nicks(nick_receiver, nicks, nick_same_list, nick_name) return nick_receiver def iter_nicks(nick_sender_receiver, nicks, nick_same_list, nick_comp): for i in range(len(nicks)): if nick_comp in nick_same_list[i]: nick_sender_receiver = nick_same_list[i][0] break else: nick_sender_receiver = nick_comp return nick_sender_receiver for day_content_all_channels in log_dict.values(): for day_content in day_content_all_channels: day_log = day_content["log_data"] for line in day_log: flag_comma = 0 if(util.check_if_msg_line(line)): m = re.search(r"\<(.*?)\>", line) nick_to_compare = util.correctLastCharCR((m.group(0)[1:-1])) nick_sender = '' nick_sender = iter_nicks(nick_sender, nicks, nick_same_list, nick_to_compare) nick_receiver = '' for nick_name in nicks: rec_list = [e.strip() for e in line.split(':')] #receiver list splited about : util.rec_list_splice(rec_list) if not rec_list[1]: #index 0 will contain time 14:02 break rec_list = util.correct_last_char_list(rec_list) for rec in rec_list: nick_receiver = get_nick_receiver(nick_receiver, rec, nick_to_compare, nick_name, nicks, nick_same_list) if "," in rec_list[1]: #receiver list may of the form <Dhruv> Rohan, Ram : flag_comma = 1 rec_list_2 = [e.strip() for e in rec_list[1].split(',')] rec_list_2 = util.correct_last_char_list(rec_list_2) for rec in rec_list_2: nick_receiver = get_nick_receiver(nick_receiver, rec, nick_to_compare, nick_name, nicks, nick_same_list) if(flag_comma == 0): #receiver list can be <Dhruv> Rohan, Hi! rec = util.splice_find(line, ">", ", ", 1) nick_receiver = get_nick_receiver(nick_receiver, rec, nick_to_compare, nick_name, nicks, nick_same_list) #generating the words written by the sender message = rec_list[1:] no_messages += 1 correctedNickReciever = util.correct_nick_for_(nick_receiver) if correctedNickReciever in message: message.remove(correctedNickReciever) lmtzr = WordNetLemmatizer() #limit word size = 3, drop numbers. word_list_temp = re.sub(r'\d+', '', " ".join(re.findall(r'\w{3,}', ":".join(message).replace(","," ")))).split(" ") word_list = [] #remove punctuations for word in word_list_temp: word = word.lower() word_list.append(word.replace("'","")) word_list_lemmatized = [] try: word_list_lemmatized = map(lmtzr.lemmatize, map(lambda x: lmtzr.lemmatize(x, 'v'), word_list)) except UnicodeDecodeError: pass fr = 1 for dic in user_words_dict: if dic['sender'] == nick_sender: dic['words'].extend(word_list_lemmatized) fr = 0 if fr: user_words_dict.append({'sender':nick_sender, 'words':word_list_lemmatized }) nicks_for_stop_words = [] stop_word_without_apostrophe = [] for l in nick_same_list: nicks_for_stop_words.extend(l) for dictonary in user_words_dict: nicks_for_stop_words.append(dictonary['sender']) nicks_for_stop_words.extend([x.lower() for x in nicks_for_stop_words]) for words in common_english_words.words: stop_word_without_apostrophe.append(words.replace("'","")) stop_words_extended = extended_stop_words(nicks_for_stop_words, stop_word_without_apostrophe) count_vect = CountVectorizer(analyzer = 'word', stop_words=stop_words_extended, min_df = 1) for dictonary in user_words_dict: try: matrix = count_vect.fit_transform(dictonary['words']) freqs = [[word, matrix.getcol(idx).sum()] for word, idx in count_vect.vocabulary_.items()] keywords = sorted(freqs, key = lambda x: -x[1]) total_freq = 0.0 for freq_tuple in keywords: total_freq += freq_tuple[1] for freq_tuple in keywords: freq_tuple.append(round(freq_tuple[1]/float(total_freq), 5)) user_keyword_freq_dict.append({'nick':dictonary['sender'], 'keywords': keywords }) except ValueError: pass for data in user_keyword_freq_dict: keywords, normal_scores = top_keywords_for_nick(user_keyword_freq_dict, data['nick'], config.KEYWORDS_THRESHOLD, config.KEYWORDS_MIN_WORDS) if config.DEBUGGER: print "Nick:", data['nick'] print "Keywords with normalised score > 0.01\n", keywords print "Their Normal scores\n", normal_scores print "\n" if keywords: keywords_filtered.append({'nick': data['nick'], 'keywords': keywords}) return keywords_filtered, user_keyword_freq_dict, user_words_dict, nicks_for_stop_words def keywords_clusters(log_dict, nicks, nick_same_list): """ Uses `keywords` to form clusters of words post TF IDF (optional). Args: log_dict (str): Dictionary of logs data created using reader.py nicks(List) : list of nickname created using nickTracker.py nick_same_list :List of same_nick names created using nickTracker.py Returns null """ ''' AUTO TFIDF FROM JUST SENTENCES ''' #http://scikit-learn.org/stable/auto_examples/text/document_clustering.html #BUILDING CORPUS keyword_dict_list, user_keyword_freq_dict, user_words_dict_list, nicks_for_stop_words = keywords(log_dict, nicks, nick_same_list) corpus = [] def build_centroid(km): if config.ENABLE_SVD: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] return order_centroids for user_words_dict in user_words_dict_list: corpus.append(" ".join(map(str,user_words_dict['words']))) print "No. of users", len(corpus) #TF_IDF stop_word_without_apostrophe = [] for words in common_english_words.words: stop_word_without_apostrophe.append(words.replace("'","")) stop_words_extended = extended_stop_words(nicks_for_stop_words, stop_word_without_apostrophe) vectorizer = TfidfVectorizer(max_df=0.5, min_df=2, stop_words=stop_words_extended, use_idf=True) print "Extracting features from the training dataset using TF-IDF" t0 = time() tf_idf = vectorizer.fit_transform(corpus) print("done in %fs" % (time() - t0)) print "n_samples: %d, n_features: %d \n" % tf_idf.shape # LSA if config.ENABLE_SVD: print("============USING SVD==========") print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(100) #recommened value = 100 normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) tf_idf = lsa.fit_transform(tf_idf) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) if not config.ENABLE_ELBOW_METHOD_FOR_K: # CLUSTERING km = KMeans(n_clusters=config.NUMBER_OF_CLUSTERS, init='k-means++', random_state=3465, max_iter=100, n_init=8) print("Clustering sparse data with %s" % km) t0 = time() km.fit(tf_idf) print("done in %0.3fs" % (time() - t0)) print("Top terms per cluster:") order_centroids = build_centroid(km) np.set_printoptions(threshold=np.nan) terms = vectorizer.get_feature_names() for i in range(config.NUMBER_OF_CLUSTERS): print("Cluster %d:" % i) for ind in order_centroids[i, :config.SHOW_N_WORDS_PER_CLUSTER]: print terms[ind]+"\t"+str(round(km.cluster_centers_[i][ind], 2)) print "" else: print "============ELBOW METHOD =============" sum_squared_errors_list = [] avg_sum_squared_errors_list = [] for i in xrange(1, config.CHECK_K_TILL + 1): print "\n===>> K = ", i km = KMeans(n_clusters=i, init='k-means++', max_iter=100, n_init=8) t0 = time() km.fit(tf_idf) order_centroids = build_centroid(km) distance_matrix_all_combination = cdist(tf_idf, km.cluster_centers_, 'euclidean') # cIdx = np.argmin(distance_matrix_all_combination,axis=1) distance_from_nearest_centroid = np.min(distance_matrix_all_combination, axis=1) sum_squared_errors = sum(distance_from_nearest_centroid) avg_sum_squared_errors = sum_squared_errors/tf_idf.shape[0] print "Sum Squared Error =", sum_squared_errors print "Avg Sum Squared Error =", avg_sum_squared_errors sum_squared_errors_list.append(sum_squared_errors) avg_sum_squared_errors_list.append(avg_sum_squared_errors) print("Top terms per cluster:") terms = vectorizer.get_feature_names() for i in range(i): print("Cluster %d:" % i) for ind in order_centroids[i, :config.SHOW_N_WORDS_PER_CLUSTER]: print(' %s' % terms[ind]) print() plt.plot(range(1, config.CHECK_K_TILL+1), sum_squared_errors_list, 'b*-') # ax.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=12, # markeredgewidth=2, markeredgecolor='r', markerfacecolor='None') plt.grid(True) plt.xlabel('Number of clusters') plt.ylabel('Average sum of squares') plt.title('Elbow for KMeans clustering') plt.show() #NOTE RANDOM OUTPUTS BECAUSE OF RANDOM INITIALISATION print "NOTE RANDOM OUTPUTS BECAUSE OF RANDOM INITIALISATION" def extended_stop_words(nicks_for_stop_words, stop_word_without_apostrophe): stop_words_extended = text.ENGLISH_STOP_WORDS.union(common_english_words.words).union(nicks_for_stop_words).union(stop_word_without_apostrophe).union(custom_stop_words.words).union(custom_stop_words.slangs) return stop_words_extended
mit
VasLem/KinectPainting
OptGridSearchCV.py
1
7990
''' An optimized method for GridSearchCV, which iteratively performs grid search and reduces the span of the parameters after each iteration. Made to make the life of an engineer less boring. ''' import numpy as np from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC def optGridSearchCV(classifier, xtrain, ytrain, parameters, reduction_ratio=2, iter_num=3, scoring='f1_macro', fold_num=5, first_rand=False, n_jobs=1,verbose=1,only_rand=False, only_brute=False): ''' The local optimum resides inside the parameters space, with bounds defined by the min and max of each parameter, thus a recommended way to run this function, if no prior knowledge exists, is to set the min and max of each parameter to the corresponding min and max allowed bounds. <classifier>: initialized classifier object <xtrain>: features of samples, with shape (n_samples, n_features) <ytrain>: labels of samples <parameters>: dictionary of parameters, same with GridSearchCV <params> type <reduction_ratio>: the scale of relative reduction of the span of the number parameters <iter_num>: number of iterations to take place <fold_num>: number of folds for CrossValidation <first_rand> : True to perform random parameter picking (normally distributed) firstly and then brute parameter picking (using linspace). If false, the turn of each method changes <only_rand> : True to perform only random picking <only_brute> : True to perform only brute picking ''' def print_params(parameters, preset=''): ''' print parameters in pandas form, if allowed ''' try: from pandas import DataFrame if isinstance(parameters, list): params = DataFrame(parameters) else: try: params = DataFrame.from_dict(parameters) except ValueError: params = DataFrame([parameters]) print(params) except ImportError: print(preset+str(parameters)) def reduce_list(params, best_params): ''' Reduce parameters list of dictionaries to a parameters dictionary, which correspots to the <best_params> found by <GridSearchCV> ''' best_keys = set(best_params.keys()) for count, dic in enumerate(params): if best_keys == set(dic.keys()): return dic, count raise Exception def update_parameters(prev_parameters, best_parameters, num_of_samples, rate=2, israndom=True): ''' Each new parameter has the same number of values as previous one and its values are inside the bounds set by the min and max values of the old parameter. Furthermore, best value from the previous paramter exists inside the new parameter. <num_of_samples>: dictionary with keys from the best_parameters. <prev_parameters>: previous parameters, which hold all tested values <best_parameters>: parameters found to provide the best score (using GridSearchCV) <israndom>: whether to perform random or brute method <rate>: rate of parameters span relative reduction ''' rate = float(rate) new_parameters = {} for key in best_parameters: if (not isinstance(best_parameters[key], str) and not isinstance(best_parameters[key], bool) and not best_parameters[key] is None): if israndom: center = best_parameters[key] std = np.std(prev_parameters[key]) / float(rate) pick = np.random.normal(loc=center, scale=std, size=100 * num_of_samples[key]) pick = pick[(pick >= np.min(prev_parameters[key]))* (pick <= np.max(prev_parameters[key]))] new_parameters[key] = pick[ :(num_of_samples[key]-1)] else: center = best_parameters[key] rang = np.max(prev_parameters[ key]) - np.min(prev_parameters[key]) rang = [max(center - rang / float(rate), min(prev_parameters[key])), min(center + rang / float(rate), max(prev_parameters[key]))] new_parameters[key] = np.linspace( rang[0], rang[1], num_of_samples[key]-1) if isinstance(best_parameters[key], int): new_parameters[key] = new_parameters[key].astype(int) new_parameters[key] = new_parameters[key].tolist() new_parameters[key] += [best_parameters[key]] else: new_parameters[key] = [best_parameters[key]] return new_parameters num_of_samples = {} if not isinstance(parameters, list): num_of_samples = {} for key in parameters: num_of_samples[key] = len(parameters[key]) best_scores = [] best_params = [] best_estimators = [] rand_flags = [first_rand, not first_rand] if only_brute: rand_flags = [False] if only_rand: rand_flags = [True] for it_count in range(iter_num): for rand_flag in rand_flags: if verbose==2: print('Parameters to test on:') print_params(parameters,'\t') try: grids = GridSearchCV( classifier, parameters, scoring=scoring, cv=fold_num, n_jobs=n_jobs, verbose=verbose) grids.fit(xtrain, ytrain) best_scores.append(grids.best_score_) best_params.append(grids.best_params_) best_estimators.append(grids.best_estimator_) grids_params = grids.best_params_ except ValueError: print('Invalid parameters') raise best_params = parameters if rand_flag == rand_flags[1]: print('Iteration Number: ' + str(it_count)) print('\tBest Classifier Params:') print_params(best_params[-1],'\t\t') print('\tBest Score:' + str(best_scores[-1])) if isinstance(parameters, list): parameters, _ = reduce_list(parameters, grids_params) for key in parameters: num_of_samples[key] = len(parameters[key]) if rand_flag == rand_flags[1] and it_count == iter_num - 1: break print('Reducing Parameters using '+ ['random' if rand_flag else 'brute'][0] + ' method') parameters = update_parameters(parameters, grids_params, num_of_samples, rate=reduction_ratio, israndom=rand_flag) return best_params, best_scores, best_estimators def example(): ''' An example of usage ''' parameters = [{'C': [1, 10, 100, 1000], 'tol': [0.001, 0.0001], 'class_weight': [None, 'balanced']}, {'C': [1, 10, 100, 1000], 'multi_class': ['crammer_singer'], 'tol': [0.001, 0.0001]}] xtrain = np.random.random((100, 20)) xtrain[xtrain < 0] = 0 ytrain = (np.random.random(100) > 0.5).astype(int) lsvc = LinearSVC() optGridSearchCV(lsvc, xtrain, ytrain, parameters, reduction_ratio=2, iter_num=3, scoring='f1_macro', fold_num=5, first_rand=False, n_jobs=4) if __name__ == '__main__': example()
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
mit
akionakamura/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
40
23697
# Authors: Olivier Grisel <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import TempMemmap from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): # Check that the lasso can handle zero data without crashing X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): # Test Lasso on a toy example for various values of alpha. # When validating this against glmnet notice that glmnet divides it # against nobs. X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): # Test ElasticNet for various parameters of alpha and l1_ratio. # Actually, the parameters alpha = 0 should not be allowed. However, # we test it as a border case. # ElasticNet is tested with and without precomputed Gram matrix X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) assert_array_almost_equal( coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_uniform_targets(): enet = ElasticNetCV(fit_intercept=True, n_alphas=3) m_enet = MultiTaskElasticNetCV(fit_intercept=True, n_alphas=3) lasso = LassoCV(fit_intercept=True, n_alphas=3) m_lasso = MultiTaskLassoCV(fit_intercept=True, n_alphas=3) models_single_task = (enet, lasso) models_multi_task = (m_enet, m_lasso) rng = np.random.RandomState(0) X_train = rng.random_sample(size=(10, 3)) X_test = rng.random_sample(size=(10, 3)) y1 = np.empty(10) y2 = np.empty((10, 2)) for model in models_single_task: for y_values in (0, 5): y1.fill(y_values) assert_array_equal(model.fit(X_train, y1).predict(X_test), y1) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) for model in models_multi_task: for y_values in (0, 5): y2[:, 0].fill(y_values) y2[:, 1].fill(2 * y_values) assert_array_equal(model.fit(X_train, y2).predict(X_test), y2) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] # Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_lasso_readonly_data(): X = np.array([[-1], [0], [1]]) Y = np.array([-1, 0, 1]) # just a straight line T = np.array([[2], [3], [4]]) # test sample with TempMemmap((X, Y)) as (X, Y): clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) def test_multi_task_lasso_readonly_data(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] with TempMemmap((X, Y)) as (X, Y): Y = np.c_[y, y] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): # Test that both random and cyclic selection give the same results. # Ensure that the test models fully converge and check a wide # range of conditions. # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): # Test that setting precompute="auto" gives a Deprecation Warning. X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): # Test that the coefs returned by positive=True in enet_path are positive X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) def test_sparse_dense_descent_paths(): # Test that dense and sparse input give the same input for descent paths. X, y, _, _ = build_dataset(n_samples=50, n_features=20) csr = sparse.csr_matrix(X) for path in [enet_path, lasso_path]: _, coefs, _ = path(X, y, fit_intercept=False) _, sparse_coefs, _ = path(csr, y, fit_intercept=False) assert_array_almost_equal(coefs, sparse_coefs)
bsd-3-clause
moutai/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
eramirem/astroML
book_figures/chapter7/fig_spec_reconstruction.py
3
3410
""" PCA Reconstruction of a spectrum -------------------------------- Figure 7.6 The reconstruction of a particular spectrum from its eigenvectors. The input spectrum is shown in gray, and the partial reconstruction for progressively more terms is shown in black. The top panel shows only the mean of the set of spectra. By the time 20 PCA components are added, the reconstruction is very close to the input, as indicated by the expected total variance of 94%. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import PCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #------------------------------------------------------------ # Compute PCA components # Eigenvalues can be computed using PCA as in the commented code below: #from sklearn.decomposition import PCA #pca = PCA() #pca.fit(spectra) #evals = pca.explained_variance_ratio_ #evals_cs = evals.cumsum() # because the spectra have been reconstructed from masked values, this # is not exactly correct in this case: we'll use the values computed # in the file compute_sdss_pca.py evals = data['evals'] ** 2 evals_cs = evals.cumsum() evals_cs /= evals_cs[-1] evecs = data['evecs'] spec_mean = spectra.mean(0) #------------------------------------------------------------ # Find the coefficients of a particular spectrum spec = spectra[1] coeff = np.dot(evecs, spec - spec_mean) #------------------------------------------------------------ # Plot the sequence of reconstructions fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(hspace=0, top=0.95, bottom=0.1, left=0.12, right=0.93) for i, n in enumerate([0, 4, 8, 20]): ax = fig.add_subplot(411 + i) ax.plot(wavelengths, spec, '-', c='gray') ax.plot(wavelengths, spec_mean + np.dot(coeff[:n], evecs[:n]), '-k') if i < 3: ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_ylim(-2, 21) ax.set_ylabel('flux') if n == 0: text = "mean" elif n == 1: text = "mean + 1 component\n" text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] else: text = "mean + %i components\n" % n text += r"$(\sigma^2_{tot} = %.2f)$" % evals_cs[n - 1] ax.text(0.02, 0.93, text, ha='left', va='top', transform=ax.transAxes) fig.axes[-1].set_xlabel(r'${\rm wavelength\ (\AA)}$') plt.show()
bsd-2-clause
glennq/scikit-learn
sklearn/datasets/__init__.py
72
3807
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_breast_cancer from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .kddcup99 import fetch_kddcup99 from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'fetch_kddcup99', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_breast_cancer', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
themrmax/scikit-learn
doc/conf.py
10
9807
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve import sphinx_gallery # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', 'sphinx_gallery.gen_gallery', 'sphinx_issues', ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2007 - 2017, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True sphinx_gallery_conf = { 'doc_module': 'sklearn', 'backreferences_dir': os.path.join('modules', 'generated'), 'reference_url': { 'sklearn': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.8.1', 'scipy': 'http://docs.scipy.org/doc/scipy-0.13.3/reference'} } # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'sphx_glr_plot_classifier_comparison_001.png': 600, 'sphx_glr_plot_outlier_detection_003.png': 372, 'sphx_glr_plot_gpr_co2_001.png': 350, 'sphx_glr_plot_adaboost_twoclass_001.png': 372, 'sphx_glr_plot_compare_methods_001.png': 349} def make_carousel_thumbs(app, exception): """produces the final resized carousel images""" if exception is not None: return print('Preparing carousel images') image_dir = os.path.join(app.builder.outdir, '_images') for glr_plot, max_width in carousel_thumbs.items(): image = os.path.join(image_dir, glr_plot) if os.path.exists(image): c_thumb = os.path.join(image_dir, glr_plot[:-4] + '_carousel.png') sphinx_gallery.gen_rst.scale_image(image, c_thumb, max_width, 190) # Config for sphinx_issues issues_uri = 'https://github.com/scikit-learn/scikit-learn/issues/{issue}' issues_github_path = 'scikit-learn/scikit-learn' issues_user_uri = 'https://github.com/{user}' def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('build-finished', make_carousel_thumbs) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
krisht/Krishna-Thesis
Research/src/BrainNet.py
1
43359
from __future__ import print_function import datetime import itertools import matplotlib import os import re os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0,1" matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams["font.family"] = "FreeSerif" import numpy as np import os import psutil import random import sys import tensorflow as tf import tensorflow.contrib.slim as slim from sklearn import neighbors from sklearn.metrics import confusion_matrix from sklearn.preprocessing import normalize from sklearn.manifold import TSNE curr_time = datetime.datetime.now() loss_mem = [] loss_mem_skip = [] def norm_op(vector, axisss): #return normalize(vector, axis=axisss, norm='l2') return vector * 10e4 def plot_embedding(X, y, epoch, accuracy, num_to_label, title): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) cmap = plt.get_cmap('gist_rainbow') color_map = [cmap(1.*i/6) for i in range(6)] legend_entry = [] for ii, c in enumerate(color_map): legend_entry.append(matplotlib.patches.Patch(color=c, label=num_to_label[ii])) plt.figure(figsize=(4.0, 4.0)) plt.scatter(X[:,0], X[:, 1], c=y, cmap=matplotlib.colors.ListedColormap(color_map), s=2) plt.legend(handles=legend_entry) plt.xticks([]), plt.yticks([]) #plt.title(title) plt.savefig('./%s Results/%s_tSNE_plot_epoch%s_%.3f%%.pdf' % (curr_time, curr_time, epoch, accuracy), bbox_inches='tight') def compute_tSNE(X, y, epoch, accuracy, num_to_label, with_seizure=None, title="t-SNE Embedding of DCNN Clustering Network"): tsne = TSNE(n_components=2, init='random', random_state=0) X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, y, epoch=epoch, accuracy=accuracy, num_to_label=num_to_label, title=title) if with_seizure is None: np.savez('./%s Results/%s_tSNE_plot_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, accuracy), X_tsne, y) elif with_seizure == 1: np.savez('./%s Results/%s_tSNE_plot_with_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, accuracy), X_tsne, y) elif with_seizure == 0: np.savez('./%s Results/%s_tSNE_plot_without_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, accuracy), X_tsne, y) elif with_seizure == 2: np.savez('./%s Results/%s_tSNE_plot_with_only_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, accuracy), X_tsne, y) def get_loss(loss_mem, loss_mem_skip): plt.figure(figsize=(4.0, 4.0)) plt.plot(loss_mem_skip, 'ro-', markersize=2) plt.xlabel("1000 Iterations") plt.ylabel("Average Loss in 1000 Iterations") plt.title("Iterations vs. Average Loss") plt.savefig('./%s Results/%s_convergence_with_skip_plot.pdf' % (curr_time, curr_time), bbox_inches='tight') plt.figure(figsize=(4.0, 4.0)) plt.plot(loss_mem, 'ro-', markersize=2) plt.xlabel("1000 Iterations") plt.ylabel("Average Loss in 1000 Iterations") plt.title("Iterations vs. Average Loss") plt.savefig('./%s Results/%s_convergence_plot.pdf' % (curr_time, curr_time), bbox_inches='tight') def plot_confusion_matrix(cm, classes, normalize=True, cmap=plt.cm.Greys, accuracy = None, epoch=None, with_seizure=None, title = "Confusion Matrix on All Data"): plt.figure(figsize=(4, 4)) plt.imshow(cm, interpolation='nearest', cmap=cmap) ax = plt.gca() #plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) ax.yaxis.set_label_coords(-0.1,1.03) h = ax.set_ylabel('True label', rotation=0, horizontalalignment='left') if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] cm = np.nan_to_num(cm) print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, '{0:.2f}'.format(cm[i, j]), horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") #plt.tight_layout() plt.xlabel('Predicted label') #plt.title(title) #plt.show() if with_seizure is None: plt.savefig('./%s Results/%s_confusion_matrix_epoch%s_%.3f%%.pdf' % (curr_time, curr_time, epoch, accuracy), bbox_inches='tight') elif with_seizure == 1: plt.savefig('./%s Results/%s_confusion_matrix_with_seizure_epoch%s_%.3f%%.pdf' % (curr_time, curr_time, epoch, accuracy), bbox_inches='tight') elif with_seizure == 0: plt.savefig('./%s Results/%s_confusion_matrix_without_seizure_epoch%s_%.3f%%.pdf' % (curr_time, curr_time, epoch, accuracy), bbox_inches='tight') elif with_seizure == 2: plt.savefig('./%s Results/%s_confusion_matrix_with_only_seizure_epoch%s_%.3f%%.pdf' % (curr_time, curr_time, epoch, accuracy), bbox_inches='tight') class BrainNet: def __init__(self, input_shape=[None, 71, 125], path_to_files='/media/krishna/DATA', l2_weight=0.05, num_output=64, num_classes=6, alpha=.5, validation_size=500, learning_rate=1e-3, batch_size=100, train_epoch=5, keep_prob=None, debug=True, restore_dir=None): self.bckg_num = 0 self.artf_num = 1 self.eybl_num = 2 self.gped_num = 3 self.spsw_num = 4 self.pled_num = 5 self.path_to_files = path_to_files self.num_to_class = dict() self.num_to_class[0] = 'BCKG' self.num_to_class[1] = 'ARTF' self.num_to_class[2] = 'EYBL' self.num_to_class[3] = 'GPED' self.num_to_class[4] = 'SPSW' self.num_to_class[5] = 'PLED' self.count_of_triplets = dict() self.DEBUG = debug self.train_path = os.path.abspath(self.path_to_files + '/Train') self.val_path = os.path.abspath(self.path_to_files + '/Validation') path = os.path.abspath(self.path_to_files) self.artf = np.load(os.path.abspath(self.train_path + '/artf_files.npy')) self.bckg = np.load(os.path.abspath(self.train_path + '/bckg_files.npy')) self.spsw = np.load(os.path.abspath(self.train_path + '/spsw_files.npy')) self.pled = np.load(os.path.abspath(self.train_path + '/pled_files.npy')) self.gped = np.load(os.path.abspath(self.train_path + '/gped_files.npy')) self.eybl = np.load(os.path.abspath(self.train_path + '/eybl_files.npy')) self.artf_val = np.load(os.path.abspath(self.val_path + '/artf_files.npy')) self.bckg_val = np.load(os.path.abspath(self.val_path + '/bckg_files.npy')) self.spsw_val = np.load(os.path.abspath(self.val_path + '/spsw_files.npy')) self.pled_val = np.load(os.path.abspath(self.val_path + '/pled_files.npy')) self.gped_val = np.load(os.path.abspath(self.val_path + '/gped_files.npy')) self.eybl_val = np.load(os.path.abspath(self.val_path + '/eybl_files.npy')) if path_to_files != '/media/krishna/DATA': self.artf = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.artf]) self.bckg = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.bckg]) self.spsw = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.spsw]) self.pled = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.pled]) self.gped = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.gped]) self.eybl = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.eybl]) self.artf_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.artf_val]) self.bckg_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.bckg_val]) self.spsw_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.spsw_val]) self.pled_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.pled_val]) self.gped_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.gped_val]) self.eybl_val = np.asarray([s.replace('/media/krishna/DATA', self.path_to_files) for s in self.eybl_val]) files_with_spsw = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.spsw]) files_with_gped = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.gped]) files_with_pled = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.pled]) files_with_bckg = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.bckg]) files_with_artf = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.artf]) files_with_eybl = set(['session' + re.search('session(.+?)_', a).group(1) + '_' for a in self.eybl]) total_set = (files_with_spsw | files_with_gped | files_with_pled | files_with_bckg | files_with_artf | files_with_eybl) self.files_without_seizures = total_set - files_with_spsw - files_with_pled - files_with_gped self.files_with_seizures = total_set - self.files_without_seizures print(self.files_with_seizures) print(self.files_without_seizures) self.sess = tf.Session() self.num_classes = num_classes self.num_output = num_output self.input_shape = input_shape self.batch_size = batch_size self.alpha = alpha self.train_epoch = train_epoch self.learning_rate = learning_rate self.keep_prob = keep_prob self.validation_size = validation_size self.l2_weight = l2_weight self.inference_input = tf.placeholder(tf.float32, shape=input_shape) self.inference_model = self.get_model(self.inference_input, reuse=False) if restore_dir is not None: if self.DEBUG: print("Loading saved data...") dir = tf.train.Saver() dir.restore(self.sess, restore_dir) if self.DEBUG: print("Finished loading saved data...") if not os.path.exists('./%s Results' % curr_time): os.makedirs('./%s Results' % curr_time) self.metadata_file = './%s Results/METADATA.txt' % curr_time with open(self.metadata_file, 'w') as file: file.write('DCNN Clustering Network\n') #file.write('Normalization on\n') file.write('Time of training: %s\n' % curr_time) file.write('Input shape: %s\n' % input_shape) file.write('Path to files: %s\n' % path_to_files) file.write('L2 Regularization Weight: %s\n' % l2_weight) file.write('Number of outputs: %s\n' % num_output) file.write('Number of classes: %s\n' % num_classes) file.write('Alpha value: %s\n' % alpha) file.write('Validation Size: %s\n' % validation_size) file.write('Learning rate: %s\n' % learning_rate) file.write('Batch size: %s\n' % batch_size) file.write('Number of Epochs: %s\n' % train_epoch) file.write('Dropout probability: %s\n' % keep_prob) file.write('Debug mode: %s\n' % debug) file.write('Restore directory: %s\n' % restore_dir) file.close() def distance_metric(self, a, b, metric='cosine'): if metric == 'cosine': num = tf.reduce_sum(a*b, 1) denom = tf.sqrt(tf.reduce_sum(a*a,1))*tf.sqrt(tf.reduce_sum(b*b, 1)) result = 1 - (self.num/self.denom) return result elif metric=='euclidean': return tf.reduce_sum(tf.square(tf.subtract(a, b)), 1) def triplet_loss(self, alpha): self.anchor = tf.placeholder(tf.float32, shape=self.input_shape) self.positive = tf.placeholder(tf.float32, shape=self.input_shape) self.negative = tf.placeholder(tf.float32, shape=self.input_shape) self.anchor_out = self.get_model(self.anchor, reuse=True) self.positive_out = self.get_model(self.positive, reuse=True) self.negative_out = self.get_model(self.negative, reuse=True) with tf.variable_scope('triplet_loss'): pos_dist = self.distance_metric(self.anchor_out, self.positive_out, metric='euclidean') neg_dist = self.distance_metric(self.anchor_out, self.negative_out, metric='euclidean') basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha) loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0) return loss def get_triplets(self, size=10): A = [] P = [] N = [] for _ in range(size): choices = ['bckg', 'eybl', 'gped', 'spsw', 'pled', 'artf'] neg_choices = list(choices) choice = random.choice(choices) neg_choices.remove(choice) if choice == 'bckg': a = np.load(random.choice(self.bckg)) p = np.load(random.choice(self.bckg)) elif choice == 'eybl': a = np.load(random.choice(self.eybl)) p = np.load(random.choice(self.eybl)) elif choice == 'gped': a = np.load(random.choice(self.gped)) p = np.load(random.choice(self.gped)) elif choice == 'spsw': a = np.load(random.choice(self.spsw)) p = np.load(random.choice(self.spsw)) elif choice == 'pled': a = np.load(random.choice(self.pled)) p = np.load(random.choice(self.pled)) else: a = np.load(random.choice(self.artf)) p = np.load(random.choice(self.artf)) neg_choice = random.choice(neg_choices) if neg_choice == 'bckg': n = np.load(random.choice(self.bckg)) elif neg_choice == 'eybl': n = np.load(random.choice(self.eybl)) elif neg_choice == 'gped': n = np.load(random.choice(self.gped)) elif neg_choice == 'spsw': n = np.load(random.choice(self.spsw)) elif neg_choice == 'pled': n = np.load(random.choice(self.pled)) else: n = np.load(random.choice(self.artf)) key = choice + choice + neg_choice if key in self.count_of_triplets: self.count_of_triplets[key]+=1 else: self.count_of_triplets[key] = 1 a = norm_op(a, axisss=0) p = norm_op(p, axisss=0) n = norm_op(n, axisss=0) A.append(a) P.append(p) N.append(n) A = np.asarray(A) P = np.asarray(P) N = np.asarray(N) return A, P, N # End new stuff # def simple_model(self, inputs, reuse=False): with slim.arg_scope([slim.layers.conv2d, slim.layers.fully_connected], weights_initializer=tf.contrib.layers.xavier_initializer(uniform=True), weights_regularizer=slim.l2_regularizer(self.l2_weight), reuse=reuse): net = tf.expand_dims(inputs, dim=3) net = slim.layers.conv2d(net, num_outputs=32, kernel_size=5, scope='conv1', trainable=True) net = slim.layers.max_pool2d(net, kernel_size=5, scope='maxpool1') net = slim.layers.conv2d(net, num_outputs=64, kernel_size=3, scope='conv2', trainable=True) net = slim.layers.max_pool2d(net, kernel_size=3, scope='maxpool2') net = slim.layers.conv2d(net, num_outputs=128, kernel_size=2, scope='conv3', trainable=True) net = slim.layers.max_pool2d(net, kernel_size=2, scope='maxpool3') net = slim.layers.conv2d(net, num_outputs=256, kernel_size=1, scope='conv4', trainable=True) net = slim.layers.max_pool2d(net, kernel_size=2, scope='maxpool4') net = slim.layers.conv2d(net, num_outputs=1024, kernel_size=4, scope='conv5', trainable=True) net = slim.layers.max_pool2d(net, kernel_size=4, scope='maxpool5') net = slim.layers.flatten(net, scope='flatten') net = slim.layers.fully_connected(net, 1024, scope='fc1', trainable=True) net = slim.layers.fully_connected(net, 512, scope='fc2', trainable=True) net = slim.layers.fully_connected(net, 256, scope='fc3', trainable=True) net = slim.layers.fully_connected(net, self.num_output, weights_regularizer=None, scope='output') return net def inception_v3(self, inputs, dropout_keep_prob=0.8, reuse=False, scope=''): end_points = {} with tf.name_scope(scope, 'inception_v3', [inputs]): with slim.arg_scope([slim.layers.conv2d, slim.layers.fully_connected, slim.layers.batch_norm, slim.layers.dropout], weights_initializer=tf.contrib.layers.xavier_initializer(uniform=True), weights_regularizer=slim.l2_regularizer(self.l2_weight), reuse=reuse): with slim.arg_scope([slim.layers.conv2d], stride=1, padding='VALID', reuse=reuse): # 299 x 299 x 3 inputs = tf.expand_dims(inputs, dim=3) end_points['conv0'] = slim.layers.conv2d(inputs, 32, kernel_size=3, stride=2, scope='conv0') # 149 x 149 x 32 end_points['conv1'] = slim.layers.conv2d(end_points['conv0'], 32, kernel_size=3, scope='conv1') # 147 x 147 x 32 end_points['conv2'] = slim.layers.conv2d(end_points['conv1'], 64, kernel_size=3, padding='SAME', scope='conv2') # 147 x 147 x 64 #end_points['pool1'] = slim.layers.max_pool2d(end_points['conv2'], kernel_size=3, stride=2, scope='pool1') # 73 x 73 x 64 end_points['conv3'] = slim.layers.conv2d(end_points['conv2'], 80, kernel_size=1, scope='conv3') # 73 x 73 x 80. end_points['conv4'] = slim.layers.conv2d(end_points['conv3'], 192, kernel_size=3, scope='conv4') # 71 x 71 x 192. #end_points['pool2'] = slim.layers.max_pool2d(end_points['conv4'], kernel_size=3, stride=2, scope='pool2') # 35 x 35 x 192. net = end_points['conv4'] # Inception blocks with slim.arg_scope([slim.layers.conv2d], stride=1, padding='SAME', reuse=reuse): # mixed: 35 x 35 x 256. with tf.variable_scope('mixed_35x35x256a'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch5x5'): branch5x5 = slim.layers.conv2d(net, 48, kernel_size=1, scope='branch1x1/conv2') branch5x5 = slim.layers.conv2d(branch5x5, 64, kernel_size=5, scope='branch1x1/conv3') with tf.variable_scope('branch3x3dbl'): branch3x3dbl = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch3x3dbl/conv1') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv2') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv3') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 32, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool]) end_points['mixed_35x35x256a'] = net # mixed_1: 35 x 35 x 288. with tf.variable_scope('mixed_35x35x288a'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch5x5'): branch5x5 = slim.layers.conv2d(net, 48, kernel_size=1, scope='branch5x5/conv1') branch5x5 = slim.layers.conv2d(branch5x5, 64, kernel_size=5, scope='branch5x5/conv2') with tf.variable_scope('branch3x3dbl'): branch3x3dbl = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch3x3dbl/conv1') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv2') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv3') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 64, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool]) end_points['mixed_35x35x288a'] = net # mixed_2: 35 x 35 x 288. with tf.variable_scope('mixed_35x35x288b'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch5x5'): branch5x5 = slim.layers.conv2d(net, 48, kernel_size=1, scope='branch5x5/conv1') branch5x5 = slim.layers.conv2d(branch5x5, 64, kernel_size=5, scope='branch5x5/conv2') with tf.variable_scope('branch3x3dbl'): branch3x3dbl = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch3x3dbl/conv1') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv2') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv3') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 64, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool]) end_points['mixed_35x35x288b'] = net # mixed_3: 17 x 17 x 768. with tf.variable_scope('mixed_17x17x768a'): with tf.variable_scope('branch3x3'): branch3x3 = slim.layers.conv2d(net, 384, kernel_size=3, stride=2, padding='VALID', scope='branch3x3/conv1') with tf.variable_scope('branch3x3dbl'): branch3x3dbl = slim.layers.conv2d(net, 64, kernel_size=1, scope='branch3x3dbl/conv1') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, scope='branch3x3dbl/conv2') branch3x3dbl = slim.layers.conv2d(branch3x3dbl, 96, kernel_size=3, stride=2, padding='VALID', scope='branch3x3dbl/conv3') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.max_pool2d(net, kernel_size=3, stride=2, padding='VALID', scope='branch_pool/max_pool1') net = tf.concat(axis=3, values=[branch3x3, branch3x3dbl, branch_pool]) end_points['mixed_17x17x768a'] = net # mixed4: 17 x 17 x 768. with tf.variable_scope('mixed_17x17x768b'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch7x7'): branch7x7 = slim.layers.conv2d(net, 128, kernel_size=1, scope='branch7x7/conv1') branch7x7 = slim.layers.conv2d(branch7x7, 128, kernel_size=(1, 7), scope='branch7x7/conv2') branch7x7 = slim.layers.conv2d(branch7x7, 192, kernel_size=(7, 1), scope='branch7x7/conv3') with tf.variable_scope('branch7x7dbl'): branch7x7dbl = slim.layers.conv2d(net, 128, kernel_size=1, scope='branch7x7dbl/conv1') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 128, kernel_size=(7, 1), scope='branch7x7dbl/conv2') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 128, kernel_size=(1, 7), scope='branch7x7dbl/conv3') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 128, kernel_size=(7, 1), scope='branch7x7dbl/conv4') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(1, 7), scope='branch7x7dbl/conv5') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 192, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool]) end_points['mixed_17x17x768b'] = net # mixed_5: 17 x 17 x 768. with tf.variable_scope('mixed_17x17x768c'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch7x7'): branch7x7 = slim.layers.conv2d(net, 160, kernel_size=1, scope='branch7x7/conv1') branch7x7 = slim.layers.conv2d(branch7x7, 160, kernel_size=(1, 7), scope='branch7x7/conv2') branch7x7 = slim.layers.conv2d(branch7x7, 192, kernel_size=(7, 1), scope='branch7x7/conv3') with tf.variable_scope('branch7x7dbl'): branch7x7dbl = slim.layers.conv2d(net, 160, kernel_size=1, scope='branch7x7dbl/conv1') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(7, 1), scope='branch7x7dbl/conv2') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(1, 7), scope='branch7x7dbl/conv3') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(7, 1), scope='branch7x7dbl/conv4') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(1, 7), scope='branch7x7dbl/conv5') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 192, kernel_size=1, scope='branch_pool/conv2') net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool]) end_points['mixed_17x17x768c'] = net # mixed_6: 17 x 17 x 768. with tf.variable_scope('mixed_17x17x768d'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch7x7'): branch7x7 = slim.layers.conv2d(net, 160, kernel_size=1, scope='branch7x7/conv1') branch7x7 = slim.layers.conv2d(branch7x7, 160, kernel_size=(1, 7), scope='branch7x7/conv2') branch7x7 = slim.layers.conv2d(branch7x7, 192, kernel_size=(7, 1), scope='branch7x7/conv3') with tf.variable_scope('branch7x7dbl'): branch7x7dbl = slim.layers.conv2d(net, 160, kernel_size=1, scope='branch7x7dbl/conv1') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(7, 1), scope='branch7x7dbl/conv2') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(1, 7), scope='branch7x7dbl/conv3') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 160, kernel_size=(7, 1), scope='branch7x7dbl/conv4') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(1, 7), scope='branch7x7dbl/conv5') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 192, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool]) end_points['mixed_17x17x768d'] = net # mixed_7: 17 x 17 x 768. with tf.variable_scope('mixed_17x17x768e'): with tf.variable_scope('branch1x1'): branch1x1 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch1x1/conv1') with tf.variable_scope('branch7x7'): branch7x7 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch7x7/conv1') branch7x7 = slim.layers.conv2d(branch7x7, 192, kernel_size=(1, 7), scope='branch7x7/conv2') branch7x7 = slim.layers.conv2d(branch7x7, 192, kernel_size=(7, 1), scope='branch7x7/conv3') with tf.variable_scope('branch7x7dbl'): branch7x7dbl = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch7x7dbl/conv1') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(7, 1), scope='branch7x7dbl/conv2') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(1, 7), scope='branch7x7dbl/conv3') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(7, 1), scope='branch7x7dbl/conv4') branch7x7dbl = slim.layers.conv2d(branch7x7dbl, 192, kernel_size=(1, 7), scope='branch7x7dbl/conv5') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.avg_pool2d(net, kernel_size=3, stride=1, padding='SAME', scope='branch_pool/avg_pool1') branch_pool = slim.layers.conv2d(branch_pool, 192, kernel_size=1, scope='branch_pool/conv1') net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool]) end_points['mixed_17x17x768e'] = net # Auxiliary Head logits aux_logits = tf.identity(end_points['mixed_17x17x768e']) with tf.variable_scope('aux_logits'): aux_logits = slim.layers.avg_pool2d(aux_logits, kernel_size=5, stride=3, padding='VALID', scope='aux_logits/avg_pool1') aux_logits = slim.layers.conv2d(aux_logits, 128, kernel_size=1, scope='aux_logits/proj') # Shape of feature map before the final layer. shape = aux_logits.get_shape() aux_logits = slim.layers.conv2d(aux_logits, 768, shape[1:3], padding='VALID', scope='aux_logits/conv2') aux_logits = slim.layers.flatten(aux_logits, scope='aux_logits/flatten') aux_logits = slim.layers.fully_connected(aux_logits, self.num_output, activation_fn=None, scope='aux_logits/fc1') end_points['aux_logits'] = aux_logits with tf.variable_scope('mixed_17x17x1280a'): with tf.variable_scope('branch3x3'): branch3x3 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch3x3/conv1') branch3x3 = slim.layers.conv2d(branch3x3, 320, kernel_size=3, stride=2, padding='VALID', scope='branch3x3/conv2') with tf.variable_scope('branch7x7x3'): branch7x7x3 = slim.layers.conv2d(net, 192, kernel_size=1, scope='branch7x7x3/conv1') branch7x7x3 = slim.layers.conv2d(branch7x7x3, 192, kernel_size=(1, 7), scope='branch7x7x3/conv2') branch7x7x3 = slim.layers.conv2d(branch7x7x3, 192, kernel_size=(7, 1), scope='branch7x7x3/conv3') branch7x7x3 = slim.layers.conv2d(branch7x7x3, 192, kernel_size=3, stride=2, padding='VALID', scope='branch7x7x3/conv4') with tf.variable_scope('branch_pool'): branch_pool = slim.layers.max_pool2d(net, kernel_size=3, stride=2, padding='VALID', scope='branch_pool/max_pool1') net = tf.concat(axis=3, values=[branch3x3, branch7x7x3, branch_pool]) end_points['mixed_17x17x1280a'] = net with tf.variable_scope('logits'): shape = net.get_shape() net = slim.layers.avg_pool2d(net, shape[1:3], stride=1, padding='VALID', scope='pool') end_points['prev_layer'] = net # 1 x 1 x 2048 #net = slim.layers.dropout(net, dropout_keep_prob, scope='dropout') net = slim.layers.flatten(net, scope='flatten') # 2048 logits = slim.layers.fully_connected(net, self.num_output, weights_regularizer=None, activation_fn=None, scope='logits') # 1000 end_points['logits'] = logits return end_points['logits'] def get_model(self, inputs, reuse=False, use_inception=True): if not use_inception: return self.simple_model(inputs, reuse=reuse) else: return self.inception_v3(inputs, reuse=reuse) def train_model(self, outdir=None): loss = self.triplet_loss(alpha=self.alpha) self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.optim = self.optimizer.minimize(loss=loss) self.sess.run(tf.global_variables_initializer()) count = 0 ii = 0 val_percentage = 0 val_conf_matrix = 0 epoch = -1 while True: epoch += 1 ii = 0 count = 0 temp_count = 0 full_loss = 0 while ii <= self.batch_size: ii += 1 a, p, n = self.get_triplets() temploss = self.sess.run(loss, feed_dict={self.anchor: a, self.positive: p, self.negative: n}) if temploss == 0: ii -= 1 count += 1 temp_count += 1 continue full_loss += temploss if ((ii + epoch * self.batch_size) % 1000 == 0): loss_mem_skip.append(full_loss / (1000.0 + temp_count)) loss_mem.append(full_loss / (1000.0)) full_loss = 0 temp_count = 0 get_loss(loss_mem, loss_mem_skip) _, a, p, n = self.sess.run([self.optim, self.anchor_out, self.positive_out, self.negative_out], feed_dict={self.anchor: a, self.positive: p, self.negative: n}) d1 = np.linalg.norm(p - a) d2 = np.linalg.norm(n - a) if self.DEBUG: print("Epoch: %2d, Iter: %7d, IterSkip: %7d, Loss: %.4f, P_Diff: %.4f, N_diff: %.4f" % (epoch, ii, count, temploss, d1, d2)) val_percentage, val_conf_matrix = self.validate(epoch) self.sess.close() return epoch, val_percentage, val_conf_matrix def get_sample(self, size=1, validation=False, with_seizure=None): data_list = [] class_list = [] if not validation: for ii in range(0, size): if with_seizure is None: choice = random.choice(['bckg', 'eybl', 'gped', 'spsw', 'pled', 'artf']) if choice == 'bckg': data_list.append(norm_op(np.load(random.choice(self.bckg)), axisss=0)) class_list.append(self.bckg_num) elif choice == 'eybl': data_list.append(norm_op(np.load(random.choice(self.eybl)), axisss=0)) class_list.append(self.eybl_num) elif choice == 'gped': data_list.append(norm_op(np.load(random.choice(self.gped)), axisss=0)) class_list.append(self.gped_num) elif choice == 'spsw': data_list.append(norm_op(np.load(random.choice(self.spsw)), axisss=0)) class_list.append(self.spsw_num) elif choice == 'pled': data_list.append(norm_op(np.load(random.choice(self.pled)), axisss=0)) class_list.append(self.pled_num) else: data_list.append(norm_op(np.load(random.choice(self.artf)), axisss=0)) class_list.append(self.artf_num) elif with_seizure == 2: choice = random.choice(['gped', 'spsw', 'pled']) success = False the_file = '' class_num = None while not success: if choice == 'bckg': the_file = random.choice(self.bckg) class_num = self.bckg_num elif choice == 'eybl': the_file = random.choice(self.eybl) class_num = self.eybl_num elif choice == 'gped': the_file = random.choice(self.gped) class_num = self.gped_num elif choice == 'spsw': the_file = random.choice(self.spsw) class_num = self.spsw_num elif choice == 'pled': the_file = random.choice(self.pled) class_num = self.pled_num else: the_file = random.choice(self.artf) class_num = self.artf_num the_file_stripped = 'session' + re.search('session(.+?)_', str(the_file)).group(1) + '_' if the_file_stripped in self.files_with_seizures: success = True #print(the_file, the_file_stripped, the_file_stripped in self.files_with_seizures) data_list.append(norm_op(np.load(str(the_file)), axisss=0)) class_list.append(class_num) elif with_seizure == 1: choice = random.choice(['bckg', 'eybl', 'gped', 'spsw', 'pled', 'artf']) success = False the_file = '' class_num = None while not success: if choice == 'bckg': the_file = random.choice(self.bckg) class_num = self.bckg_num elif choice == 'eybl': the_file = random.choice(self.eybl) class_num = self.eybl_num elif choice == 'gped': the_file = random.choice(self.gped) class_num = self.gped_num elif choice == 'spsw': the_file = random.choice(self.spsw) class_num = self.spsw_num elif choice == 'pled': the_file = random.choice(self.pled) class_num = self.pled_num else: the_file = random.choice(self.artf) class_num = self.artf_num the_file_stripped = 'session' + re.search('session(.+?)_', str(the_file)).group(1) + '_' if the_file_stripped in self.files_with_seizures: success = True #print(the_file, the_file_stripped, the_file_stripped in self.files_with_seizures) data_list.append(norm_op(np.load(str(the_file)), axisss=0)) class_list.append(class_num) elif with_seizure == 0: choice = random.choice(['bckg', 'eybl', 'artf']) success = False the_file = '' class_num = None while not success: if choice == 'bckg': the_file = random.choice(self.bckg) class_num = self.bckg_num elif choice == 'eybl': the_file = random.choice(self.eybl) class_num = self.eybl_num elif choice == 'gped': the_file = random.choice(self.gped) class_num = self.gped_num elif choice == 'spsw': the_file = random.choice(self.spsw) class_num = self.spsw_num elif choice == 'pled': the_file = random.choice(self.pled) class_num = self.pled_num else: the_file = random.choice(self.artf) class_num = self.artf_num #print(the_file) the_file_stripped = 'session' + re.search('session(.+?)_', str(the_file)).group(1) + '_' if the_file_stripped in self.files_without_seizures: success = True #print(the_file, the_file_stripped, the_file_stripped in self.files_without_seizures) data_list.append(norm_op(np.load(str(the_file)), axisss=0)) class_list.append(class_num) else: for ii in range(0, size): choice = random.choice(['bckg', 'eybl', 'gped', 'spsw', 'pled', 'artf']) if choice == 'bckg': data_list.append(norm_op(np.load(random.choice(self.bckg_val)), axisss=0)) class_list.append(self.bckg_num) elif choice == 'eybl': data_list.append(norm_op(np.load(random.choice(self.eybl_val)), axisss=0)) class_list.append(self.eybl_num) elif choice == 'gped': data_list.append(norm_op(np.load(random.choice(self.gped_val)), axisss=0)) class_list.append(self.gped_num) elif choice == 'spsw': data_list.append(norm_op(np.load(random.choice(self.spsw_val)), axisss=0)) class_list.append(self.spsw_num) elif choice == 'pled': data_list.append(norm_op(np.load(random.choice(self.pled_val)), axisss=0)) class_list.append(self.pled_num) else: data_list.append(norm_op(np.load(random.choice(self.artf_val)), axisss=0)) class_list.append(self.artf_num) return data_list, class_list def validate(self, epoch): inputs, classes = self.get_sample(size=self.validation_size, validation=True) vector_inputs = self.sess.run(self.inference_model, feed_dict={self.inference_input: inputs}) del inputs tempClassifier = neighbors.KNeighborsClassifier(31) tempClassifier.fit(vector_inputs, classes) # All data (Files with Seizures & Files without Seizures) val_inputs, val_classes = self.get_sample(size=self.validation_size) vector_val_inputs = self.sess.run(self.inference_model, feed_dict={self.inference_input: val_inputs}) del val_inputs pred_class = tempClassifier.predict(vector_val_inputs) percentage = len([i for i, j in zip(val_classes, pred_class) if i == j]) * 100.0 / self.validation_size if self.DEBUG: print("Validation Results: %.3f%% of of %d correct" % (percentage, self.validation_size)) val_classes = list(map(lambda x: self.num_to_class[x], val_classes)) pred_class = list(map(lambda x: self.num_to_class[x], pred_class)) class_labels = [0, 1, 2, 3, 4, 5] class_labels = list(map(lambda x: self.num_to_class[x], class_labels)) conf_matrix = confusion_matrix(val_classes, pred_class, labels=class_labels) np.set_printoptions(precision=2) np.save('./%s Results/%s_confusion_matrix_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, percentage), conf_matrix) plot_confusion_matrix(conf_matrix, classes=class_labels, epoch=epoch, accuracy=percentage) print("All data: %s" % set(val_classes)) compute_tSNE(vector_inputs, classes, epoch=epoch, accuracy=percentage, num_to_label=self.num_to_class) # Files with Seizures val_inputs_seizure, val_classes_seizure = self.get_sample(size=self.validation_size, with_seizure = 1) vector_val_inputs_seizure = self.sess.run(self.inference_model, feed_dict={self.inference_input: val_inputs_seizure}) del val_inputs_seizure pred_class_seizure = tempClassifier.predict(vector_val_inputs_seizure) percentage_seizure = len([i for i, j in zip(val_classes_seizure, pred_class_seizure) if i == j]) * 100.0 / self.validation_size if self.DEBUG: print("Validation Results: %.3f%% of of %d correct" % (percentage_seizure, self.validation_size)) val_classes_seizure = list(map(lambda x: self.num_to_class[x], val_classes_seizure)) pred_class_seizure = list(map(lambda x: self.num_to_class[x], pred_class_seizure)) class_labels_seizure = [0, 1, 2, 3, 4, 5] class_labels_seizure = list(map(lambda x: self.num_to_class[x], class_labels_seizure)) conf_matrix_seizure = confusion_matrix(val_classes_seizure, pred_class_seizure, labels=class_labels_seizure) np.set_printoptions(precision=2) np.save('./%s Results/%s_confusion_matrix_with_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, percentage_seizure), conf_matrix_seizure) plot_confusion_matrix(conf_matrix_seizure, classes=class_labels_seizure, epoch=epoch, accuracy=percentage_seizure, with_seizure=1, title = "Confusion Matrix on Files with Seizure") print("With Seizure data: %s" % set(val_classes_seizure)) #compute_tSNE(vector_inputs, classes, epoch=epoch, accuracy=percentage_seizure, num_to_label=self.num_to_class) # ONLY Seizures val_inputs_only_seizure, val_classes_only_seizure = self.get_sample(size=self.validation_size, with_seizure = 2) vector_val_inputs_only_seizure = self.sess.run(self.inference_model, feed_dict={self.inference_input: val_inputs_only_seizure}) del val_inputs_only_seizure pred_class_only_seizure = tempClassifier.predict(vector_val_inputs_only_seizure) percentage_only_seizure = len([i for i, j in zip(val_classes_only_seizure, pred_class_only_seizure) if i == j]) * 100.0 / self.validation_size if self.DEBUG: print("Validation Results: %.3f%% of of %d correct" % (percentage_only_seizure, self.validation_size)) val_classes_only_seizure = list(map(lambda x: self.num_to_class[x], val_classes_only_seizure)) pred_class_only_seizure = list(map(lambda x: self.num_to_class[x], pred_class_only_seizure)) class_labels_only_seizure = [0, 1, 2, 3, 4, 5] class_labels_only_seizure = list(map(lambda x: self.num_to_class[x], class_labels_only_seizure)) conf_matrix_only_seizure = confusion_matrix(val_classes_only_seizure, pred_class_only_seizure, labels=class_labels_seizure) np.set_printoptions(precision=2) np.save('./%s Results/%s_confusion_matrix_with_only_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, percentage_only_seizure), conf_matrix_only_seizure) plot_confusion_matrix(conf_matrix_only_seizure, classes=class_labels_only_seizure, epoch=epoch, accuracy=percentage_only_seizure, with_seizure=1, title = "Confusion Matrix on Files with Seizure") print("With only Seizure data: %s" % set(val_classes_only_seizure)) #compute_tSNE(vector_inputs, classes, epoch=epoch, accuracy=percentage_seizure, num_to_label=self.num_to_class) # Files without Seizures val_inputs_without_seizure, val_classes_without_seizure = self.get_sample(size=self.validation_size, with_seizure=0) vector_val_inputs_without_seizure = self.sess.run(self.inference_model, feed_dict={self.inference_input: val_inputs_without_seizure}) del val_inputs_without_seizure pred_class_without_seizure = tempClassifier.predict(vector_val_inputs_without_seizure) percentage_without_seizure = len([i for i, j in zip(val_classes_without_seizure, pred_class_without_seizure) if i == j]) * 100.0 / self.validation_size if self.DEBUG: print("Validation Results: %.3f%% of of %d correct" % (percentage_without_seizure, self.validation_size)) val_classes_without_seizure = list(map(lambda x: self.num_to_class[x], val_classes_without_seizure)) pred_class_without_seizure = list(map(lambda x: self.num_to_class[x], pred_class_without_seizure)) class_labels_without_seizure = [0, 1, 2, 3, 4, 5] class_labels_without_seizure = list(map(lambda x: self.num_to_class[x], class_labels_without_seizure)) conf_matrix_without_seizure = confusion_matrix(val_classes_without_seizure, pred_class_without_seizure, labels=class_labels_without_seizure) np.set_printoptions(precision=2) np.save('./%s Results/%s_confusion_matrix_without_seizure_epoch%s_%.3f%%' % (curr_time, curr_time, epoch, percentage_without_seizure), conf_matrix_without_seizure) plot_confusion_matrix(conf_matrix_without_seizure, classes=class_labels_without_seizure, epoch=epoch, accuracy=percentage_without_seizure, with_seizure=0, title = "Confusion Matrix on Files without Seizure") print("Without Seizure data: %s" % set(val_classes_without_seizure)) #compute_tSNE(vector_inputs, classes, epoch=epoch, accuracy=percentage_without_seizure, num_to_label=self.num_to_class) self.count_of_triplets = dict() return percentage, conf_matrix
mit
drammock/mne-python
tutorials/machine-learning/30_strf.py
10
14437
# -*- coding: utf-8 -*- """ ===================================================================== Spectro-temporal receptive field (STRF) estimation on continuous data ===================================================================== This demonstrates how an encoding model can be fit with multiple continuous inputs. In this case, we simulate the model behind a spectro-temporal receptive field (or STRF). First, we create a linear filter that maps patterns in spectro-temporal space onto an output, representing neural activity. We fit a receptive field model that attempts to recover the original linear filter that was used to create this data. """ # Authors: Chris Holdgraf <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) # sphinx_gallery_thumbnail_number = 7 import numpy as np import matplotlib.pyplot as plt import mne from mne.decoding import ReceptiveField, TimeDelayingRidge from scipy.stats import multivariate_normal from scipy.io import loadmat from sklearn.preprocessing import scale rng = np.random.RandomState(1337) # To make this example reproducible ############################################################################### # Load audio data # --------------- # # We'll read in the audio data from :footcite:`CrosseEtAl2016` in order to # simulate a response. # # In addition, we'll downsample the data along the time dimension in order to # speed up computation. Note that depending on the input values, this may # not be desired. For example if your input stimulus varies more quickly than # 1/2 the sampling rate to which we are downsampling. # Read in audio that's been recorded in epochs. path_audio = mne.datasets.mtrf.data_path() data = loadmat(path_audio + '/speech_data.mat') audio = data['spectrogram'].T sfreq = float(data['Fs'][0, 0]) n_decim = 2 audio = mne.filter.resample(audio, down=n_decim, npad='auto') sfreq /= n_decim ############################################################################### # Create a receptive field # ------------------------ # # We'll simulate a linear receptive field for a theoretical neural signal. This # defines how the signal will respond to power in this receptive field space. n_freqs = 20 tmin, tmax = -0.1, 0.4 # To simulate the data we'll create explicit delays here delays_samp = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) delays_sec = delays_samp / sfreq freqs = np.linspace(50, 5000, n_freqs) grid = np.array(np.meshgrid(delays_sec, freqs)) # We need data to be shaped as n_epochs, n_features, n_times, so swap axes here grid = grid.swapaxes(0, -1).swapaxes(0, 1) # Simulate a temporal receptive field with a Gabor filter means_high = [.1, 500] means_low = [.2, 2500] cov = [[.001, 0], [0, 500000]] gauss_high = multivariate_normal.pdf(grid, means_high, cov) gauss_low = -1 * multivariate_normal.pdf(grid, means_low, cov) weights = gauss_high + gauss_low # Combine to create the "true" STRF kwargs = dict(vmax=np.abs(weights).max(), vmin=-np.abs(weights).max(), cmap='RdBu_r', shading='gouraud') fig, ax = plt.subplots() ax.pcolormesh(delays_sec, freqs, weights, **kwargs) ax.set(title='Simulated STRF', xlabel='Time Lags (s)', ylabel='Frequency (Hz)') plt.setp(ax.get_xticklabels(), rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() ############################################################################### # Simulate a neural response # -------------------------- # # Using this receptive field, we'll create an artificial neural response to # a stimulus. # # To do this, we'll create a time-delayed version of the receptive field, and # then calculate the dot product between this and the stimulus. Note that this # is effectively doing a convolution between the stimulus and the receptive # field. See `here <https://en.wikipedia.org/wiki/Convolution>`_ for more # information. # Reshape audio to split into epochs, then make epochs the first dimension. n_epochs, n_seconds = 16, 5 audio = audio[:, :int(n_seconds * sfreq * n_epochs)] X = audio.reshape([n_freqs, n_epochs, -1]).swapaxes(0, 1) n_times = X.shape[-1] # Delay the spectrogram according to delays so it can be combined w/ the STRF # Lags will now be in axis 1, then we reshape to vectorize delays = np.arange(np.round(tmin * sfreq), np.round(tmax * sfreq) + 1).astype(int) # Iterate through indices and append X_del = np.zeros((len(delays),) + X.shape) for ii, ix_delay in enumerate(delays): # These arrays will take/put particular indices in the data take = [slice(None)] * X.ndim put = [slice(None)] * X.ndim if ix_delay > 0: take[-1] = slice(None, -ix_delay) put[-1] = slice(ix_delay, None) elif ix_delay < 0: take[-1] = slice(-ix_delay, None) put[-1] = slice(None, ix_delay) X_del[ii][tuple(put)] = X[tuple(take)] # Now set the delayed axis to the 2nd dimension X_del = np.rollaxis(X_del, 0, 3) X_del = X_del.reshape([n_epochs, -1, n_times]) n_features = X_del.shape[1] weights_sim = weights.ravel() # Simulate a neural response to the sound, given this STRF y = np.zeros((n_epochs, n_times)) for ii, iep in enumerate(X_del): # Simulate this epoch and add random noise noise_amp = .002 y[ii] = np.dot(weights_sim, iep) + noise_amp * rng.randn(n_times) # Plot the first 2 trials of audio and the simulated electrode activity X_plt = scale(np.hstack(X[:2]).T).T y_plt = scale(np.hstack(y[:2])) time = np.arange(X_plt.shape[-1]) / sfreq _, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6), sharex=True) ax1.pcolormesh(time, freqs, X_plt, vmin=0, vmax=4, cmap='Reds', shading='gouraud') ax1.set_title('Input auditory features') ax1.set(ylim=[freqs.min(), freqs.max()], ylabel='Frequency (Hz)') ax2.plot(time, y_plt) ax2.set(xlim=[time.min(), time.max()], title='Simulated response', xlabel='Time (s)', ylabel='Activity (a.u.)') mne.viz.tight_layout() ############################################################################### # Fit a model to recover this receptive field # ------------------------------------------- # # Finally, we'll use the :class:`mne.decoding.ReceptiveField` class to recover # the linear receptive field of this signal. Note that properties of the # receptive field (e.g. smoothness) will depend on the autocorrelation in the # inputs and outputs. # Create training and testing data train, test = np.arange(n_epochs - 1), n_epochs - 1 X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test] X_train, X_test, y_train, y_test = [np.rollaxis(ii, -1, 0) for ii in (X_train, X_test, y_train, y_test)] # Model the simulated data as a function of the spectrogram input alphas = np.logspace(-3, 3, 7) scores = np.zeros_like(alphas) models = [] for ii, alpha in enumerate(alphas): rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=alpha) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores[ii] = rf.score(X_test, y_test) models.append(rf) times = rf.delays_ / float(rf.sfreq) # Choose the model that performed best on the held out data ix_best_alpha = np.argmax(scores) best_mod = models[ix_best_alpha] coefs = best_mod.coef_[0] best_pred = best_mod.predict(X_test)[:, 0] # Plot the original STRF, and the one that we recovered with modeling. _, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, coefs, **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Reconstructed STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() # Plot the actual response and the predicted response on a held out stimulus time_pred = np.arange(best_pred.shape[0]) / sfreq fig, ax = plt.subplots() ax.plot(time_pred, y_test, color='k', alpha=.2, lw=4) ax.plot(time_pred, best_pred, color='r', lw=1) ax.set(title='Original and predicted activity', xlabel='Time (s)') ax.legend(['Original', 'Predicted']) plt.autoscale(tight=True) mne.viz.tight_layout() ############################################################################### # Visualize the effects of regularization # --------------------------------------- # # Above we fit a :class:`mne.decoding.ReceptiveField` model for one of many # values for the ridge regularization parameter. Here we will plot the model # score as well as the model coefficients for each value, in order to # visualize how coefficients change with different levels of regularization. # These issues as well as the STRF pipeline are described in detail # in :footcite:`TheunissenEtAl2001,WillmoreSmyth2003,HoldgrafEtAl2016`. # Plot model score for each ridge parameter fig = plt.figure(figsize=(10, 4)) ax = plt.subplot2grid([2, len(alphas)], [1, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores, marker='o', color='r') ax.annotate('Best parameter', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Ridge regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter for ii, (rf, i_alpha) in enumerate(zip(models, alphas)): ax = plt.subplot2grid([2, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) plt.xticks([], []) plt.yticks([], []) plt.autoscale(tight=True) fig.suptitle('Model coefficients / scores for many ridge parameters', y=1) mne.viz.tight_layout() ############################################################################### # Using different regularization types # ------------------------------------ # In addition to the standard ridge regularization, the # :class:`mne.decoding.TimeDelayingRidge` class also exposes # `Laplacian <https://en.wikipedia.org/wiki/Laplacian_matrix>`_ regularization # term as: # # .. math:: # \left[\begin{matrix} # 1 & -1 & & & & \\ # -1 & 2 & -1 & & & \\ # & -1 & 2 & -1 & & \\ # & & \ddots & \ddots & \ddots & \\ # & & & -1 & 2 & -1 \\ # & & & & -1 & 1\end{matrix}\right] # # This imposes a smoothness constraint of nearby time samples and/or features. # Quoting :footcite:`CrosseEtAl2016` : # # Tikhonov [identity] regularization (Equation 5) reduces overfitting by # smoothing the TRF estimate in a way that is insensitive to # the amplitude of the signal of interest. However, the Laplacian # approach (Equation 6) reduces off-sample error whilst preserving # signal amplitude (Lalor et al., 2006). As a result, this approach # usually leads to an improved estimate of the system’s response (as # indexed by MSE) compared to Tikhonov regularization. # scores_lap = np.zeros_like(alphas) models_lap = [] for ii, alpha in enumerate(alphas): estimator = TimeDelayingRidge(tmin, tmax, sfreq, reg_type='laplacian', alpha=alpha) rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=estimator) rf.fit(X_train, y_train) # Now make predictions about the model output, given input stimuli. scores_lap[ii] = rf.score(X_test, y_test) models_lap.append(rf) ix_best_alpha_lap = np.argmax(scores_lap) ############################################################################### # Compare model performance # ------------------------- # Below we visualize the model performance of each regularization method # (ridge vs. Laplacian) for different levels of alpha. As you can see, the # Laplacian method performs better in general, because it imposes a smoothness # constraint along the time and feature dimensions of the coefficients. # This matches the "true" receptive field structure and results in a better # model fit. fig = plt.figure(figsize=(10, 6)) ax = plt.subplot2grid([3, len(alphas)], [2, 0], 1, len(alphas)) ax.plot(np.arange(len(alphas)), scores_lap, marker='o', color='r') ax.plot(np.arange(len(alphas)), scores, marker='o', color='0.5', ls=':') ax.annotate('Best Laplacian', (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap]), (ix_best_alpha_lap, scores_lap[ix_best_alpha_lap] - .1), arrowprops={'arrowstyle': '->'}) ax.annotate('Best Ridge', (ix_best_alpha, scores[ix_best_alpha]), (ix_best_alpha, scores[ix_best_alpha] - .1), arrowprops={'arrowstyle': '->'}) plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas]) ax.set(xlabel="Laplacian regularization value", ylabel="Score ($R^2$)", xlim=[-.4, len(alphas) - .6]) mne.viz.tight_layout() # Plot the STRF of each ridge parameter xlim = times[[0, -1]] for ii, (rf_lap, rf, i_alpha) in enumerate(zip(models_lap, models, alphas)): ax = plt.subplot2grid([3, len(alphas)], [0, ii], 1, 1) ax.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Laplacian') ax = plt.subplot2grid([3, len(alphas)], [1, ii], 1, 1) ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax.set(xticks=[], yticks=[], xlim=xlim) if ii == 0: ax.set(ylabel='Ridge') fig.suptitle('Model coefficients / scores for laplacian regularization', y=1) mne.viz.tight_layout() ############################################################################### # Plot the original STRF, and the one that we recovered with modeling. rf = models[ix_best_alpha] rf_lap = models_lap[ix_best_alpha_lap] _, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(9, 3), sharey=True, sharex=True) ax1.pcolormesh(delays_sec, freqs, weights, **kwargs) ax2.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs) ax3.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs) ax1.set_title('Original STRF') ax2.set_title('Best Ridge STRF') ax3.set_title('Best Laplacian STRF') plt.setp([iax.get_xticklabels() for iax in [ax1, ax2, ax3]], rotation=45) plt.autoscale(tight=True) mne.viz.tight_layout() ############################################################################### # References # ========== # .. footbibliography::
bsd-3-clause
f3r/scikit-learn
examples/model_selection/grid_search_text_feature_extraction.py
99
4163
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <[email protected]> # Peter Prettenhofer <[email protected]> # Mathieu Blondel <[email protected]> # License: BSD 3 clause from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
pnedunuri/scikit-learn
examples/decomposition/plot_image_denoising.py
181
5819
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of the Lena image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np from scipy.misc import lena from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### # Load Lena image and extract patches lena = lena() / 256.0 # downsample for higher speed lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena /= 4.0 height, width = lena.shape # Distort the right half of the image print('Distorting image...') distorted = lena.copy() distorted[:, height // 2:] += 0.075 * np.random.randn(width, height // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :height // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from Lena patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, lena, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, height // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = lena.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, height // 2:] = reconstruct_from_patches_2d( patches, (width, height // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], lena, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
kedz/cuttsum
trec2015/sbin/l2s/apsal-dev.py
1
9067
import cuttsum.events import cuttsum.corpora from cuttsum.pipeline import InputStreamResource from cuttsum.classifiers import NuggetRegressor import cuttsum.judgements import pandas as pd import numpy as np from datetime import datetime from cuttsum.misc import event2semsim from sklearn.cluster import AffinityPropagation from sklearn.metrics.pairwise import cosine_similarity import os def epoch(dt): return int((dt - datetime(1970, 1, 1)).total_seconds()) matches_df = cuttsum.judgements.get_merged_dataframe() def get_input_stream(event, gold_probs, extractor="goose", thresh=.8, delay=None, topk=20): max_nuggets = 3 corpus = cuttsum.corpora.get_raw_corpus(event) res = InputStreamResource() df = pd.concat( res.get_dataframes(event, corpus, extractor, thresh, delay, topk)) selector = (df["n conf"] == 1) & (df["nugget probs"].apply(len) == 0) df.loc[selector, "nugget probs"] = df.loc[selector, "nuggets"].apply(lambda x: {n:1 for n in x}) df["true probs"] = df["nugget probs"].apply(lambda x: [val for key, val in x.items()] +[0]) df["true probs"] = df["true probs"].apply(lambda x: np.max(x)) df.loc[(df["n conf"] == 1) & (df["nuggets"].apply(len) == 0), "true probs"] = 0 if gold_probs is True: df["probs"] = df["true probs"] else: df["probs"] = NuggetRegressor().predict(event, df) df["nuggets"] = df["nugget probs"].apply( lambda x: set([key for key, val in x.items() if val > .9])) nid2time = {} nids = set(matches_df[matches_df["query id"] == event.query_id]["nugget id"].tolist()) for nid in nids: ts = matches_df[matches_df["nugget id"] == nid]["update id"].apply(lambda x: int(x.split("-")[0])).tolist() ts.sort() nid2time[nid] = ts[0] fltr_nuggets = [] for name, row in df.iterrows(): fltr_nuggets.append( set([nug for nug in row["nuggets"] if nid2time[nug] <= row["timestamp"]])) #print df[["nuggets", "timestamp"]].apply(lambda y: print y[0]) # datetime.utcfromtimestamp(int(y["timestamp"]))) #print nids df["nuggets"] = fltr_nuggets df["nuggets"] = df["nuggets"].apply(lambda x: x if len(x) <= max_nuggets else set([])) from cuttsum.pipeline import DedupedArticlesResource ded = DedupedArticlesResource() stats_df = ded.get_stats_df(event, corpus, extractor, thresh) stats_df["stream ids"] = stats_df["stream ids"].apply(lambda x: set(eval(x))) sid2match = {} for _, row in stats_df.iterrows(): for sid in row["stream ids"]: sid2match[sid] = row["match"] all_ts = [] all_docs = [] new_docs = [] for (sid, ts), doc in df.groupby(["stream id", "timestamp"]): # print sub_doc if len(all_ts) > 0: assert ts >= all_ts[-1] all_ts.append(ts) if sid2match[sid] is True: new_docs.append(doc) all_docs.append(doc) df = pd.concat(new_docs) print len(all_docs), len(new_docs) return df def main(output_dir, sim_threshold, bucket_size, pref_offset): if not os.path.exists(output_dir): os.makedirs(output_dir) dev_qids = set([19, 23, 27, 34, 35]) summary_data = [] K_data = [] for event in cuttsum.events.get_events(): if event.query_num not in dev_qids: continue print event semsim = event2semsim(event) istream = get_input_stream(event, False, extractor="goose", thresh=.8, delay=None, topk=20) prev_time = 0 cache = None clusters = [] max_h = len(event.list_event_hours()) - 1 for h, hour in enumerate(event.list_event_hours()): if h % bucket_size != 0 and h != max_h: continue current_time = epoch(hour) input_sents = istream[ (istream["timestamp"] < current_time) & \ (istream["timestamp"] >= prev_time)] len_select = input_sents["lemmas stopped"].apply(len) > 10 input_sents = input_sents[len_select] if len(input_sents) <= 1: continue stems = input_sents["stems"].apply(lambda x: ' '.join(x)).tolist() X = semsim.transform(stems) probs = input_sents["probs"] p = probs.values K = -(1 - cosine_similarity(X)) K_ma = np.ma.masked_array(K, np.eye(K.shape[0])) Kmin = np.ma.min(K_ma) Kmax = np.ma.max(K_ma) median = np.ma.median(K_ma)[0] pref = np.minimum(p + median, -.05) print "SYS TIME:", hour, "# SENTS:", K.shape[0], print "min/median/max pref: {}/{}/{}".format( pref.min(), np.median(pref), pref.max()) #K_data.append({"min": Kmin, "max": Kmax, "median": median}) K_data.append({"min": (pref).min(), "max": (pref).max(), "median": np.median((pref))}) #print K # continue # ap = AffinityPropagation( preference=pref-pref_offset, affinity="precomputed", verbose=True, max_iter=1000) ap.fit(K) # ##print input_sents["pretty text"] # labels = ap.labels_ if ap.cluster_centers_indices_ != None: for c in ap.cluster_centers_indices_: if cache == None: cache = X[c] updates_df = \ input_sents.reset_index(drop=True).iloc[c] updates_df["query id"] = event.query_num updates_df["system timestamp"] = current_time summary_data.append( updates_df[ ["query id", "stream id", "sent id", "system timestamp", "sent text"] ].to_frame().T ) else: Ksum = cosine_similarity(cache, X[c]) #print "MAX SIM", Ksum.max() #print input_sents.reset_index(drop=True).iloc[c]["sent text"] if Ksum.max() < sim_threshold: cache = np.vstack([cache, X[c]]) updates_df = \ input_sents.reset_index(drop=True).iloc[c] updates_df["query id"] = event.query_num updates_df["system timestamp"] = current_time summary_data.append( updates_df[ ["query id", "stream id", "sent id", "system timestamp", "sent text"] ].to_frame().T ) # # for l, i in enumerate(af.cluster_centers_indices_): # support = np.sum(labels == l) # center = input_sents.iloc[i][["update id", "sent text", "pretty text", "stems", "nuggets"]] # center = center.to_dict() # center["support"] = support # center["timestamp"] = current_time # clusters.append(center) # prev_time = current_time # df = pd.DataFrame(clusters, columns=["update id", "timestamp", "support", "sent text", "pretty text", "stems", "nuggets"]) # # import os # dirname = "clusters" # if not os.path.exists(dirname): # os.makedirs(dirname) # # with open(os.path.join(dirname, "{}.tsv".format(event.query_id)), "w") as f: # df.to_csv(f, sep="\t", index=False) # df = pd.DataFrame(K_data, columns=["min", "max", "median"]) print df print df.mean() print df.std() print df.max() df = pd.concat(summary_data) df["conf"] = .5 df["team id"] = "APSAL" df["run id"] = "sim{}_bs{}_off{}".format( sim_threshold, bucket_size, pref_offset) print df of = os.path.join(output_dir, "apsal" + "sim{}_bs{}_off{}.tsv".format( sim_threshold, bucket_size, pref_offset)) cols = ["query id", "team id", "run id", "stream id", "sent id", "system timestamp", "conf"] df[cols].to_csv(of, sep="\t", header=False, index=False) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument(u"--output-dir", type=str, required=True, help="directory to write results.") parser.add_argument( u"--sim-cutoff", type=float, required=True) parser.add_argument( u"--bucket-size", type=float, required=True) parser.add_argument( u"--pref-offset", type=float, required=True) args = parser.parse_args() main(args.output_dir, args.sim_cutoff, args.bucket_size, args.pref_offset)
apache-2.0
mlyundin/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
alexeyum/scikit-learn
sklearn/cluster/tests/test_spectral.py
72
7950
"""Testing for Spectral Clustering methods""" from sklearn.externals.six.moves import cPickle dumps, loads = cPickle.dumps, cPickle.loads import numpy as np from scipy import sparse from sklearn.utils import check_random_state from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_warns_message from sklearn.cluster import SpectralClustering, spectral_clustering from sklearn.cluster.spectral import spectral_embedding from sklearn.cluster.spectral import discretize from sklearn.metrics import pairwise_distances from sklearn.metrics import adjusted_rand_score from sklearn.metrics.pairwise import kernel_metrics, rbf_kernel from sklearn.datasets.samples_generator import make_blobs def test_spectral_clustering(): S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0], [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]]) for eigen_solver in ('arpack', 'lobpcg'): for assign_labels in ('kmeans', 'discretize'): for mat in (S, sparse.csr_matrix(S)): model = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed', eigen_solver=eigen_solver, assign_labels=assign_labels ).fit(mat) labels = model.labels_ if labels[0] == 0: labels = 1 - labels assert_array_equal(labels, [1, 1, 1, 0, 0, 0, 0]) model_copy = loads(dumps(model)) assert_equal(model_copy.n_clusters, model.n_clusters) assert_equal(model_copy.eigen_solver, model.eigen_solver) assert_array_equal(model_copy.labels_, model.labels_) def test_spectral_amg_mode(): # Test the amg mode of SpectralClustering centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) try: from pyamg import smoothed_aggregation_solver amg_loaded = True except ImportError: amg_loaded = False if amg_loaded: labels = spectral_clustering(S, n_clusters=len(centers), random_state=0, eigen_solver="amg") # We don't care too much that it's good, just that it *worked*. # There does have to be some lower limit on the performance though. assert_greater(np.mean(labels == true_labels), .3) else: assert_raises(ValueError, spectral_embedding, S, n_components=len(centers), random_state=0, eigen_solver="amg") def test_spectral_unknown_mode(): # Test that SpectralClustering fails with an unknown mode set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, eigen_solver="<unknown>") def test_spectral_unknown_assign_labels(): # Test that SpectralClustering fails with an unknown assign_labels set. centers = np.array([ [0., 0., 0.], [10., 10., 10.], [20., 20., 20.], ]) X, true_labels = make_blobs(n_samples=100, centers=centers, cluster_std=1., random_state=42) D = pairwise_distances(X) # Distance matrix S = np.max(D) - D # Similarity matrix S = sparse.coo_matrix(S) assert_raises(ValueError, spectral_clustering, S, n_clusters=2, random_state=0, assign_labels="<unknown>") def test_spectral_clustering_sparse(): X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01) S = rbf_kernel(X, gamma=1) S = np.maximum(S - 1e-4, 0) S = sparse.coo_matrix(S) labels = SpectralClustering(random_state=0, n_clusters=2, affinity='precomputed').fit(S).labels_ assert_equal(adjusted_rand_score(y, labels), 1) def test_affinities(): # Note: in the following, random_state has been selected to have # a dataset that yields a stable eigen decomposition both when built # on OSX and Linux X, y = make_blobs(n_samples=20, random_state=0, centers=[[1, 1], [-1, -1]], cluster_std=0.01 ) # nearest neighbors affinity sp = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', random_state=0) assert_warns_message(UserWarning, 'not fully connected', sp.fit, X) assert_equal(adjusted_rand_score(y, sp.labels_), 1) sp = SpectralClustering(n_clusters=2, gamma=2, random_state=0) labels = sp.fit(X).labels_ assert_equal(adjusted_rand_score(y, labels), 1) X = check_random_state(10).rand(10, 5) * 10 kernels_available = kernel_metrics() for kern in kernels_available: # Additive chi^2 gives a negative similarity matrix which # doesn't make sense for spectral clustering if kern != 'additive_chi2': sp = SpectralClustering(n_clusters=2, affinity=kern, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) sp = SpectralClustering(n_clusters=2, affinity=lambda x, y: 1, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() sp = SpectralClustering(n_clusters=2, affinity=histogram, random_state=0) labels = sp.fit(X).labels_ assert_equal((X.shape[0],), labels.shape) # raise error on unknown affinity sp = SpectralClustering(n_clusters=2, affinity='<unknown>') assert_raises(ValueError, sp.fit, X) def test_discretize(seed=8): # Test the discretize using a noise assignment matrix random_state = np.random.RandomState(seed) for n_samples in [50, 100, 150, 500]: for n_class in range(2, 10): # random class labels y_true = random_state.randint(0, n_class + 1, n_samples) y_true = np.array(y_true, np.float) # noise class assignment matrix y_indicator = sparse.coo_matrix((np.ones(n_samples), (np.arange(n_samples), y_true)), shape=(n_samples, n_class + 1)) y_true_noisy = (y_indicator.toarray() + 0.1 * random_state.randn(n_samples, n_class + 1)) y_pred = discretize(y_true_noisy, random_state) assert_greater(adjusted_rand_score(y_true, y_pred), 0.8)
bsd-3-clause
olologin/scikit-learn
sklearn/gaussian_process/tests/test_kernels.py
24
11602
"""Testing for kernels for Gaussian processes.""" # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause from collections import Hashable from sklearn.externals.funcsigs import signature import numpy as np from sklearn.gaussian_process.kernels import _approx_fprime from sklearn.metrics.pairwise \ import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels from sklearn.gaussian_process.kernels \ import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator, Exponentiation) from sklearn.base import clone from sklearn.utils.testing import (assert_equal, assert_almost_equal, assert_not_equal, assert_array_equal, assert_array_almost_equal) X = np.random.RandomState(0).normal(0, 1, (5, 2)) Y = np.random.RandomState(0).normal(0, 1, (6, 2)) kernel_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0) kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)), ConstantKernel(constant_value=10.0), 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * RBF(length_scale=0.5), kernel_white, 2.0 * RBF(length_scale=[0.5, 2.0]), 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * Matern(length_scale=0.5, nu=0.5), 2.0 * Matern(length_scale=1.5, nu=1.5), 2.0 * Matern(length_scale=2.5, nu=2.5), 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5), 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5), 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5), RationalQuadratic(length_scale=0.5, alpha=1.5), ExpSineSquared(length_scale=0.5, periodicity=1.5), DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2] for metric in PAIRWISE_KERNEL_FUNCTIONS: if metric in ["additive_chi2", "chi2"]: continue kernels.append(PairwiseKernel(gamma=1.0, metric=metric)) def test_kernel_gradient(): """ Compare analytic and numeric gradient of kernels. """ for kernel in kernels: K, K_gradient = kernel(X, eval_gradient=True) assert_equal(K_gradient.shape[0], X.shape[0]) assert_equal(K_gradient.shape[1], X.shape[0]) assert_equal(K_gradient.shape[2], kernel.theta.shape[0]) def eval_kernel_for_theta(theta): kernel_clone = kernel.clone_with_theta(theta) K = kernel_clone(X, eval_gradient=False) return K K_gradient_approx = \ _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10) assert_almost_equal(K_gradient, K_gradient_approx, 4) def test_kernel_theta(): """ Check that parameter vector theta of kernel is set correctly. """ for kernel in kernels: if isinstance(kernel, KernelOperator) \ or isinstance(kernel, Exponentiation): # skip non-basic kernels continue theta = kernel.theta _, K_gradient = kernel(X, eval_gradient=True) # Determine kernel parameters that contribute to theta init_sign = signature(kernel.__class__.__init__).parameters.values() args = [p.name for p in init_sign if p.name != 'self'] theta_vars = map(lambda s: s.rstrip("_bounds"), filter(lambda s: s.endswith("_bounds"), args)) assert_equal( set(hyperparameter.name for hyperparameter in kernel.hyperparameters), set(theta_vars)) # Check that values returned in theta are consistent with # hyperparameter values (being their logarithms) for i, hyperparameter in enumerate(kernel.hyperparameters): assert_equal(theta[i], np.log(getattr(kernel, hyperparameter.name))) # Fixed kernel parameters must be excluded from theta and gradient. for i, hyperparameter in enumerate(kernel.hyperparameters): # create copy with certain hyperparameter fixed params = kernel.get_params() params[hyperparameter.name + "_bounds"] = "fixed" kernel_class = kernel.__class__ new_kernel = kernel_class(**params) # Check that theta and K_gradient are identical with the fixed # dimension left out _, K_gradient_new = new_kernel(X, eval_gradient=True) assert_equal(theta.shape[0], new_kernel.theta.shape[0] + 1) assert_equal(K_gradient.shape[2], K_gradient_new.shape[2] + 1) if i > 0: assert_equal(theta[:i], new_kernel.theta[:i]) assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i]) if i + 1 < len(kernel.hyperparameters): assert_equal(theta[i+1:], new_kernel.theta[i:]) assert_array_equal(K_gradient[..., i+1:], K_gradient_new[..., i:]) # Check that values of theta are modified correctly for i, hyperparameter in enumerate(kernel.hyperparameters): theta[i] = np.log(42) kernel.theta = theta assert_almost_equal(getattr(kernel, hyperparameter.name), 42) setattr(kernel, hyperparameter.name, 43) assert_almost_equal(kernel.theta[i], np.log(43)) def test_auto_vs_cross(): """ Auto-correlation and cross-correlation should be consistent. """ for kernel in kernels: if kernel == kernel_white: continue # Identity is not satisfied on diagonal K_auto = kernel(X) K_cross = kernel(X, X) assert_almost_equal(K_auto, K_cross, 5) def test_kernel_diag(): """ Test that diag method of kernel returns consistent results. """ for kernel in kernels: K_call_diag = np.diag(kernel(X)) K_diag = kernel.diag(X) assert_almost_equal(K_call_diag, K_diag, 5) def test_kernel_operator_commutative(): """ Adding kernels and multiplying kernels should be commutative. """ # Check addition assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X)) # Check multiplication assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X)) def test_kernel_anisotropic(): """ Anisotropic kernel should be consistent with isotropic kernels.""" kernel = 3.0 * RBF([0.5, 2.0]) K = kernel(X) X1 = np.array(X) X1[:, 0] *= 4 K1 = 3.0 * RBF(2.0)(X1) assert_almost_equal(K, K1) X2 = np.array(X) X2[:, 1] /= 4 K2 = 3.0 * RBF(0.5)(X2) assert_almost_equal(K, K2) # Check getting and setting via theta kernel.theta = kernel.theta + np.log(2) assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0])) assert_array_equal(kernel.k2.length_scale, [1.0, 4.0]) def test_kernel_stationary(): """ Test stationarity of kernels.""" for kernel in kernels: if not kernel.is_stationary(): continue K = kernel(X, X + 1) assert_almost_equal(K[0, 0], np.diag(K)) def test_kernel_clone(): """ Test that sklearn's clone works correctly on kernels. """ for kernel in kernels: kernel_cloned = clone(kernel) assert_equal(kernel, kernel_cloned) assert_not_equal(id(kernel), id(kernel_cloned)) for attr in kernel.__dict__.keys(): attr_value = getattr(kernel, attr) attr_value_cloned = getattr(kernel_cloned, attr) if attr.startswith("hyperparameter_"): assert_equal(attr_value.name, attr_value_cloned.name) assert_equal(attr_value.value_type, attr_value_cloned.value_type) assert_array_equal(attr_value.bounds, attr_value_cloned.bounds) assert_equal(attr_value.n_elements, attr_value_cloned.n_elements) elif np.iterable(attr_value): for i in range(len(attr_value)): if np.iterable(attr_value[i]): assert_array_equal(attr_value[i], attr_value_cloned[i]) else: assert_equal(attr_value[i], attr_value_cloned[i]) else: assert_equal(attr_value, attr_value_cloned) if not isinstance(attr_value, Hashable): # modifiable attributes must not be identical assert_not_equal(id(attr_value), id(attr_value_cloned)) def test_matern_kernel(): """ Test consistency of Matern kernel for special values of nu. """ K = Matern(nu=1.5, length_scale=1.0)(X) # the diagonal elements of a matern kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(X.shape[0])) # matern kernel for coef0==0.5 is equal to absolute exponential kernel K_absexp = np.exp(-euclidean_distances(X, X, squared=False)) K = Matern(nu=0.5, length_scale=1.0)(X) assert_array_almost_equal(K, K_absexp) # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5]) # result in nearly identical results as the general case for coef0 in # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny] tiny = 1e-10 for nu in [0.5, 1.5, 2.5]: K1 = Matern(nu=nu, length_scale=1.0)(X) K2 = Matern(nu=nu + tiny, length_scale=1.0)(X) assert_array_almost_equal(K1, K2) def test_kernel_versus_pairwise(): """Check that GP kernels can also be used as pairwise kernels.""" for kernel in kernels: # Test auto-kernel if kernel != kernel_white: # For WhiteKernel: k(X) != k(X,X). This is assumed by # pairwise_kernels K1 = kernel(X) K2 = pairwise_kernels(X, metric=kernel) assert_array_almost_equal(K1, K2) # Test cross-kernel K1 = kernel(X, Y) K2 = pairwise_kernels(X, Y, metric=kernel) assert_array_almost_equal(K1, K2) def test_set_get_params(): """Check that set_params()/get_params() is consistent with kernel.theta.""" for kernel in kernels: # Test get_params() index = 0 params = kernel.get_params() for hyperparameter in kernel.hyperparameters: if hyperparameter.bounds is "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels assert_almost_equal(np.exp(kernel.theta[index:index+size]), params[hyperparameter.name]) index += size else: assert_almost_equal(np.exp(kernel.theta[index]), params[hyperparameter.name]) index += 1 # Test set_params() index = 0 value = 10 # arbitrary value for hyperparameter in kernel.hyperparameters: if hyperparameter.bounds is "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels kernel.set_params(**{hyperparameter.name: [value]*size}) assert_almost_equal(np.exp(kernel.theta[index:index+size]), [value]*size) index += size else: kernel.set_params(**{hyperparameter.name: value}) assert_almost_equal(np.exp(kernel.theta[index]), value) index += 1
bsd-3-clause
belltailjp/scikit-learn
sklearn/datasets/base.py
196
18554
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause import os import csv import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): dict.__init__(self, kwargs) def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __getstate__(self): return self.__dict__ def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error: {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import pylab as pl #doctest: +SKIP >>> pl.gray() #doctest: +SKIP >>> pl.matshow(digits.images[0]) #doctest: +SKIP >>> pl.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float) target[i] = np.asarray(d[-1], dtype=np.float) return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index]
bsd-3-clause
JPFrancoia/scikit-learn
sklearn/cluster/k_means_.py
4
59475
"""K-means clustering""" # Authors: Gael Varoquaux <[email protected]> # Thomas Rueckstiess <[email protected]> # James Bergstra <[email protected]> # Jan Schlueter <[email protected]> # Nelle Varoquaux # Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, ClusterMixin, TransformerMixin from ..metrics.pairwise import euclidean_distances from ..utils.extmath import row_norms, squared_norm, stable_cumsum from ..utils.sparsefuncs_fast import assign_rows_csr from ..utils.sparsefuncs import mean_variance_axis from ..utils.fixes import astype from ..utils import check_array from ..utils import check_random_state from ..utils import as_float_array from ..utils import gen_batches from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..utils.random import choice from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.six import string_types from . import _k_means from ._k_means_elkan import k_means_elkan ############################################################################### # Initialization heuristic def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """Init n_clusters seeds according to k-means++ Parameters ----------- X: array or sparse matrix, shape (n_samples, n_features) The data to pick seeds for. To avoid memory copy, the input data should be double precision (dtype=np.float64). n_clusters: integer The number of seeds to choose x_squared_norms: array, shape (n_samples,) Squared Euclidean norm of each data point. random_state: numpy.RandomState The generator used to initialize the centers. n_local_trials: integer, optional The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: Arthur, D. and Vassilvitskii, S. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip, which is the implementation used in the aforementioned paper. """ n_samples, n_features = X.shape centers = np.empty((n_clusters, n_features), dtype=X.dtype) assert x_squared_norms is not None, 'x_squared_norms None in _k_init' # Set the number of local seeding trials if none is given if n_local_trials is None: # This is what Arthur/Vassilvitskii tried, but did not report # specific results for other than mentioning in the conclusion # that it helped. n_local_trials = 2 + int(np.log(n_clusters)) # Pick first center randomly center_id = random_state.randint(n_samples) if sp.issparse(X): centers[0] = X[center_id].toarray() else: centers[0] = X[center_id] # Initialize list of closest distances and calculate current potential closest_dist_sq = euclidean_distances( centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True) current_pot = closest_dist_sq.sum() # Pick the remaining n_clusters-1 points for c in range(1, n_clusters): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq), rand_vals) # Compute distances to center candidates distance_to_candidates = euclidean_distances( X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True) # Decide which candidate is the best best_candidate = None best_pot = None best_dist_sq = None for trial in range(n_local_trials): # Compute potential when including center candidate new_dist_sq = np.minimum(closest_dist_sq, distance_to_candidates[trial]) new_pot = new_dist_sq.sum() # Store result if it is the best local trial so far if (best_candidate is None) or (new_pot < best_pot): best_candidate = candidate_ids[trial] best_pot = new_pot best_dist_sq = new_dist_sq # Permanently add best center candidate found in local tries if sp.issparse(X): centers[c] = X[best_candidate].toarray() else: centers[c] = X[best_candidate] current_pot = best_pot closest_dist_sq = best_dist_sq return centers ############################################################################### # K-means batch estimation by EM (expectation maximization) def _validate_center_shape(X, n_centers, centers): """Check if centers is compatible with X and n_centers""" if len(centers) != n_centers: raise ValueError('The shape of the initial centers (%s) ' 'does not match the number of clusters %i' % (centers.shape, n_centers)) if centers.shape[1] != X.shape[1]: raise ValueError( "The number of features of the initial centers %s " "does not match the number of features of the data %s." % (centers.shape[1], X.shape[1])) def _tolerance(X, tol): """Return a tolerance which is independent of the dataset""" if sp.issparse(X): variances = mean_variance_axis(X, axis=0)[1] else: variances = np.var(X, axis=0) return np.mean(variances) * tol def k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False): """K-means clustering algorithm. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The observations to cluster. n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, optional The relative increment in the results before declaring convergence. verbose : boolean, optional Verbosity mode. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). best_n_iter: int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. """ if n_init <= 0: raise ValueError("Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError('Number of iterations should be a positive number,' ' got %d instead' % max_iter) X = as_float_array(X, copy=copy_x) tol = _tolerance(X, tol) # If the distances are precomputed every job will create a matrix of shape # (n_clusters, n_samples). To stop KMeans from eating up memory we only # activate this if the created matrix is guaranteed to be under 100MB. 12 # million entries consume a little under 100MB if they are of type double. if precompute_distances == 'auto': n_samples = X.shape[0] precompute_distances = (n_clusters * n_samples) < 12e6 elif isinstance(precompute_distances, bool): pass else: raise ValueError("precompute_distances should be 'auto' or True/False" ", but a value of %r was passed" % precompute_distances) # subtract of mean of x for more accurate distance computations if not sp.issparse(X) or hasattr(init, '__array__'): X_mean = X.mean(axis=0) if not sp.issparse(X): # The copy was already done above X -= X_mean if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) init -= X_mean if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in k-means instead of n_init=%d' % n_init, RuntimeWarning, stacklevel=2) n_init = 1 # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) best_labels, best_inertia, best_centers = None, None, None if n_clusters == 1: # elkan doesn't make sense for a single cluster, full will produce # the right result. algorithm = "full" if algorithm == "auto": algorithm = "full" if sp.issparse(X) else 'elkan' if algorithm == "full": kmeans_single = _kmeans_single_lloyd elif algorithm == "elkan": kmeans_single = _kmeans_single_elkan else: raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got" " %s" % str(algorithm)) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, precompute_distances=precompute_distances, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(kmeans_single)(X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, tol=tol, precompute_distances=precompute_distances, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed) for seed in seeds) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if not sp.issparse(X): if not copy_x: X += X_mean best_centers += X_mean if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia def _kmeans_single_elkan(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): if sp.issparse(X): raise ValueError("algorithm='elkan' not supported for sparse input X") X = check_array(X, order="C") random_state = check_random_state(random_state) if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) centers = np.ascontiguousarray(centers) if verbose: print('Initialization complete') centers, labels, n_iter = k_means_elkan(X, n_clusters, centers, tol=tol, max_iter=max_iter, verbose=verbose) inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64) return labels, inertia, centers, n_iter def _kmeans_single_lloyd(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): """A single run of k-means, assumes preparation completed prior. Parameters ---------- X: array-like of floats, shape (n_samples, n_features) The observations to cluster. n_clusters: int The number of clusters to form as well as the number of centroids to generate. max_iter: int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. init: {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (k, p) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. tol: float, optional The relative increment in the results before declaring convergence. verbose: boolean, optional Verbosity mode x_squared_norms: array Precomputed x_squared_norms. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- centroid: float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label: integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia: float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ random_state = check_random_state(random_state) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment is also called the E-step of EM labels, inertia = \ _labels_inertia(X, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances) # computation of the means is also called the M-step of EM if sp.issparse(X): centers = _k_means._centers_sparse(X, labels, n_clusters, distances) else: centers = _k_means._centers_dense(X, labels, n_clusters, distances) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print("Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol)) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = \ _labels_inertia(X, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances) return best_labels, best_inertia, best_centers, i + 1 def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances): """Compute labels and inertia using a full distance matrix. This will overwrite the 'distances' array in-place. Parameters ---------- X : numpy array, shape (n_sample, n_features) Input data. x_squared_norms : numpy array, shape (n_samples,) Precomputed squared norms of X. centers : numpy array, shape (n_clusters, n_features) Cluster centers which data is assigned to. distances : numpy array, shape (n_samples,) Pre-allocated array in which distances are stored. Returns ------- labels : numpy array, dtype=np.int, shape (n_samples,) Indices of clusters that samples are assigned to. inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] k = centers.shape[0] all_distances = euclidean_distances(centers, X, x_squared_norms, squared=True) labels = np.empty(n_samples, dtype=np.int32) labels.fill(-1) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(k): dist = all_distances[center_id] labels[dist < mindist] = center_id mindist = np.minimum(dist, mindist) if n_samples == distances.shape[0]: # distances will be changed in-place distances[:] = mindist inertia = mindist.sum() return labels, inertia def _labels_inertia(X, x_squared_norms, centers, precompute_distances=True, distances=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. This will compute the distances in-place. Parameters ---------- X: float64 array-like or CSR sparse matrix, shape (n_samples, n_features) The input samples to assign to the labels. x_squared_norms: array, shape (n_samples,) Precomputed squared euclidean norm of each data point, to speed up computations. centers: float array, shape (k, n_features) The cluster centers. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). distances: float array, shape (n_samples,) Pre-allocated array to be filled in with each sample's distance to the closest center. Returns ------- labels: int array of shape(n) The resulting assignment inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] # set the default value of centers to -1 to be able to detect any anomaly # easily labels = -np.ones(n_samples, np.int32) if distances is None: distances = np.zeros(shape=(0,), dtype=X.dtype) # distances will be changed in-place if sp.issparse(X): inertia = _k_means._assign_labels_csr( X, x_squared_norms, centers, labels, distances=distances) else: if precompute_distances: return _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances) inertia = _k_means._assign_labels_array( X, x_squared_norms, centers, labels, distances=distances) return labels, inertia def _init_centroids(X, k, init, random_state=None, x_squared_norms=None, init_size=None): """Compute the initial centroids Parameters ---------- X: array, shape (n_samples, n_features) k: int number of centroids init: {'k-means++', 'random' or ndarray or callable} optional Method for initialization random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. x_squared_norms: array, shape (n_samples,), optional Squared euclidean norm of each data point. Pass it if you have it at hands already to avoid it being recomputed here. Default: None init_size : int, optional Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than k. Returns ------- centers: array, shape(k, n_features) """ random_state = check_random_state(random_state) n_samples = X.shape[0] if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) if init_size is not None and init_size < n_samples: if init_size < k: warnings.warn( "init_size=%d should be larger than k=%d. " "Setting it to 3*k" % (init_size, k), RuntimeWarning, stacklevel=2) init_size = 3 * k init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] x_squared_norms = x_squared_norms[init_indices] n_samples = X.shape[0] elif n_samples < k: raise ValueError( "n_samples=%d should be larger than k=%d" % (n_samples, k)) if isinstance(init, string_types) and init == 'k-means++': centers = _k_init(X, k, random_state=random_state, x_squared_norms=x_squared_norms) elif isinstance(init, string_types) and init == 'random': seeds = random_state.permutation(n_samples)[:k] centers = X[seeds] elif hasattr(init, '__array__'): # ensure that the centers have the same dtype as X # this is a requirement of fused types of cython centers = np.array(init, dtype=X.dtype) elif callable(init): centers = init(X, k, random_state=random_state) centers = np.asarray(centers, dtype=X.dtype) else: raise ValueError("the init parameter for the k-means should " "be 'k-means++' or 'random' or an ndarray, " "'%s' (type '%s') was passed." % (init, type(init))) if sp.issparse(centers): centers = centers.toarray() _validate_center_shape(X, k, centers) return centers class KMeans(BaseEstimator, ClusterMixin, TransformerMixin): """K-Means clustering Read more in the :ref:`User Guide <k_means>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random' or an ndarray} Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, default: 1e-4 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point inertia_ : float Sum of distances of samples to their closest cluster center. Examples -------- >>> from sklearn.cluster import KMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X) >>> kmeans.labels_ array([0, 0, 0, 1, 1, 1], dtype=int32) >>> kmeans.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) >>> kmeans.cluster_centers_ array([[ 1., 2.], [ 4., 2.]]) See also -------- MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much faster than the default batch implementation. Notes ------ The k-means problem is solved using Lloyd's algorithm. The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration. The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii, 'How slow is the k-means method?' SoCG2006) In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local minima. That's why it can be useful to restart it several times. """ def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto'): self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.tol = tol self.precompute_distances = precompute_distances self.n_init = n_init self.verbose = verbose self.random_state = random_state self.copy_x = copy_x self.n_jobs = n_jobs self.algorithm = algorithm def _check_fit_data(self, X): """Verify that the number of samples given is larger than k""" X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) if X.shape[0] < self.n_clusters: raise ValueError("n_samples=%d should be >= n_clusters=%d" % ( X.shape[0], self.n_clusters)) return X def _check_test_data(self, X): X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES) n_samples, n_features = X.shape expected_n_features = self.cluster_centers_.shape[1] if not n_features == expected_n_features: raise ValueError("Incorrect number of features. " "Got %d features, expected %d" % ( n_features, expected_n_features)) return X def fit(self, X, y=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) """ random_state = check_random_state(self.random_state) X = self._check_fit_data(X) self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \ k_means( X, n_clusters=self.n_clusters, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, precompute_distances=self.precompute_distances, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, algorithm=self.algorithm, return_n_iter=True) return self def fit_predict(self, X, y=None): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ return self.fit(X).labels_ def fit_transform(self, X, y=None): """Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. """ # Currently, this just skips a copy of the data if it is not in # np.array or CSR format already. # XXX This skips _check_test_data, which may change the dtype; # we should refactor the input validation. X = self._check_fit_data(X) return self.fit(X)._transform(X) def transform(self, X, y=None): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._transform(X) def _transform(self, X): """guts of transform method; no input validation""" return euclidean_distances(X, self.cluster_centers_) def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0] def score(self, X, y=None): """Opposite of the value of X on the K-means objective. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data. Returns ------- score : float Opposite of the value of X on the K-means objective. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1] def _mini_batch_step(X, x_squared_norms, centers, counts, old_center_buffer, compute_squared_diff, distances, random_reassign=False, random_state=None, reassignment_ratio=.01, verbose=False): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : array, shape (n_samples, n_features) The original data array. x_squared_norms : array, shape (n_samples,) Squared euclidean norm of each data point. centers : array, shape (k, n_features) The cluster centers. This array is MODIFIED IN PLACE counts : array, shape (k,) The vector in which we keep track of the numbers of elements in a cluster. This array is MODIFIED IN PLACE distances : array, dtype float, shape (n_samples), optional If not None, should be a pre-allocated array that will be used to store the distances of each sample to its closest center. May not be None when random_reassign is True. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. random_reassign : boolean, optional If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, optional Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, optional, default False Controls the verbosity. compute_squared_diff : bool If set to False, the squared diff computation is skipped. old_center_buffer : int Copy of old centers for monitoring convergence. Returns ------- inertia : float Sum of distances of samples to their closest cluster center. squared_diff : numpy array, shape (n_clusters,) Squared distances between previous and updated cluster centers. """ # Perform label assignment to nearest centers nearest_center, inertia = _labels_inertia(X, x_squared_norms, centers, distances=distances) if random_reassign and reassignment_ratio > 0: random_state = check_random_state(random_state) # Reassign clusters that have very low counts to_reassign = counts < reassignment_ratio * counts.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > .5 * X.shape[0]: indices_dont_reassign = np.argsort(counts)[int(.5 * X.shape[0]):] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = choice(X.shape[0], replace=False, size=n_reassigns, random_state=random_state) if verbose: print("[MiniBatchKMeans] Reassigning %i cluster centers." % n_reassigns) if sp.issparse(X) and not sp.issparse(centers): assign_rows_csr(X, astype(new_centers, np.intp), astype(np.where(to_reassign)[0], np.intp), centers) else: centers[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. counts[to_reassign] = np.min(counts[~to_reassign]) # implementation for the sparse CSR representation completely written in # cython if sp.issparse(X): return inertia, _k_means._mini_batch_update_csr( X, x_squared_norms, centers, counts, nearest_center, old_center_buffer, compute_squared_diff) # dense variant in mostly numpy (not as memory efficient though) k = centers.shape[0] squared_diff = 0.0 for center_idx in range(k): # find points from minibatch that are assigned to this center center_mask = nearest_center == center_idx count = center_mask.sum() if count > 0: if compute_squared_diff: old_center_buffer[:] = centers[center_idx] # inplace remove previous count scaling centers[center_idx] *= counts[center_idx] # inplace sum with new points members of this cluster centers[center_idx] += np.sum(X[center_mask], axis=0) # update the count statistics for this center counts[center_idx] += count # inplace rescale to compute mean of all points (old and new) # Note: numpy >= 1.10 does not support '/=' for the following # expression for a mixture of int and float (see numpy issue #6464) centers[center_idx] = centers[center_idx] / counts[center_idx] # update the squared diff if necessary if compute_squared_diff: diff = centers[center_idx].ravel() - old_center_buffer.ravel() squared_diff += np.dot(diff, diff) return inertia, squared_diff def _mini_batch_convergence(model, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, context, verbose=0): """Helper function to encapsulate the early stopping logic""" # Normalize inertia to be able to compare values when # batch_size changes batch_inertia /= model.batch_size centers_squared_diff /= model.batch_size # Compute an Exponentially Weighted Average of the squared # diff to monitor the convergence while discarding # minibatch-local stochastic variability: # https://en.wikipedia.org/wiki/Moving_average ewa_diff = context.get('ewa_diff') ewa_inertia = context.get('ewa_inertia') if ewa_diff is None: ewa_diff = centers_squared_diff ewa_inertia = batch_inertia else: alpha = float(model.batch_size) * 2.0 / (n_samples + 1) alpha = 1.0 if alpha > 1.0 else alpha ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha # Log progress to be able to monitor convergence if verbose: progress_msg = ( 'Minibatch iteration %d/%d:' ' mean batch inertia: %f, ewa inertia: %f ' % ( iteration_idx + 1, n_iter, batch_inertia, ewa_inertia)) print(progress_msg) # Early stopping based on absolute tolerance on squared change of # centers position (using EWA smoothing) if tol > 0.0 and ewa_diff <= tol: if verbose: print('Converged (small centers change) at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # Early stopping heuristic due to lack of improvement on smoothed inertia ewa_inertia_min = context.get('ewa_inertia_min') no_improvement = context.get('no_improvement', 0) if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min: no_improvement = 0 ewa_inertia_min = ewa_inertia else: no_improvement += 1 if (model.max_no_improvement is not None and no_improvement >= model.max_no_improvement): if verbose: print('Converged (lack of improvement in inertia)' ' at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # update the convergence context to maintain state across successive calls: context['ewa_diff'] = ewa_diff context['ewa_inertia'] = ewa_inertia context['ewa_inertia_min'] = ewa_inertia_min context['no_improvement'] = no_improvement return False class MiniBatchKMeans(KMeans): """Mini-Batch K-Means clustering Read more in the :ref:`User Guide <mini_batch_kmeans>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. max_no_improvement : int, default: 10 Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. tol : float, default: 0.0 Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic. To disable convergence detection based on normalized center change, set tol to 0.0 (default). batch_size : int, optional, default: 100 Size of the mini batches. init_size : int, optional, default: 3 * batch_size Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters. init : {'k-means++', 'random' or an ndarray}, default: 'k-means++' Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. n_init : int, default=3 Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the ``n_init`` initializations as measured by inertia. compute_labels : boolean, default=True Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. reassignment_ratio : float, default: 0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : boolean, optional Verbosity mode. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point (if compute_labels is set to True). inertia_ : float The value of the inertia criterion associated with the chosen partition (if compute_labels is set to True). The inertia is defined as the sum of square distances of samples to their nearest neighbor. See also -------- KMeans The classic implementation of the clustering method based on the Lloyd's algorithm. It consumes the whole set of input data at each iteration. Notes ----- See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf """ def __init__(self, n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01): super(MiniBatchKMeans, self).__init__( n_clusters=n_clusters, init=init, max_iter=max_iter, verbose=verbose, random_state=random_state, tol=tol, n_init=n_init) self.max_no_improvement = max_no_improvement self.batch_size = batch_size self.compute_labels = compute_labels self.init_size = init_size self.reassignment_ratio = reassignment_ratio def fit(self, X, y=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster """ random_state = check_random_state(self.random_state) X = check_array(X, accept_sparse="csr", order='C', dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if n_samples < self.n_clusters: raise ValueError("Number of samples smaller than number " "of clusters.") n_init = self.n_init if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in MiniBatchKMeans instead of ' 'n_init=%d' % self.n_init, RuntimeWarning, stacklevel=2) n_init = 1 x_squared_norms = row_norms(X, squared=True) if self.tol > 0.0: tol = _tolerance(X, self.tol) # using tol-based early stopping needs the allocation of a # dedicated before which can be expensive for high dim data: # hence we allocate it outside of the main loop old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 # no need for the center buffer if tol-based early stopping is # disabled old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) n_iter = int(self.max_iter * n_batches) init_size = self.init_size if init_size is None: init_size = 3 * self.batch_size if init_size > n_samples: init_size = n_samples self.init_size_ = init_size validation_indices = random_state.randint(0, n_samples, init_size) X_valid = X[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] # perform several inits with random sub-sets best_inertia = None for init_idx in range(n_init): if self.verbose: print("Init %d/%d with method: %s" % (init_idx + 1, n_init, self.init)) counts = np.zeros(self.n_clusters, dtype=np.int32) # TODO: once the `k_means` function works with sparse input we # should refactor the following init to use it instead. # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans cluster_centers = _init_centroids( X, self.n_clusters, self.init, random_state=random_state, x_squared_norms=x_squared_norms, init_size=init_size) # Compute the label assignment on the init dataset batch_inertia, centers_squared_diff = _mini_batch_step( X_valid, x_squared_norms[validation_indices], cluster_centers, counts, old_center_buffer, False, distances=None, verbose=self.verbose) # Keep only the best cluster centers across independent inits on # the common validation set _, inertia = _labels_inertia(X_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print("Inertia for init %d/%d: %f" % (init_idx + 1, n_init, inertia)) if best_inertia is None or inertia < best_inertia: self.cluster_centers_ = cluster_centers self.counts_ = counts best_inertia = inertia # Empty context to be used inplace by the convergence check routine convergence_context = {} # Perform the iterative optimization until the final convergence # criterion for iteration_idx in range(n_iter): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint( 0, n_samples, self.batch_size) # Perform the actual update step on the minibatch data batch_inertia, centers_squared_diff = _mini_batch_step( X[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self.counts_, old_center_buffer, tol > 0.0, distances=distances, # Here we randomly choose whether to perform # random reassignment: the choice is done as a function # of the iteration index, and the minimum number of # counts, in order to force this reassignment to happen # every once in a while random_reassign=((iteration_idx + 1) % (10 + self.counts_.min()) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) # Monitor convergence and do early stopping if necessary if _mini_batch_convergence( self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = iteration_idx + 1 if self.compute_labels: self.labels_, self.inertia_ = self._labels_inertia_minibatch(X) return self def _labels_inertia_minibatch(self, X): """Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but preventes memory errors / segfaults. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- labels : array, shap (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster. """ if self.verbose: print('Computing label assignment and total inertia') x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], x_squared_norms[s], self.cluster_centers_) for s in slices] labels, inertia = zip(*results) return np.hstack(labels), np.sum(inertia) def partial_fit(self, X, y=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster. """ X = check_array(X, accept_sparse="csr") n_samples, n_features = X.shape if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_samples == 0: return self x_squared_norms = row_norms(X, squared=True) self.random_state_ = getattr(self, "random_state_", check_random_state(self.random_state)) if (not hasattr(self, 'counts_') or not hasattr(self, 'cluster_centers_')): # this is the first call partial_fit on this object: # initialize the cluster centers self.cluster_centers_ = _init_centroids( X, self.n_clusters, self.init, random_state=self.random_state_, x_squared_norms=x_squared_norms, init_size=self.init_size) self.counts_ = np.zeros(self.n_clusters, dtype=np.int32) random_reassign = False distances = None else: # The lower the minimum count is, the more we do random # reassignment, however, we don't want to do random # reassignment too often, to allow for building up counts random_reassign = self.random_state_.randint( 10 * (1 + self.counts_.min())) == 0 distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, x_squared_norms, self.cluster_centers_, self.counts_, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self.random_state_, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia( X, x_squared_norms, self.cluster_centers_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._labels_inertia_minibatch(X)[0]
bsd-3-clause
saiwing-yeung/scikit-learn
examples/calibration/plot_calibration.py
66
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see https://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
terkkila/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
imaculate/scikit-learn
benchmarks/bench_mnist.py
38
6799
""" ======================= MNIST dataset benchmark ======================= Benchmark on the MNIST dataset. The dataset comprises 70,000 samples and 784 features. Here, we consider the task of predicting 10 classes - digits from 0 to 9 from their raw images. By contrast to the covertype dataset, the feature space is homogenous. Example of output : [..] Classification performance: =========================== Classifier train-time test-time error-rate ------------------------------------------------------------ MLP_adam 53.46s 0.11s 0.0224 Nystroem-SVM 112.97s 0.92s 0.0228 MultilayerPerceptron 24.33s 0.14s 0.0287 ExtraTrees 42.99s 0.57s 0.0294 RandomForest 42.70s 0.49s 0.0318 SampledRBF-SVM 135.81s 0.56s 0.0486 LinearRegression-SAG 16.67s 0.06s 0.0824 CART 20.69s 0.02s 0.1219 dummy 0.00s 0.01s 0.8973 """ from __future__ import division, print_function # Author: Issam H. Laradji # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_mldata from sklearn.datasets import get_data_home from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn.externals.joblib import Memory from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import RBFSampler from sklearn.metrics import zero_one_loss from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.utils import check_array from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='F'): """Load the data, then cache and memmap the train/test split""" ###################################################################### # Load dataset print("Loading dataset...") data = fetch_mldata('MNIST original') X = check_array(data['data'], dtype=dtype, order=order) y = data["target"] # Normalize features X = X / 255 # Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 60000 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] return X_train, X_test, y_train, y_test ESTIMATORS = { "dummy": DummyClassifier(), 'CART': DecisionTreeClassifier(), 'ExtraTrees': ExtraTreesClassifier(n_estimators=100), 'RandomForest': RandomForestClassifier(n_estimators=100), 'Nystroem-SVM': make_pipeline( Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'SampledRBF-SVM': make_pipeline( RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4), 'MultilayerPerceptron': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1, tol=1e-4, random_state=1), 'MLP-adam': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='adam', learning_rate_init=0.001, verbose=1, tol=1e-4, random_state=1) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['ExtraTrees', 'Nystroem-SVM'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=0, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data(order=args["order"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], int(X_train.nbytes / 1e6))) print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("{0: <24} {1: >10} {2: >11} {3: >12}" "".format("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 60) for name in sorted(args["classifiers"], key=error.get): print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}" "".format(name, train_time[name], test_time[name], error[name])) print()
bsd-3-clause
billy-inn/scikit-learn
sklearn/tests/test_cross_validation.py
27
41664
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist(), allow_lists=False) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) X_train_arr, X_test_arr = cval.train_test_split(X_df, allow_lists=False) assert_true(isinstance(X_train_arr, np.ndarray)) assert_true(isinstance(X_test_arr, np.ndarray)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100))
bsd-3-clause
ldirer/scikit-learn
sklearn/manifold/locally_linear.py
14
26498
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from scipy.sparse.linalg import eigsh from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import stable_cumsum from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg : float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=1): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1, n_jobs=n_jobs).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'arpack'. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None, n_jobs=1): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'arpack'. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float64) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) # build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] # find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) # choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] # find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] # calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) # find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = stable_cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues # Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float64) for i in range(N): s_i = s_range[i] # select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) # compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h # Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) # Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] # We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) # Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) # We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``eigen_solver`` == 'arpack'. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None, n_jobs=1): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs) random_state = check_random_state(self.random_state) X = check_array(X, dtype=float) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg, n_jobs=self.n_jobs) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new : array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
ycaihua/scikit-learn
sklearn/tests/test_pipeline.py
17
12512
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.base import BaseEstimator, clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, RandomizedPCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(BaseEstimator): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self class TransfT(T): def transform(self, X, y=None): return X class FitParamT(BaseEstimator): """Mock classifier """ def __init__(self): self.successful = False pass def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): """ Test the various init parameters of the pipeline. """ assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf)) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params() params2 = pipe2.get_params() # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): """ Test the various methods of the pipeline (anova). """ iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): """Test that the pipeline can take fit parameters """ pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_methods_pca_svm(): """Test the various methods of the pipeline (pca + svm).""" iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): """Test the various methods of the pipeline (preprocessing + svm).""" iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = RandomizedPCA(n_components=2, whiten=True) clf = SVC(probability=True, random_state=0) for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA() mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2) pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = RandomizedPCA(n_components=2, random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y))
bsd-3-clause
tdhopper/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
ElDeveloper/scikit-learn
examples/decomposition/plot_pca_iris.py
253
1801
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) x_surf = [X[:, 0].min(), X[:, 0].max(), X[:, 0].min(), X[:, 0].max()] y_surf = [X[:, 0].max(), X[:, 0].max(), X[:, 0].min(), X[:, 0].min()] x_surf = np.array(x_surf) y_surf = np.array(y_surf) v0 = pca.transform(pca.components_[0]) v0 /= v0[-1] v1 = pca.transform(pca.components_[1]) v1 /= v1[-1] ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
mayavanand/RMMAFinalProject
azimuth/features/featurization.py
1
26462
import pandas import time import sklearn import numpy as np import Bio.SeqUtils as SeqUtil import Bio.Seq as Seq import util import sys import Bio.SeqUtils.MeltingTemp as Tm import pickle import itertools def featurize_data(data, learn_options, Y, gene_position, pam_audit=True, length_audit=True): ''' assumes that data contains the 30mer returns set of features from which one can make a kernel for each one ''' all_lens = data['30mer'].apply(len).values unique_lengths = np.unique(all_lens) num_lengths = len(unique_lengths) assert num_lengths == 1, "should only have sequences of a single length, but found %s: %s" % (num_lengths, str(unique_lengths)) print "Constructing features..." t0 = time.time() feature_sets = {} if learn_options["nuc_features"]: # spectrum kernels (position-independent) and weighted degree kernels (position-dependent) get_all_order_nuc_features(data['30mer'], feature_sets, learn_options, learn_options["order"], max_index_to_use=30) check_feature_set(feature_sets) if learn_options["gc_features"]: gc_above_10, gc_below_10, gc_count = gc_features(data, length_audit) feature_sets['gc_above_10'] = pandas.DataFrame(gc_above_10) feature_sets['gc_below_10'] = pandas.DataFrame(gc_below_10) feature_sets['gc_count'] = pandas.DataFrame(gc_count) if learn_options["pam_features"]: pam_above_1, pam_equals_1, pam_count = pam_features(data, length_audit) feature_sets['pam_above_1'] = pandas.DataFrame(pam_above_1) feature_sets['pam_equals_1'] = pandas.DataFrame(pam_equals_1) feature_sets['pam_count'] = pandas.DataFrame(pam_count) ''' if learn_options["repeat_features"]: repeat_above_0, repeat_equals_0, repeat_count = repeat_features(data, length_audit) feature_sets['repeat_above_0'] = pandas.DataFrame(repeat_above_0) feature_sets['repeat_equals_1'] = pandas.DataFrame(repeat_equals_0) feature_sets['repeat_count'] = pandas.DataFrame(repeat_count) ''' if learn_options["include_gene_position"]: # gene_position_columns = ["Amino Acid Cut position", "Percent Peptide", "Nucleotide cut position"] # gene_position_columns = ["Percent Peptide", "Nucleotide cut position"] for set in gene_position.columns: set_name = set feature_sets[set_name] = pandas.DataFrame(gene_position[set]) feature_sets["Percent Peptide <50%"] = feature_sets["Percent Peptide"] < 50 feature_sets["Percent Peptide <50%"]['Percent Peptide <50%'] = feature_sets["Percent Peptide <50%"].pop("Percent Peptide") if learn_options["include_gene_effect"]: print "including gene effect" gene_names = Y['Target gene'] enc = sklearn.preprocessing.OneHotEncoder() label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(gene_names) one_hot_genes = np.array(enc.fit_transform(label_encoder.transform(gene_names)[:, None]).todense()) feature_sets["gene effect"] = pandas.DataFrame(one_hot_genes, columns=["gene_%d" % i for i in range(one_hot_genes.shape[1])], index=gene_names.index) if learn_options['include_known_pairs']: feature_sets['known pairs'] = pandas.DataFrame(Y['test']) if learn_options["include_NGGX_interaction"]: feature_sets["NGGX"] = NGGX_interaction_feature(data, pam_audit) #if learn_options["include_NGGXX_interaction"]: # feature_sets["NGGXX"] = NGGXX_interaction_feature(data, pam_audit) if learn_options["include_Tm"]: feature_sets["Tm"] = Tm_feature(data, pam_audit) if learn_options["include_sgRNAscore"]: feature_sets["sgRNA Score"] = pandas.DataFrame(data["sgRNA Score"]) if learn_options["include_drug"]: # feature_sets["drug"] = pandas.DataFrame(data["drug"]) drug_names = Y.index.get_level_values('drug').tolist() enc = sklearn.preprocessing.OneHotEncoder() label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(drug_names) one_hot_drugs = np.array(enc.fit_transform(label_encoder.transform(drug_names)[:, None]).todense()) feature_sets["drug"] = pandas.DataFrame(one_hot_drugs, columns=["drug_%d" % i for i in range(one_hot_drugs.shape[1])], index=drug_names) if learn_options['include_strand']: feature_sets['Strand effect'] = (pandas.DataFrame(data['Strand']) == 'sense')*1 if learn_options["include_gene_feature"]: feature_sets["gene features"] = gene_feature(Y, data, learn_options) if learn_options["include_gene_guide_feature"] > 0: tmp_feature_sets = gene_guide_feature(Y, data, learn_options) for key in tmp_feature_sets: feature_sets[key] = tmp_feature_sets[key] if learn_options["include_microhomology"]: feature_sets["microhomology"] = get_micro_homology_features(Y['Target gene'], learn_options, data) t1 = time.time() print "\t\tElapsed time for constructing features is %.2f seconds" % (t1-t0) check_feature_set(feature_sets) if learn_options['normalize_features']: assert("should not be here as doesn't make sense when we make one-off predictions, but could make sense for internal model comparisons when using regularized models") feature_sets = normalize_feature_sets(feature_sets) check_feature_set(feature_sets) return feature_sets def check_feature_set(feature_sets): ''' Ensure the # of people is the same in each feature set ''' assert feature_sets != {}, "no feature sets present" N = None for ft in feature_sets.keys(): N2 = feature_sets[ft].shape[0] if N is None: N = N2 else: assert N >= 1, "should be at least one individual" assert N == N2, "# of individuals do not match up across feature sets" for set in feature_sets.keys(): if np.any(np.isnan(feature_sets[set])): raise Exception("found Nan in set %s" % set) def NGGX_interaction_feature(data, pam_audit=True): ''' assuming 30-mer, grab the NGGX _ _ positions, and make a one-hot encoding of the NX nucleotides yielding 4x4=16 features ''' sequence = data['30mer'].values feat_NX = pandas.DataFrame() # check that GG is where we think for seq in sequence: if pam_audit and seq[25:27] != "GG": raise Exception("expected GG but found %s" % seq[25:27]) NX = seq[24]+seq[27] NX_onehot = nucleotide_features(NX,order=2, feature_type='pos_dependent', max_index_to_use=2, prefix="NGGX") # NX_onehot[:] = np.random.rand(NX_onehot.shape[0]) ##TESTING RANDOM FEATURE feat_NX = pandas.concat([feat_NX, NX_onehot], axis=1) return feat_NX.T def NGGXX_interaction_feature(data, pam_audit=True): #added by Maya and Rachel #assuming 30-mer, grab the NGGXX _ _ positions, and make a one-hot #encoding of the NXX nucleotides yielding 4x4x4=64 features sequence = data['30mer'].values feat_NXX = pandas.DataFrame() # check that GG is where we think for seq in sequence: if pam_audit and seq[25:27] != "GG": raise Exception("expected GG but found %s" % seq[25:27]) NXX = seq[24]+seq[27]+seq[28] NXX_onehot = nucleotide_features(NXX, order=3, feature_type='pos_dependent', max_index_to_use=3, prefix="NGGXX") # NXX_onehot[:] = np.random.rand(NXX_onehot.shape[0]) ##TESTING RANDOM FEATURE feat_NXX = pandas.concat([feat_NXX, NXX_onehot], axis=1) return feat_NXX.T def countPAM(s, length_audit=True): #added by Maya and Rachel #number of PAMs for the entire 30mer if length_audit: assert len(s) == 30 #check to ensure s of right length numPams = 0 i = 1 while(i < 30): if s[i] == 'G': if s[i+1] == 'G': numPams = numPams+1 i = i+3 return numPams def countRepeats(s, length_audit=True): #added by Maya and Rachel #number of repeats for the entire 30mer D = {} i = 0 numRepeats = 0 while(i < 30): codon = s[i] + s[i+1] + s[i+2] if codon in D.keys(): D[codon] = D[codon] + 1 else: D[codon] = 1 i = i+3 for key in D.keys(): if D[key] != 1: numRepeats = numRepeats + D[key] - 1 return numRepeats def get_all_order_nuc_features(data, feature_sets, learn_options, maxorder, max_index_to_use, prefix=""): for order in range(1, maxorder+1): print "\t\tconstructing order %s features" % order nuc_features_pd, nuc_features_pi = apply_nucleotide_features(data, order, learn_options["num_proc"], include_pos_independent=True, max_index_to_use=max_index_to_use, prefix=prefix) feature_sets['%s_nuc_pd_Order%i' % (prefix, order)] = nuc_features_pd if learn_options['include_pi_nuc_feat']: feature_sets['%s_nuc_pi_Order%i' % (prefix, order)] = nuc_features_pi check_feature_set(feature_sets) print "\t\t\t\t\t\t\tdone" def countGC(s, length_audit=True): ''' GC content for only the 20mer, as per the Doench paper/code ''' if length_audit: assert len(s) == 30, "seems to assume 30mer" return len(s[4:24].replace('A', '').replace('T', '')) def SeqUtilFeatures(data): ''' assuming '30-mer'is a key get melting temperature features from: 0-the 30-mer ("global Tm") 1-the Tm (melting temperature) of the DNA:RNA hybrid from positions 16 - 20 of the sgRNA, i.e. the 5nts immediately proximal of the NGG PAM 2-the Tm of the DNA:RNA hybrid from position 8 - 15 (i.e. 8 nt) 3-the Tm of the DNA:RNA hybrid from position 3 - 7 (i.e. 5 nt) ''' sequence = data['30mer'].values num_features = 1 featarray = np.ones((sequence.shape[0], num_features)) for i, seq in enumerate(sequence): assert len(seq) == 30, "seems to assume 30mer" featarray[i, 0] = SeqUtil.molecular_weight(str(seq)) feat = pandas.DataFrame(pandas.DataFrame(featarray)) return feat def organism_feature(data): ''' Human vs. mouse ''' organism = np.array(data['Organism'].values) feat = pandas.DataFrame(pandas.DataFrame(featarray)) import ipdb; ipdb.set_trace() return feat def get_micro_homology_features(gene_names, learn_options, X): # originally was flipping the guide itself as necessary, but now flipping the gene instead print "building microhomology features" feat = pandas.DataFrame(index=X.index) feat["mh_score"] = "" feat["oof_score"] = "" #with open(r"tmp\V%s_gene_mismatches.csv" % learn_options["V"],'wb') as f: if True: # number of nulceotides to take to the left and right of the guide k_mer_length_left = 9 k_mer_length_right = 21 for gene in gene_names.unique(): gene_seq = Seq.Seq(util.get_gene_sequence(gene)).reverse_complement() guide_inds = np.where(gene_names.values == gene)[0] print "getting microhomology for all %d guides in gene %s" % (len(guide_inds), gene) for j, ps in enumerate(guide_inds): guide_seq = Seq.Seq(X['30mer'][ps]) strand = X['Strand'][ps] if strand=='sense': gene_seq = gene_seq.reverse_complement() # figure out the sequence to the left and right of this guide, in the gene ind = gene_seq.find(guide_seq) if ind==-1: gene_seq = gene_seq.reverse_complement() ind = gene_seq.find(guide_seq) #assert ind != -1, "still didn't work" #print "shouldn't get here" else: #print "all good" pass #assert ind != -1, "could not find guide in gene" if ind==-1: #print "***could not find guide %s for gene %s" % (str(guide_seq), str(gene)) #if.write(str(gene) + "," + str(guide_seq)) mh_score = 0 oof_score = 0 else: #print "worked" assert gene_seq[ind:(ind+len(guide_seq))]==guide_seq, "match not right" left_win = gene_seq[(ind - k_mer_length_left):ind] right_win = gene_seq[(ind + len(guide_seq)):(ind + len(guide_seq) + k_mer_length_right)] #if strand=='antisense': # # it's arbitrary which of sense and anti-sense we flip, we just want # # to keep them in the same relative alphabet/direction # left_win = left_win.reverse_complement() # right_win = right_win.reverse_complement() assert len(left_win.tostring())==k_mer_length_left assert len(right_win.tostring())==k_mer_length_right sixtymer = str(left_win) + str(guide_seq) + str(right_win) assert len(sixtymer)==60, "should be of length 60" mh_score, oof_score = microhomology.compute_score(sixtymer) feat.ix[ps,"mh_score"] = mh_score feat.ix[ps,"oof_score"] = oof_score print "computed microhomology of %s" % (str(gene)) return pandas.DataFrame(feat, dtype='float') def local_gene_seq_features(gene_names, learn_options, X): print "building local gene sequence features" feat = pandas.DataFrame(index=X.index) feat["gene_left_win"] = "" feat["gene_right_win"] = "" # number of nulceotides to take to the left and right of the guide k_mer_length = learn_options['include_gene_guide_feature'] for gene in gene_names.unique(): gene_seq = Seq.Seq(util.get_gene_sequence(gene)).reverse_complement() for ps in np.where(gene_names.values==gene)[0]: guide_seq = Seq.Seq(X['30mer'][ps]) strand = X['Strand'][ps] if strand=='sense': guide_seq = guide_seq.reverse_complement() #gene_seq = gene_seq.reverse_complement() # figure out the sequence to the left and right of this guide, in the gene ind = gene_seq.find(guide_seq) if ind ==-1: #gene_seq = gene_seq.reverse_complement() #ind = gene_seq.find(guide_seq) assert ind != -1, "could not find guide in gene" assert gene_seq[ind:(ind+len(guide_seq))]==guide_seq, "match not right" left_win = gene_seq[(ind - k_mer_length):ind] right_win = gene_seq[(ind + len(guide_seq)):(ind + len(guide_seq) + k_mer_length)] if strand=='antisense': # it's arbitrary which of sense and anti-sense we flip, we just want # to keep them in the same relative alphabet/direction left_win = left_win.reverse_complement() right_win = right_win.reverse_complement() assert not left_win.tostring()=="", "k_mer_context, %s, is too large" % k_mer_length assert not left_win.tostring()=="", "k_mer_context, %s, is too large" % k_mer_length assert len(left_win)==len(right_win), "k_mer_context, %s, is too large" % k_mer_length feat.ix[ps,"gene_left_win"] = left_win.tostring() feat.ix[ps,"gene_right_win"] = right_win.tostring() print "featurizing local context of %s" % (gene) feature_sets = {} get_all_order_nuc_features(feat["gene_left_win"], feature_sets, learn_options, learn_options["order"], max_index_to_use=sys.maxint, prefix="gene_left_win") get_all_order_nuc_features(feat["gene_right_win"], feature_sets, learn_options, learn_options["order"], max_index_to_use=sys.maxint, prefix="gene_right_win") return feature_sets def gene_feature(Y, X, learn_options): ''' Things like the sequence of the gene, the DNA Tm of the gene, etc. ''' gene_names = Y['Target gene'] gene_length = np.zeros((gene_names.values.shape[0], 1)) gc_content = np.zeros((gene_names.shape[0], 1)) temperature = np.zeros((gene_names.shape[0], 1)) molecular_weight = np.zeros((gene_names.shape[0], 1)) for gene in gene_names.unique(): seq = util.get_gene_sequence(gene) gene_length[gene_names.values==gene] = len(seq) gc_content[gene_names.values==gene] = SeqUtil.GC(seq) temperature[gene_names.values==gene] = Tm.Tm_staluc(seq, rna=False) molecular_weight[gene_names.values==gene] = SeqUtil.molecular_weight(seq, 'DNA') all = np.concatenate((gene_length, gc_content, temperature, molecular_weight), axis=1) df = pandas.DataFrame(data=all, index=gene_names.index, columns=['gene length', 'gene GC content', 'gene temperature', 'gene molecular weight']) return df def gene_guide_feature(Y, X, learn_options): #features, which are related to parts of the gene-local to the guide, and #possibly incorporating the guide or interactions with it #expensive, so pickle if necessary gene_file = r"..\data\gene_seq_feat_V%s_km%s.ord%s.pickle" % (learn_options['V'], learn_options['include_gene_guide_feature'], learn_options['order']) if False: #os.path.isfile(gene_file): #while debugging, comment out print "loading local gene seq feats from file %s" % gene_file with open(gene_file, "rb") as f: feature_sets = pickle.load(f) else: feature_sets = local_gene_seq_features(Y['Target gene'], learn_options, X) print "writing local gene seq feats to file %s" % gene_file with open(gene_file, "wb") as f: pickle.dump(feature_sets, f) return feature_sets def gc_cont(seq): return (seq.count('G') + seq.count('C'))/float(len(seq)) def Tm_feature(data, pam_audit=True): ''' assuming '30-mer'is a key get melting temperature features from: 0-the 30-mer ("global Tm") 1-the Tm (melting temperature) of the DNA:RNA hybrid from positions 16 - 20 of the sgRNA, i.e. the 5nts immediately proximal of the NGG PAM 2-the Tm of the DNA:RNA hybrid from position 8 - 15 (i.e. 8 nt) 3-the Tm of the DNA:RNA hybrid from position 3 - 7 (i.e. 5 nt) ''' sequence = data['30mer'].values featarray = np.ones((sequence.shape[0],4)) for i, seq in enumerate(sequence): if pam_audit and seq[25:27]!="GG": raise Exception("expected GG but found %s" % seq[25:27]) rna = False featarray[i,0] = Tm.Tm_staluc(seq, rna=rna) #30mer Tm featarray[i,1] = Tm.Tm_staluc(seq[19:24], rna=rna) #5nts immediately proximal of the NGG PAM featarray[i,2] = Tm.Tm_staluc(seq[11:19], rna=rna) #8-mer featarray[i,3] = Tm.Tm_staluc(seq[6:11], rna=rna) #5-mer feat = pandas.DataFrame(featarray, index=data.index, columns=["Tm global_%s" % rna, "5mer_end_%s" %rna, "8mer_middle_%s" %rna, "5mer_start_%s" %rna]) return feat def gc_features(data, audit=True): gc_count = data['30mer'].apply(lambda seq: countGC(seq, audit)) gc_count.name = 'GC count' gc_above_10 = (gc_count > 10)*1 gc_above_10.name = 'GC > 10' gc_below_10 = (gc_count < 10)*1 gc_below_10.name = 'GC < 10' return gc_above_10, gc_below_10, gc_count def pam_features(data, audit=True): pam_count = data['30mer'].apply(lambda seq: countPAM(seq, audit)) pam_count.name = 'PAM count' pam_above_1 = (pam_count > 1)*1 pam_above_1.name = 'PAM > 1' pam_equals_1 = (pam_count < 2)*1 pam_equals_1.name = 'PAM = 1' return pam_above_1, pam_equals_1, pam_count def repeat_features(data, audit=True): repeat_count = data['30mer'].apply(lambda seq: countRepeats(seq, audit)) repeat_count.name = 'repeat count' repeat_above_0 = (repeat_count > 0)*1 repeat_above_0.name = 'repeat > 0' repeat_equals_0 = (repeat_count < 1)*1 repeat_equals_0.name = 'repeat < 1' return repeat_above_0, repeat_equals_0, repeat_count def normalize_features(data,axis): ''' input: Pandas.DataFrame of dtype=np.float64 array, of dimensions mean-center, and unit variance each feature ''' data -= data.mean(axis) data /= data.std(axis) # remove rows with NaNs data = data.dropna(1) if np.any(np.isnan(data.values)): raise Exception("found NaN in normalized features") return data def apply_nucleotide_features(seq_data_frame, order, num_proc, include_pos_independent, max_index_to_use, prefix=""): fast = True if include_pos_independent: feat_pd = seq_data_frame.apply(nucleotide_features, args=(order, max_index_to_use, prefix, 'pos_dependent')) feat_pi = seq_data_frame.apply(nucleotide_features, args=(order, max_index_to_use, prefix, 'pos_independent')) assert not np.any(np.isnan(feat_pd)), "nans here can arise from sequences of different lengths" assert not np.any(np.isnan(feat_pi)), "nans here can arise from sequences of different lengths" return feat_pd, feat_pi else: feat_pd = seq_data_frame.apply(nucleotide_features, args=(order, max_index_to_use, prefix, 'pos_dependent')) assert not np.any(np.isnan(feat_pd)), "found nan in feat_pd" return feat_pd def get_alphabet(order, raw_alphabet = ['A', 'T', 'C', 'G']): alphabet = ["".join(i) for i in itertools.product(raw_alphabet, repeat=order)] return alphabet, raw_alphabet def nucleotide_features(s, order, max_index_to_use, prefix="", feature_type='all', raw_alphabet = ['A', 'T', 'C', 'G']): ''' compute position-specific order-mer features for the 4-letter alphabet (e.g. for a sequence of length 30, there are 30*4 single nucleotide features and (30-1)*4^2=464 double nucleotide features ''' assert feature_type in ['all', 'pos_independent', 'pos_dependent'] if max_index_to_use <= len(s): #print "WARNING: trimming max_index_to use down to length of string=%s" % len(s) max_index_to_use = len(s) if max_index_to_use is not None: s = s[:max_index_to_use] #assert(len(s)==30, "length not 30") #s = s[:30] #cut-off at thirty to clean up extra data that they accidentally left in, and were instructed to ignore in this way alphabet, raw_alphabet = get_alphabet(order, raw_alphabet = raw_alphabet) features_pos_dependent = np.zeros(len(alphabet)*(len(s)-(order-1))) features_pos_independent = np.zeros(np.power(len(raw_alphabet),order)) for position in range(0, len(s)-order+1, 1): nucl = s[position:position+order] features_pos_dependent[alphabet.index(nucl) + (position*len(alphabet))] = 1.0 features_pos_independent[alphabet.index(nucl)] += 1.0 index_dependent = ['%s_pd.Order%d_P%d' % (prefix, order, i) for i in range(len(features_pos_dependent))] if np.any(np.isnan(features_pos_dependent)): raise Exception("found nan features in features_pos_dependent") if np.any(np.isnan(features_pos_independent)): raise Exception("found nan features in features_pos_independent") if feature_type == 'all' or feature_type == 'pos_independent': index_independent = ['%s_pi.Order%d_P%d' % (prefix, order,i) for i in range(len(features_pos_independent))] if feature_type == 'all': res = pandas.Series(features_pos_dependent,index=index_dependent), pandas.Series(features_pos_independent,index=index_independent) assert not np.any(np.isnan(res.values)) return res else: res = pandas.Series(features_pos_independent, index=index_independent) assert not np.any(np.isnan(res.values)) return res res = pandas.Series(features_pos_dependent, index=index_dependent) assert not np.any(np.isnan(res.values)) return res def nucleotide_features_dictionary(prefix=''): seqname = ['-4', '-3', '-2', '-1'] seqname.extend([str(i) for i in range(1,21)]) seqname.extend(['N', 'G', 'G', '+1', '+2', '+3']) orders = [1, 2, 3] sequence = 30 feature_names_dep = [] feature_names_indep = [] index_dependent = [] index_independent = [] for order in orders: raw_alphabet = ['A', 'T', 'C', 'G'] alphabet = ["".join(i) for i in itertools.product(raw_alphabet, repeat=order)] features_pos_dependent = np.zeros(len(alphabet)*(sequence-(order-1))) features_pos_independent = np.zeros(np.power(len(raw_alphabet),order)) index_dependent.extend(['%s_pd.Order%d_P%d' % (prefix, order, i) for i in range(len(features_pos_dependent))]) index_independent.extend(['%s_pi.Order%d_P%d' % (prefix, order,i) for i in range(len(features_pos_independent))]) for pos in range(sequence-(order-1)): for letter in alphabet: feature_names_dep.append('%s_%s' % (letter, seqname[pos])) for letter in alphabet: feature_names_indep.append('%s' % letter) assert len(feature_names_indep) == len(index_independent) assert len(feature_names_dep) == len(index_dependent) index_all = index_dependent + index_independent feature_all = feature_names_dep + feature_names_indep return dict(zip(index_all, feature_all)) def normalize_feature_sets(feature_sets): ''' zero-mean, unit-variance each feature within each set ''' print "Normalizing features..." t1 = time.time() new_feature_sets = {} for set in feature_sets: new_feature_sets[set] = normalize_features(feature_sets[set],axis=0) if np.any(np.isnan(new_feature_sets[set].values)): raise Exception("found Nan feature values in set=%s" % set) assert new_feature_sets[set].shape[1] > 0, "0 columns of features" t2 = time.time() print "\t\tElapsed time for normalizing features is %.2f seconds" % (t2-t1) return new_feature_sets
bsd-3-clause
phdowling/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_scalability.py
225
5719
""" ============================================ Scalability of Approximate Nearest Neighbors ============================================ This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with ``n_estimators=20`` and ``n_candidates=200`` when varying the number of samples in the dataset. The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but can be slower for small datasets. The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest indexing. The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters of the LSHForest index. The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends mostly on the LSHForest parameters and the dimensionality of the data. """ from __future__ import division print(__doc__) # Authors: Maheshakya Wijewardena <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause ############################################################################### import time import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Parameters of the study n_samples_min = int(1e3) n_samples_max = int(1e5) n_features = 100 n_centers = 100 n_queries = 100 n_steps = 6 n_iter = 5 # Initialize the range of `n_samples` n_samples_values = np.logspace(np.log10(n_samples_min), np.log10(n_samples_max), n_steps).astype(np.int) # Generate some structured data rng = np.random.RandomState(42) all_data, _ = make_blobs(n_samples=n_samples_max + n_queries, n_features=n_features, centers=n_centers, shuffle=True, random_state=0) queries = all_data[:n_queries] index_data = all_data[n_queries:] # Metrics to collect for the plots average_times_exact = [] average_times_approx = [] std_times_approx = [] accuracies = [] std_accuracies = [] average_speedups = [] std_speedups = [] # Calculate the average query time for n_samples in n_samples_values: X = index_data[:n_samples] # Initialize LSHForest for queries of a single neighbor lshf = LSHForest(n_estimators=20, n_candidates=200, n_neighbors=10).fit(X) nbrs = NearestNeighbors(algorithm='brute', metric='cosine', n_neighbors=10).fit(X) time_approx = [] time_exact = [] accuracy = [] for i in range(n_iter): # pick one query at random to study query time variability in LSHForest query = queries[rng.randint(0, n_queries)] t0 = time.time() exact_neighbors = nbrs.kneighbors(query, return_distance=False) time_exact.append(time.time() - t0) t0 = time.time() approx_neighbors = lshf.kneighbors(query, return_distance=False) time_approx.append(time.time() - t0) accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean()) average_time_exact = np.mean(time_exact) average_time_approx = np.mean(time_approx) speedup = np.array(time_exact) / np.array(time_approx) average_speedup = np.mean(speedup) mean_accuracy = np.mean(accuracy) std_accuracy = np.std(accuracy) print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, " "accuracy: %0.2f +/-%0.2f" % (n_samples, average_time_exact, average_time_approx, average_speedup, mean_accuracy, std_accuracy)) accuracies.append(mean_accuracy) std_accuracies.append(std_accuracy) average_times_exact.append(average_time_exact) average_times_approx.append(average_time_approx) std_times_approx.append(np.std(time_approx)) average_speedups.append(average_speedup) std_speedups.append(np.std(speedup)) # Plot average query time against n_samples plt.figure() plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx, fmt='o-', c='r', label='LSHForest') plt.plot(n_samples_values, average_times_exact, c='b', label="NearestNeighbors(algorithm='brute', metric='cosine')") plt.legend(loc='upper left', fontsize='small') plt.ylim(0, None) plt.ylabel("Average query time in seconds") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Impact of index size on response time for first " "nearest neighbors queries") # Plot average query speedup versus index size plt.figure() plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups, fmt='o-', c='r') plt.ylim(0, None) plt.ylabel("Average speedup") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Speedup of the approximate NN queries vs brute force") # Plot average precision versus index size plt.figure() plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c') plt.ylim(0, 1.1) plt.ylabel("precision@10") plt.xlabel("n_samples") plt.grid(which='both') plt.title("precision of 10-nearest-neighbors queries with index size") plt.show()
bsd-3-clause
kcompher/BuildingMachineLearningSystemsWithPython
ch08/stacked.py
4
1057
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function from sklearn.linear_model import LinearRegression from load_ml100k import load import numpy as np import similar_movie import usermodel import corrneighbours reviews = load() reg = LinearRegression() es = np.array([ usermodel.all_estimates(reviews), corrneighbours.all_estimates(reviews), similar_movies.all_estimates(reviews), ]) reviews = reviews.toarray() total_error = 0.0 coefficients = [] for u in xrange(reviews.shape[0]): es0 = np.delete(es, u, 1) r0 = np.delete(reviews, u, 0) X, Y = np.where(r0 > 0) X = es[:, X, Y] y = r0[r0 > 0] reg.fit(X.T, y) coefficients.append(reg.coef_) r0 = reviews[u] X = np.where(r0 > 0) p0 = reg.predict(es[:, u, X].squeeze().T) err0 = r0[r0 > 0] - p0 total_error += np.dot(err0, err0) print(u)
mit
tiagofrepereira2012/tensorflow
tensorflow/examples/learn/text_classification.py
12
6651
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 MAX_LABEL = 15 WORDS_FEATURE = 'words' # Name of the input words feature. def estimator_spec_for_softmax_classification( logits, labels, mode): """Returns EstimatorSpec instance for softmax classification.""" predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def bag_of_words_model(features, labels, mode): """A bag-of-words model. Note it disregards the word order in the text.""" bow_column = tf.feature_column.categorical_column_with_identity( WORDS_FEATURE, num_buckets=n_words) bow_embedding_column = tf.feature_column.embedding_column( bow_column, dimension=EMBEDDING_SIZE) bow = tf.feature_column.input_layer( features, feature_columns=[bow_embedding_column]) logits = tf.layers.dense(bow, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def rnn_model(features, labels, mode): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features[WORDS_FEATURE], vocab_size=n_words, embed_dim=EMBEDDING_SIZE) # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for softmax # classification over output classes. logits = tf.layers.dense(encoding, MAX_LABEL, activation=None) return estimator_spec_for_softmax_classification( logits=logits, labels=labels, mode=mode) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor( MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: # Subtract 1 because VocabularyProcessor outputs a word-id matrix where word # ids start from 1 and 0 means 'no word'. But # categorical_column_with_identity assumes 0-based count and uses -1 for # missing word. x_train -= 1 x_test -= 1 model_fn = bag_of_words_model classifier = tf.estimator.Estimator(model_fn=model_fn) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={WORDS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
rrohan/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
338
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause
ZhouJiaLinmumu/Grasp-and-lift-EEG-challenge
lvl2/genEns.py
4
3742
# -*- coding: utf-8 -*- """ Created on Sat Aug 15 14:12:12 2015 @author: rc, alex """ import os import sys if __name__ == '__main__' and __package__ is None: filePath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(filePath) import numpy as np import yaml from copy import deepcopy from collections import OrderedDict from sklearn.metrics import roc_auc_score from sklearn.cross_validation import LeaveOneLabelOut from preprocessing.aux import getEventNames from utils.ensembles import createEnsFunc, loadPredictions, getLvl1ModelList from ensembling.WeightedMean import WeightedMeanClassifier from ensembling.NeuralNet import NeuralNet from ensembling.XGB import XGB def _from_yaml_to_func(method, params): """go from yaml to method. Need to be here for accesing local variables. """ prm = dict() if params is not None: for key, val in params.iteritems(): prm[key] = eval(str(val)) return eval(method)(**prm) # ## here read YAML and build models ### yml = yaml.load(open(sys.argv[1])) fileName = yml['Meta']['file'] if 'subsample' in yml['Meta']: subsample = yml['Meta']['subsample'] else: subsample = 1 modelName, modelParams = yml['Model'].iteritems().next() model_base = _from_yaml_to_func(modelName, modelParams) ensemble = yml['Model'][modelName]['ensemble'] addSubjectID = True if 'addSubjectID' in yml.keys() else False mode = sys.argv[2] if mode == 'val': test = False elif mode == 'test': test = True else: raise('Invalid mode. Please specify either val or test') print('Running %s in mode %s, predictions will be saved as %s' % (modelName,mode,fileName)) ###### cols = getEventNames() ids = np.load('../infos_test.npy') subjects_test = ids[:, 1] series_test = ids[:, 2] ids = ids[:, 0] labels = np.load('../infos_val.npy') subjects = labels[:, -2] series = labels[:, -1] labels = labels[:, :-2] allCols = range(len(cols)) # ## loading predictions ### files = getLvl1ModelList() preds_val = OrderedDict() for f in files: loadPredictions(preds_val, f[0], f[1]) # validity check for m in ensemble: assert(m in preds_val) # ## train/test ### aggr = createEnsFunc(ensemble) dataTrain = aggr(preds_val) preds_val = None # optionally adding subjectIDs if addSubjectID: dataTrain = np.c_[dataTrain, subjects] np.random.seed(4234521) if test: # train the model model = deepcopy(model_base) model.fit(dataTrain[::subsample], labels[::subsample]) dataTrain = None # load test data preds_test = OrderedDict() for f in files: loadPredictions(preds_test, f[0], f[1], test=True) dataTest = aggr(preds_test) preds_test = None # switch to add subjects if addSubjectID: dataTest = np.c_[dataTest, subjects_test] # get predictions p = model.predict_proba(dataTest) np.save('test/test_%s.npy' % fileName, [p]) else: auc_tot = [] p = np.zeros(labels.shape) cv = LeaveOneLabelOut(series) for fold, (train, test) in enumerate(cv): model = deepcopy(model_base) if modelName == 'NeuralNet': # passing also test data to print out test error during training model.fit(dataTrain[train], labels[train], dataTrain[test], labels[test]) else: model.fit(dataTrain[train][::subsample], labels[train][::subsample]) p[test] = model.predict_proba(dataTrain[test]) auc = [roc_auc_score(labels[test][:, col], p[test][:, col]) for col in allCols] auc_tot.append(np.mean(auc)) print('Fold %d, score: %.5f' % (fold, auc_tot[-1])) print('AUC: %.5f' % np.mean(auc_tot)) np.save('val/val_%s.npy' % fileName, [p])
bsd-3-clause
HKUST-SING/tensorflow
tensorflow/examples/learn/mnist.py
45
3999
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This showcases how simple it is to build image classification networks. It follows description from this TensorFlow tutorial: https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def max_pool_2x2(tensor_in): return tf.nn.max_pool( tensor_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def conv_model(feature, target, mode): """2-layer convolution model.""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'): h_conv1 = layers.convolution2d( feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool1 = max_pool_2x2(h_conv1) # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'): h_conv2 = layers.convolution2d( h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool2 = max_pool_2x2(h_conv2) # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.fully_connected( h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(h_fc1, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.001) return tf.argmax(logits, 1), loss, train_op def main(unused_args): ### Download and load MNIST dataset. mnist = learn.datasets.load_dataset('mnist') ### Linear classifier. feature_columns = learn.infer_real_valued_columns_from_input( mnist.train.images) classifier = learn.LinearClassifier( feature_columns=feature_columns, n_classes=10) classifier.fit(mnist.train.images, mnist.train.labels.astype(np.int32), batch_size=100, steps=1000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) ### Convolutional network classifier = learn.Estimator(model_fn=conv_model) classifier.fit(mnist.train.images, mnist.train.labels, batch_size=100, steps=20000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
sarahgrogan/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
smukoehler/SDB-control
mpcdriver.py
1
3535
import urlparse import datetime import urllib2 from smap.driver import SmapDriver from smap.util import periodicSequentialCall from smap.contrib import dtutil from sklearn import linear_model from smap.archiver.client import RepublishClient from functools import partial from mpc import * class SimpleMPC(SmapDriver): def setup(self, opts): self.rate = float( opts.get('rate' , 120 ) ) self.archiver_url = opts.get('archiver') self.input_variables = opts.get('input_variables', None) self.state_variables = opts.get('state_variables', None).split(',') self.read_stream_data() self.setup_model() ''' Create MPC kernel ''' def setup_model(self): self.mpc_model = MPC() ''' Function that runs periodically to update the model ''' def start(self): self._loop = periodicSequentialCall(self.predict) self._loop.start(self.rate) for clientlist in self.repubclients.itervalues(): for c in clientlist: c.connect() def predict(self): # Input vector at step t-1 input_vector_t_1 = self.construct_input(-1) # State vector at step t-1 state_vector_t_1 = self.construct_state(-1) if input_vector_t_1 == None or state_vector_t_1 == None: return # Call mpc kernel to add data self.mpc_model.add_data( input_vector_t_1 , state_vector_t_1 ) # Input vector at time t input_vector_t = self.construct_input(0) # predict by calling at mpc kernel prediction = self.mpc_model.predict( input_vector_t ) # Get model parameters params = self.mpc_model.get_model() # Do post processing self.post_processing(i , prediction, self.construct_state(i)[0], params) ''' Reads data to be supplied to build the model ''' def read_stream_data(self): self.points = {} self.repubclients = {} for name in self.input_variables: point = name.strip() self.points[point] = [] self.repubclients[point] = [RepublishClient(self.archiver_url, partial(self.cb, point), restrict="Metadata/Name = '" + str(point) + "'")] for name in self.state_variables: point = name.strip() self.points[point] = [] self.repubclients[point] = [RepublishClient(self.archiver_url, partial(self.cb, point), restrict="Metadata/Name = '" + str(point) + "'")] def cb(self, point, _, data): value = data[-1][-1][1] print 'Received',point,'=',value self.points[point].append(value) ''' Constructs an input vector at a particular timestep ''' def construct_input(self, step): input_vector = [] try: for point in self.input_variables: input_vector.append( self.points[point][ step - 1] ) for point in self.state_variables: input_vector.append( self.points[point][ step - 2] ) except: return None return input_vector ''' Constructs the state vector at a particular timestep ''' def construct_state(self, step): state_vector = [] try: for point in self.state_variables: state_vector.append( self.points[point][ step - 1 ]) except: return None return state_vector ''' Do post processing ''' def post_processing(self, step, prediction, state_t, params ): # Do post processing for i in range(len(self.state_variables)): self.add('/' + self.state_variables[i] + "-predicted" , prediction[i] ) for j in range(len(self.input_variables)): self.add('/' + self.state_variables[i] + "-mpc-param-effect-of-" + self.input_variables[j], params[j]) for j in range(len(self.state_variables)): self.add('/' + self.state_variables[i] + "-mpc-param-effect-of-" + self.state_variables[j], params[ len(self.input_variables) + j])
bsd-2-clause
CylanceSPEAR/IntroductionToMachineLearningForSecurityPros
IDPanel/train_lr_model.py
1
4200
from idpanel.training.vectorization import load_raw_feature_vectors from idpanel.training.features import load_raw_features from idpanel.labels import load_labels from sklearn.cross_validation import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix import warnings from sklearn.metrics import roc_curve, auc import numpy as np import matplotlib.pyplot as plt import pickle def classify(model, sample): labels = sorted(model.keys()) proba = [] for label in labels: proba.append(model[label].predict_proba(sample)[0, 1]) label = None proba = np.array(proba) if (proba > 0.5).sum() > 0: label = labels[proba.argmax()] return label, labels, proba if __name__ == "__main__" or True: from argparse import ArgumentParser parser = ArgumentParser( prog=__file__, description="Train Logistic Regression Model", ) parser.add_argument("-p", "--penalty", choices=["l1", "l2"], default="l2") parser.add_argument("-d", "--dual", action='store_true', default=False) parser.add_argument("-C", type=float, default=1.0) parser.add_argument("-f", "--fit-intercept", default=True, action='store_true') parser.add_argument("-i", "--intercept-scaling", type=float, default=1.0) parser.add_argument("-m", "--max-iter", type=int, default=100) parser.add_argument("-s", "--solver", choices=["newton-cg", "lbfgs", "liblinear", "sag"], default="liblinear") parser.add_argument("-t", "--tol", type=float, default=0.0001) args = parser.parse_args() warnings.warn = lambda x, y: x label_indeces = load_labels() raw_features = load_raw_features() original_labels, names, vectors = load_raw_feature_vectors() labels = [1 if l != "not_panel" else 0 for l in original_labels] vectors = np.array(vectors) print "Creating training and testing sets" X_train, X_test, y_train, y_test = train_test_split(vectors, labels, stratify=labels) print X_train.shape[0], "samples in training set,", len(set(list(y_train))), "labels in training set" print X_test.shape[0], "samples in training set,", len(set(list(y_test))), "labels in testing set" lr = LogisticRegression( n_jobs=-1, penalty=args.penalty, dual=args.dual, C=args.C, fit_intercept=args.fit_intercept, intercept_scaling=args.intercept_scaling, max_iter=args.max_iter, solver=args.solver, tol=args.tol ) lr.fit(X_train, y_train) #print (lr.feature_importances_ != 0).sum() pred = lr.predict(X_test) pred_proba = lr.predict_proba(X_test) print "Confusion Matrix:" print confusion_matrix(y_test, pred) #print np.array(y_test) == 1 pos_hist, pos_bin_edges = np.histogram(pred_proba[np.array(y_test) == 1, 1], bins=[0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1]) neg_hist, neg_bin_edges = np.histogram(pred_proba[np.array(y_test) == 0, 1], bins=[0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1]) fig, (ax1, ax2) = plt.subplots(2, 1) #print pos_hist.shape, pos_bin_edges.shape #print neg_hist.tolist() ax1.plot(pos_bin_edges[:-1] + 0.05, pos_hist, color='green', linestyle='solid', label="Positives") ax1.plot(neg_bin_edges[:-1] + 0.05, neg_hist, color='red', linestyle='solid', label="Negatives") ax1.set_xlim(0.0, 1.0) ax1.set_ylim(0.0, max(neg_hist.max(), pos_hist.max())) ax1.set_xlabel('Threshold') ax1.set_ylabel('Sample Count') ax1.set_title('Positive Classification Thresholds') ax1.legend(loc="upper left") fpr, tpr, _ = roc_curve(y_test, pred_proba[:, 1]) roc_auc = auc(fpr, tpr) ax2.plot(fpr, tpr, linewidth=4) ax2.plot([0, 1], [0, 1], 'r--') #ax2.xlim([0.0, 1.0]) #ax2.ylim([0.0, 1.05]) ax2.set_xlabel('False Positive Rate') ax2.set_ylabel('True Positive Rate') ax2.set_title('Logistic Regression ROC Curve') #ax2.legend(loc="lower right") plt.show() with open("bot_model.lrmdl", "w") as f: pickle.dump({"model": lr, "relevant_features": lr.coef_ != 0}, f)
gpl-3.0
Titan-C/scikit-learn
sklearn/linear_model/omp.py
8
31640
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..model_selection import check_cv from ..externals.joblib import Parallel, delayed solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=X.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=Gram.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Read more in the :ref:`User Guide <omp>`. Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Read more in the :ref:`User Guide <omp>`. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Matching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Read more in the :ref:`User Guide <omp>`. Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, multi_output=True, y_numeric=True) n_features = X.shape[1] X, y, X_offset, y_offset, X_scale, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_offset, y_offset, X_scale) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues : array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Matching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Read more in the :ref:`User Guide <omp>`. Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_targets, n_features) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True, ensure_min_features=2, estimator=self) X = as_float_array(X, copy=False, force_all_finite=False) cv = check_cv(self.cv, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv.split(X)) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause
jorge2703/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
wazeerzulfikar/scikit-learn
examples/model_selection/plot_grid_search_digits.py
56
2761
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.model_selection.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(), tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
Obus/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
dipanjanS/text-analytics-with-python
New-Second-Edition/Ch05 - Text Classification/model_evaluation_utils.py
2
9263
# -*- coding: utf-8 -*- """ Created on Mon Jul 31 20:05:23 2017 @author: DIP @Copyright: Dipanjan Sarkar """ from sklearn import metrics import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.base import clone from sklearn.preprocessing import label_binarize from scipy import interp from sklearn.metrics import roc_curve, auc def get_metrics(true_labels, predicted_labels): print('Accuracy:', np.round( metrics.accuracy_score(true_labels, predicted_labels), 4)) print('Precision:', np.round( metrics.precision_score(true_labels, predicted_labels, average='weighted'), 4)) print('Recall:', np.round( metrics.recall_score(true_labels, predicted_labels, average='weighted'), 4)) print('F1 Score:', np.round( metrics.f1_score(true_labels, predicted_labels, average='weighted'), 4)) def train_predict_model(classifier, train_features, train_labels, test_features, test_labels): # build model classifier.fit(train_features, train_labels) # predict using model predictions = classifier.predict(test_features) return predictions def display_confusion_matrix(true_labels, predicted_labels, classes=[1,0]): total_classes = len(classes) level_labels = [total_classes*[0], list(range(total_classes))] cm = metrics.confusion_matrix(y_true=true_labels, y_pred=predicted_labels, labels=classes) cm_frame = pd.DataFrame(data=cm, columns=pd.MultiIndex(levels=[['Predicted:'], classes], labels=level_labels), index=pd.MultiIndex(levels=[['Actual:'], classes], labels=level_labels)) print(cm_frame) def display_confusion_matrix_pretty(true_labels, predicted_labels, classes=[1,0]): total_classes = len(classes) level_labels = [total_classes*[0], list(range(total_classes))] cm = metrics.confusion_matrix(y_true=true_labels, y_pred=predicted_labels, labels=classes) cm_frame = pd.DataFrame(data=cm, columns=pd.MultiIndex(levels=[['Predicted:'], classes], labels=level_labels), index=pd.MultiIndex(levels=[['Actual:'], classes], labels=level_labels)) return cm_frame def display_classification_report(true_labels, predicted_labels, classes=[1,0]): report = metrics.classification_report(y_true=true_labels, y_pred=predicted_labels, labels=classes) print(report) def display_model_performance_metrics(true_labels, predicted_labels, classes=[1,0]): print('Model Performance metrics:') print('-'*30) get_metrics(true_labels=true_labels, predicted_labels=predicted_labels) print('\nModel Classification report:') print('-'*30) display_classification_report(true_labels=true_labels, predicted_labels=predicted_labels, classes=classes) print('\nPrediction Confusion Matrix:') print('-'*30) display_confusion_matrix(true_labels=true_labels, predicted_labels=predicted_labels, classes=classes) def plot_model_decision_surface(clf, train_features, train_labels, plot_step=0.02, cmap=plt.cm.RdYlBu, markers=None, alphas=None, colors=None): if train_features.shape[1] != 2: raise ValueError("X_train should have exactly 2 columnns!") x_min, x_max = train_features[:, 0].min() - plot_step, train_features[:, 0].max() + plot_step y_min, y_max = train_features[:, 1].min() - plot_step, train_features[:, 1].max() + plot_step xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) clf_est = clone(clf) clf_est.fit(train_features,train_labels) if hasattr(clf_est, 'predict_proba'): Z = clf_est.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1] else: Z = clf_est.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) le = LabelEncoder() y_enc = le.fit_transform(train_labels) n_classes = len(le.classes_) plot_colors = ''.join(colors) if colors else [None] * n_classes label_names = le.classes_ markers = markers if markers else [None] * n_classes alphas = alphas if alphas else [None] * n_classes for i, color in zip(range(n_classes), plot_colors): idx = np.where(y_enc == i) plt.scatter(train_features[idx, 0], train_features[idx, 1], c=color, label=label_names[i], cmap=cmap, edgecolors='black', marker=markers[i], alpha=alphas[i]) plt.legend() plt.show() def plot_model_roc_curve(clf, features, true_labels, label_encoder=None, class_names=None): ## Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() if hasattr(clf, 'classes_'): class_labels = clf.classes_ elif label_encoder: class_labels = label_encoder.classes_ elif class_names: class_labels = class_names else: raise ValueError('Unable to derive prediction classes, please specify class_names!') n_classes = len(class_labels) y_test = label_binarize(true_labels, classes=class_labels) if n_classes == 2: if hasattr(clf, 'predict_proba'): prob = clf.predict_proba(features) y_score = prob[:, prob.shape[1]-1] elif hasattr(clf, 'decision_function'): prob = clf.decision_function(features) y_score = prob[:, prob.shape[1]-1] else: raise AttributeError("Estimator doesn't have a probability or confidence scoring system!") fpr, tpr, _ = roc_curve(y_test, y_score) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label='ROC curve (area = {0:0.2f})' ''.format(roc_auc), linewidth=2.5) elif n_classes > 2: if hasattr(clf, 'predict_proba'): y_score = clf.predict_proba(features) elif hasattr(clf, 'decision_function'): y_score = clf.decision_function(features) else: raise AttributeError("Estimator doesn't have a probability or confidence scoring system!") for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) ## Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ## Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) ## Plot ROC curves plt.figure(figsize=(6, 4)) plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), linewidth=3) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), linewidth=3) for i, label in enumerate(class_labels): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(label, roc_auc[i]), linewidth=2, linestyle=':') else: raise ValueError('Number of classes should be atleast 2 or more') plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend(loc="lower right") plt.show()
apache-2.0
Clyde-fare/scikit-learn
sklearn/metrics/scorer.py
211
13141
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
bsd-3-clause
ankurankan/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
41
4827
from itertools import product from nose.tools import assert_true import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from scipy import linalg from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.toarray(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert_less(linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): from nose.tools import assert_raises M = np.ones((10, 3)) f = ignore_warnings assert_raises(ValueError, f(manifold.locally_linear_embedding), M, 2, 1, method='standard', eigen_solver='arpack') if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
yask123/scikit-learn
sklearn/cross_decomposition/pls_.py
187
28507
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <[email protected]> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None eps = np.finfo(X.dtype).eps # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) + eps # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) # 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) + eps # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / (np.dot(y_weights.T, y_weights) + eps) # y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break # 1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break # 2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d" " with X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
JPFrancoia/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
rahuldhote/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
230
5234
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl)
bsd-3-clause
ChanderG/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
sandyjmacdonald/dots_for_microarrays
dots_backend/dots_analysis.py
1
12261
# -*- coding: utf-8 -*- #!/usr/bin/env python import warnings import pandas as pd import numpy as np import scipy.cluster.hierarchy as hac from dots_arrays import Experiment from sklearn.decomposition import PCA from itertools import combinations from scipy.stats import ttest_ind, f_oneway from statsmodels.stats.multitest import multipletests from statsmodels.stats.multicomp import MultiComparison from sklearn.metrics import silhouette_score, silhouette_samples from sklearn.cluster import KMeans ## Functions ## def run_pca(experiment): '''Run PCA when given an experiment instance or data frame with expression values. Args: experiment (Experiment instance): An instance of the Experiment class. Returns: A Pandas data frame with results of PCA analysis. ''' ## The below if/elif checks whether experiment passed to function is an instance of the ## Experiment class or just a data frame with expression values in. if isinstance(experiment, Experiment): df = experiment.get_exp_values().T elif isinstance(experiment, pd.DataFrame): df = experiment.T ## Run the PCA, get the scores and unzip tuples into separate lists of x and y values. pca = PCA(n_components=3) pca_fit = pca.fit_transform(df) vals = [(x[0], x[1]) for x in pca_fit] xvals, yvals = zip(*vals) ## Convert the data into a dictionary for easy conversion into a Pandas data frame. pca_dict = {'xvals': xvals, 'yvals': yvals, 'sampleid': list(df.index), 'group': [x.split('_')[0] for x in list(df.index)]} pca_df = pd.DataFrame(pca_dict) return pca_df def get_fold_changes(experiment): '''Calculate pairwise fold change and log fold change values. Args: experiment (Experiment instance): An instance of the Experiment class. Returns: A new Pandas data frame with pairwise fold change and log fold change values. ''' groups = experiment.get_groups() pairs = map(list, list(combinations(groups, 2))) if all([g.isdigit() for g in groups]): pairs = sorted(pairs, key=lambda x:x[0]) samples = experiment.get_sampleids() df = experiment.df new_df = df.ix[:, :5].copy() for group in groups: ids = [sample for sample in samples if group == sample.split('_')[0]] new_df['mean_' + group] = df[ids].mean(axis=1) del df ## For each pair, calculate mean values for each group, fold changes and log2 fold changes. for pair in pairs: if all([g.isdigit() for g in pair]): pair.sort(key=int, reverse=True) else: pair.sort() name_1, name_2 = pair new_df['abs_mean_diff_' + name_1 + '_' + name_2] = abs((2 ** new_df['mean_' + name_1]) - (2 ** new_df['mean_' + name_2])) new_df['logFC_' + name_1 + '_' + name_2] = new_df['mean_' + name_1] - new_df['mean_' + name_2] new_df['FC_' + name_1 + '_' + name_2] = 2 ** new_df['logFC_' + name_1 + '_' + name_2] return new_df def run_stats(experiment): '''Run independent T-test or one-way ANOVA dependent on number of groups. Args: experiment (Experiment instance): An instance of the Experiment class. Returns: A new Pandas data frame with p values, adjusted p values and Tukey HSD post-hoc results if there are > 2 groups. ''' groups = experiment.get_groups() samples = experiment.get_sampleids() df = experiment.df all_vals = [] ## Get values for each group, ready for T-test or ANOVA. for group in groups: ids = [sample for sample in samples if group == sample.split('_')[0]] vals = map(list, df[ids].values) all_vals.append(vals) ## Decide whether to use T-test or ANOVA dependent on number of groups. if len(groups) == 2: p_vals = [ttest_ind(all_vals[0][i], all_vals[1][i])[1] for i in range(len(all_vals[0]))] else: p_vals = [] for i in range(len(all_vals[0])): row_vals = [all_vals[j][i] for j in range(len(groups))] p_val = f_oneway(*row_vals)[1] p_vals.append(p_val) ## Adjust the p values and create a new data frame with them in. p_val_adj = list(multipletests(p_vals, method='fdr_bh')[1]) new_df = df.ix[:, :5].copy() new_df['p_val'] = pd.Series(p_vals, index=new_df.index) new_df['p_val_adj'] = pd.Series(p_val_adj, index=new_df.index) ## Post-hoc test. ## Only do the post-hoc test if there are more than 2 groups, duh! if len(groups) > 2: vals_df = df[samples] group_ids = [sample.split('_')[0] for sample in vals_df.columns.values] posthoc_results = {} ## Run the post-hoc test on each row. for row in range(len(vals_df)): row_vals = vals_df.ix[row] mc = MultiComparison(row_vals, group_ids) mc_groups = mc.groupsunique results = mc.tukeyhsd() significant = results.reject pairs = zip(*[x.tolist() for x in mc.pairindices]) ## Go through each pair and add results to the posthoc_results dictionary. for i in range(len(pairs)): pair = list(pairs[i]) pair.sort() pair_name = str(mc_groups[pair[0]]) + '_' + str(mc_groups[pair[1]]) if pair_name in posthoc_results: posthoc_results[pair_name].append(significant[i]) else: posthoc_results[pair_name] = [significant[i]] ## Add the post-hoc results to the data frame. for pair_name in posthoc_results: new_df['significant_' + pair_name] = posthoc_results[pair_name] return new_df def find_clusters(df, k_vals=[4, 9, 16, 25], how='hierarchical'): '''Find clusters, and if method is k-means run silhouette analysis to determine the value of k. Args: df (data frame): A data frame with normalised expression data. k_vals (list or range): The range over which to test k. how ('hierarchical' or 'kmeans'): Clustering method. Returns: A list of cluster numbers. ''' ## Don't run the silhouette analysis for hierarchical clustering, ## just calculate the clusters using estimate of k. if how == 'hierarchical': k = int(np.sqrt((len(df) / 2.0))) hc = hac.linkage(df, method='average') optimal_clusters = hac.fcluster(hc, t=k, criterion='maxclust') ## If method is k-means, run silhouette analysis. elif how == 'kmeans': best_combined_score = 0 optimal_k = 2 ## Try values of k from range and keep track of optimal k according ## to silhouette score. for k in k_vals: km = KMeans(n_clusters=k, random_state=10) clusters = km.fit_predict(df) silhouette_avg = silhouette_score(df, clusters) sample_silhouette_values = silhouette_samples(df, clusters) above_mean = 0 silhouette_sizes = [] for i in range(k): ith_cluster_silhouette_values = sample_silhouette_values[clusters == i] size_cluster_i = ith_cluster_silhouette_values.shape[0] silhouette_sizes.append(size_cluster_i) if max(ith_cluster_silhouette_values) > silhouette_avg: above_mean += 1 ## This combined score should pick the best value of k above_mean_score = float(above_mean) / k std_score = 1.0/np.std(silhouette_sizes) if np.std(silhouette_sizes) > 1.0 else 1.0 combined_score = (silhouette_avg + above_mean_score + std_score) / 3 ## Put the clusters in the new column in the data frame. if combined_score > best_combined_score: best_combined_score = combined_score optimal_k = k optimal_clusters = clusters optimal_clusters = [cluster + 1 for cluster in optimal_clusters] return optimal_clusters def get_clusters(experiment, how='hierarchical'): '''Clusters significantly differentially expressed genes by expression pattern across the samples using hierarchical or k-means clustering and silhouette analysis to pick the value of k (via the find_clusters function). Args: experiment (Experiment instance): An instance of the Experiment class. how ('hierarchical' or 'kmeans'): Clustering method. Returns: A new Pandas data frame with fold changes, p values and clusters. ''' ## Run the stats to filter genes down to significant ones only. stats = run_stats(experiment) stats = stats[['FeatureNum', 'p_val', 'p_val_adj']].copy() ## Get the fold changes fcs = get_fold_changes(experiment) keep_cols = [x for x in fcs.columns.values if 'logFC' in x or 'abs_mean_diff' in x] fc_cols = [x for x in fcs.columns.values if 'logFC' in x] fcs = fcs[['FeatureNum'] + keep_cols].copy() norm_exp_cols = experiment.get_sampleids() abs_mean_diff_cols = [x for x in fcs.columns.values if 'abs_mean_diff' in x] ## Merge together the stats and fold changes data frames. merged_df = pd.merge(experiment.df, stats, on='FeatureNum') merged_df = pd.merge(merged_df, fcs, on='FeatureNum') ## Filter the merged data frame to leave only significantly differentially ## expressed genes (adj. p < 0.05. Also, increase the fold change cutoff until there ## are less than 2,500 rows left in the data frame (so that heat maps can be drawn). filtered_df = merged_df[(merged_df['p_val_adj'] < 0.05) & ((abs(merged_df[fc_cols]) > np.log2(float(1))).any(1) == True) & ((merged_df[abs_mean_diff_cols] > 0.5).any(1) == True)].copy() i = 2 while len(filtered_df) * len(experiment.get_sampleids()) > 40000: filtered_df = merged_df[(merged_df['p_val_adj'] < 0.05) & ((abs(merged_df[fc_cols]) > np.log2(float(i))).any(1) == True) & ((merged_df[abs_mean_diff_cols] > 0.5).any(1) == True)].copy() i += 1 ## Clean up. del merged_df del stats del fcs ## A good guesstimate for k. k_limit = int(np.sqrt((len(filtered_df) / 2))) ## Catches numpy warnings about means of empty slices. with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) ## Hierarchical clustering. if how == 'hierarchical': clusters = find_clusters(filtered_df[norm_exp_cols], how='hierarchical') filtered_df['cluster'] = clusters ## K-means clustering with silhouette analysis to determine value of k. elif how == 'kmeans': clusters = find_clusters(filtered_df[norm_exp_cols], k_vals=range(3, k_limit), how='kmeans') filtered_df['cluster'] = clusters ## Sort the data frame by cluster and mean expression across samples. filtered_df['mean_norm_expression'] = filtered_df[norm_exp_cols].mean(axis=0) filtered_df.sort_values(by=['cluster', 'mean_norm_expression'], ascending=[True, False], inplace=True) filtered_df = filtered_df.reset_index(drop=True) return filtered_df def write_fcs_stats(experiment, outfile='foldchanges_stats.txt'): '''Creates a tab-separated table with a full list of fold changes, p values, adjusted p values and post hoc results. Args: experiment (Experiment instance): An instance of the Experiment class. outfile (string): The name of the table-separated table to be created. ''' ## Run the stats and fold changes and merge them into a single data frame. stats = run_stats(experiment) posthoc_cols = [colname for colname in stats.columns.values if 'significant' in colname] stats = stats[['FeatureNum', 'p_val', 'p_val_adj'] + posthoc_cols] fcs = get_fold_changes(experiment) fc_cols = [colname for colname in fcs.columns.values if not 'abs_mean_diff_' in colname] merged_df = pd.merge(fcs, stats, on='FeatureNum') ## Define the order of the columns in the data frame. colnames = list(merged_df.columns.values) global col_order col_order = ['mean', 'FC', 'logFC', 'abs_mean_diff', 'p_val', 'adj_p_val', 'significant'] ## Function to custom sort the columns. def keyfunc(col): for c in col_order: if col.startswith(c): return (col_order.index(c), col.lstrip(c + '_')) break ## Sort the columns. sorted_colnames = colnames[:5] + sorted(colnames[5:], key=keyfunc) merged_df = merged_df[sorted_colnames] ## Fix the type of the FeatureNum column and sort it. merged_df['FeatureNum'] = merged_df['FeatureNum'].astype(int) merged_df.sort_values(by='FeatureNum', ascending=True, inplace=True) ## Write the table. merged_df.to_csv(outfile, sep='\t', index=False) def write_normalised_expression(experiment, outfile='normalised_expression.txt'): '''Creates a tab-separated table with all of the normalised expression values. Args: experiment (Experiment instance): An instance of the Experiment class. outfile (string): The name of the table-separated table to be created. ''' ## Read in the experiment. experiment_df = experiment.df ## Sort the values columns. colnames = list(experiment_df.columns.values) sorted_colnames = colnames[:5] + sorted(colnames[5:]) experiment_df = experiment_df[sorted_colnames] ## Write the table. experiment_df.to_csv(outfile, sep='\t', index=False)
mit
anguoyang/SMQTK
python/smqtk/indexing/naive_bayes.py
1
9147
""" LICENCE ------- Copyright 2015 by Kitware, Inc. All Rights Reserved. Please refer to KITWARE_LICENSE.TXT for licensing information, or contact General Counsel, Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065. """ from . import Indexer import cPickle import os.path as osp import numpy from sklearn.naive_bayes import MultinomialNB import smqtk_config from smqtk.utils import safe_create_dir, SimpleTimer class NaiveBayesMultinomial (Indexer): def __init__(self, data_dir): self.data_dir = osp.join(smqtk_config.DATA_DIR, data_dir) # Array of UIDs in the index the UID refers to in these internal # structures #: :type: list[object] self._uid_array = None self._uid2idx_map = None # Matrix of features #: :type: numpy.core.multiarray.ndarray self._feature_mat = None if self.has_model_files(): self._load_model_files() @property def uid_list_filepath(self): return osp.join(self.data_dir, "uid_list.pickle") @property def feature_mat_filepath(self): return osp.join(self.data_dir, "feature_mat.npy") def has_model_files(self): return (osp.isfile(self.uid_list_filepath) and osp.isfile(self.feature_mat_filepath)) def _load_model_files(self): with open(self.uid_list_filepath, 'rb') as infile: #: :type: list[object] self._uid_array = cPickle.load(infile) #: :type: numpy.core.multiarray.ndarray self._feature_mat = numpy.load(self.feature_mat_filepath) # Mapping of element UID to array/matrix index position #: :type: dict of int self._uid2idx_map = {} for idx, uid in enumerate(self._uid_array): self._uid2idx_map[uid] = idx def has_model(self): """ :return: True if this indexer has a valid initialized model for extension and ranking (or doesn't need one to perform those tasks). :rtype: bool """ return ( self._uid_array is not None and self._feature_mat is not None and 0 not in self._feature_mat.shape # has dimensionality ) def generate_model(self, descriptor_map, parallel=None, **kwargs): """ Generate this indexers data-model using the given features, saving it to files in the configured data directory. :raises RuntimeError: Precaution error when there is an existing data model for this indexer. Manually delete or move the existing model before computing another one. Specific implementations may error on other things. See the specific implementations for more details. :raises ValueError: The given feature map had no content. :param descriptor_map: Mapping of integer IDs to feature data. All feature data must be of the same size! :type descriptor_map: dict of (int, numpy.core.multiarray.ndarray) :param parallel: Optionally specification of how many processors to use when pooling sub-tasks. If None, we attempt to use all available cores. :type parallel: int """ super(NaiveBayesMultinomial, self).generate_model(descriptor_map, parallel) num_features = len(descriptor_map) ordered_uids = sorted(descriptor_map.keys()) sample_feature = descriptor_map[ordered_uids[0]] feature_len = len(sample_feature) # Pre-allocating arrays self._uid_array = [] self._feature_mat = numpy.zeros( (num_features, feature_len), dtype=sample_feature.dtype ) self.log.info("Populating feature matrix") for i, (uid, feat) in enumerate(descriptor_map.iteritems()): self._uid_array.append(uid) self._feature_mat[i] = feat with SimpleTimer("Saving data files", self.log.info): safe_create_dir(self.data_dir) with open(self.uid_list_filepath, 'wb') as ofile: cPickle.dump(self._uid_array, ofile) numpy.save(self.feature_mat_filepath, self._feature_mat) def extend_model(self, uid_feature_map, parallel=None): """ Extend, in memory, the current model with the given feature elements. Online extensions are not saved to data files. NOTE: For now, if there is currently no data model created for this indexer / descriptor combination, we will error. In the future, I would imagine a new model would be created. :raises RuntimeError: No current model. :param uid_feature_map: Mapping of integer IDs to features to extend this indexer's model with. :type uid_feature_map: dict of (collections.Hashable, numpy.core.multiarray.ndarray) :param parallel: Optionally specification of how many processors to use when pooling sub-tasks. If None, we attempt to use all available cores. Not all implementation support parallel model extension. :type parallel: int """ super(NaiveBayesMultinomial, self).extend_model(uid_feature_map, parallel) # Shortcut when we're not given anything to actually process if not uid_feature_map: self.log.debug("No new features to extend") return # Check UID intersection with SimpleTimer("Checking UID uniqueness", self.log.debug): cur_uids = set(self._uid_array) intersection = cur_uids.intersection(uid_feature_map.keys()) if intersection: raise ValueError("The following IDs are already present in the " "indexer's model: %s" % tuple(intersection)) # Check feature consistency # - Assuming that there is are least one feature in our current model... with SimpleTimer("Checking input feature shape", self.log.debug): example_feat = self._feature_mat[0] for feat in uid_feature_map.values(): if feat.shape[0] != example_feat.shape[0]: raise ValueError("One or more features provided are not of " "the correct shape! Found %s when we " "require %s" % (feat.shape, example_feat.shape[1])) del example_feat # Deleting so we can resize later in the function # Extend data structures # - UID and Feature matrix can be simply resized in-place as we are # strictly adding to the end of the structure in memory. # - distance matrix, since we're adding new columns in addition to rows, # need to create a new matrix of the desired shape, copying in # existing into new matrix. self.log.debug("Sorting feature UIDs") new_uids = sorted(uid_feature_map.keys()) self.log.debug("Calculating before and after sizes.") num_features_before = self._feature_mat.shape[0] num_features_after = num_features_before + len(uid_feature_map) with SimpleTimer("Resizing uid/feature matrices", self.log.debug): self._feature_mat.resize((num_features_after, self._feature_mat.shape[1])) with SimpleTimer("Adding to matrices", self.log.debug): for i in range(num_features_before, num_features_after): i_uid = new_uids[i-num_features_before] self._uid_array.append(i_uid) assert len(self._uid_array) == i+1 self._uid2idx_map[i_uid] = i self._feature_mat[i] = uid_feature_map[i_uid] def rank(self, pos_ids, neg_ids=()): super(NaiveBayesMultinomial, self).rank(pos_ids, neg_ids) num_pos = len(pos_ids) num_neg = len(neg_ids) train = numpy.ndarray((num_pos + num_neg, self._feature_mat.shape[1]), dtype=self._feature_mat.dtype) train[:num_pos, :] = \ self._feature_mat[tuple(self._uid2idx_map[uid] for uid in pos_ids), :] train[num_pos:num_pos+num_neg, :] = \ self._feature_mat[tuple(self._uid2idx_map[uid] for uid in neg_ids), :] # Positive elements are label 1, negatives are label 0 labels = numpy.concatenate((numpy.ones(len(pos_ids)), numpy.zeros(len(neg_ids)))) # Only really care about probability of positive, so just keeping that # column. mnb = MultinomialNB() probs = mnb.fit(train, labels).predict_proba(self._feature_mat)[:, 1] return dict(zip(self._uid_array, probs)) def reset(self): """ Reset this indexer to its original state, i.e. removing any model extension that may have occurred. :raises RuntimeError: Unable to reset due to lack of available model. """ super(NaiveBayesMultinomial, self).reset() self._load_model_files() INDEXER_CLASS = [ NaiveBayesMultinomial ]
bsd-3-clause
YinongLong/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
21
10259
"""Testing for the VotingClassifier""" import numpy as np from sklearn.utils.testing import assert_almost_equal, assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import NotFittedError from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import GridSearchCV from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_estimator_init(): eclf = VotingClassifier(estimators=[]) msg = ('Invalid `estimators` attribute, `estimators` should be' ' a list of (string, estimator) tuples') assert_raise_message(AttributeError, msg, eclf.fit, X, y) clf = LogisticRegression(random_state=1) eclf = VotingClassifier(estimators=[('lr', clf)], voting='error') msg = ('Voting must be \'soft\' or \'hard\'; got (voting=\'error\')') assert_raise_message(ValueError, msg, eclf.fit, X, y) eclf = VotingClassifier(estimators=[('lr', clf)], weights=[1, 2]) msg = ('Number of classifiers and weights must be equal' '; got 2 weights, 1 estimators') assert_raise_message(ValueError, msg, eclf.fit, X, y) def test_predictproba_hardvoting(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='hard') msg = "predict_proba is not available when voting='hard'" assert_raise_message(AttributeError, msg, eclf.predict_proba, X) def test_notfitted(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='soft') msg = ("This VotingClassifier instance is not fitted yet. Call \'fit\'" " with appropriate arguments before using this method.") assert_raise_message(NotFittedError, msg, eclf.predict_proba, X) def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target) def test_parallel_predict(): """Check parallel backend of VotingClassifier on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf1 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', n_jobs=1).fit(X, y) eclf2 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', n_jobs=2).fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) def test_sample_weight(): """Tests sample_weight parameter of VotingClassifier""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = SVC(probability=True, random_state=123) eclf1 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('svc', clf3)], voting='soft').fit(X, y, sample_weight=np.ones((len(y),))) eclf2 = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('svc', clf3)], voting='soft').fit(X, y) assert_array_equal(eclf1.predict(X), eclf2.predict(X)) assert_array_equal(eclf1.predict_proba(X), eclf2.predict_proba(X)) sample_weight = np.random.RandomState(123).uniform(size=(len(y),)) eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft') eclf3.fit(X, y, sample_weight) clf1.fit(X, y, sample_weight) assert_array_equal(eclf3.predict(X), clf1.predict(X)) assert_array_equal(eclf3.predict_proba(X), clf1.predict_proba(X)) clf4 = KNeighborsClassifier() eclf3 = VotingClassifier(estimators=[ ('lr', clf1), ('svc', clf3), ('knn', clf4)], voting='soft') msg = ('Underlying estimator \'knn\' does not support sample weights.') assert_raise_message(ValueError, msg, eclf3.fit, X, y, sample_weight)
bsd-3-clause
bbfamily/abu
abupy/UmpBu/ABuUmpEdgeBase.py
1
25925
# -*- encoding:utf-8 -*- """ 边裁基础实现模块 """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import logging import os from abc import abstractmethod import numpy as np import sklearn.preprocessing as preprocessing from enum import Enum from sklearn.metrics.pairwise import pairwise_distances from ..CoreBu import ABuEnv from ..UtilBu import ABuFileUtil from ..SimilarBu.ABuCorrcoef import ECoreCorrType, corr_xy from .ABuUmpBase import AbuUmpBase # noinspection PyUnresolvedReferences from ..CoreBu.ABuFixes import filter __author__ = '阿布' __weixin__ = 'abu_quant' """在predict中度量输入的x和矩阵中其它矢量的pairwise_distances后,通过if distances_cx.min() > K_DISTANCE_THRESHOLD过滤""" K_DISTANCE_THRESHOLD = 0.668 """从第一轮pairwise_distances的结果使用argsort后取K_N_TOP_SEED个做为第二轮相似匹配的种子""" K_N_TOP_SEED = 100 """完成第二轮相似度匹配后使用K_SIMILAR_THRESHOLD做为阀值过滤后得到有投票权的向量""" K_SIMILAR_THRESHOLD = 0.91 """ K_CG_TOP_RATE做为计算win_top和loss_top win_top = len(self.fiter.df['profit_cg']) - len(self.fiter.df['profit_cg']) * K_CG_TOP_RATE eg: len(self.fiter.df['profit_cg']) == 100 -> win_top = 100 - 100 * 0.236 -> win_top = 100 - 23.6 -> win_top = 76.4 loss_top = len(self.fiter.df['profit_cg']) * K_CG_TOP_RATE eg: len(self.fiter.df['profit_cg']) == 100 -> loss_top = 100 * 0.236 -> loss_top = 23.6 """ K_CG_TOP_RATE = 0.236 """在predict中最后的投票结果需要大于一定比例才被认可, 即对有争议的投票需要一方拥有相对优势才认可""" K_EDGE_JUDGE_RATE = 0.618 class EEdgeType(Enum): """对交易的利润亏损进行rank后的分类结果""" """损失最多的一类交易,可理解为最底端""" E_EEdge_TOP_LOSS = -1 """其它的普通收益亏损的交易,在整个训练集交易中占最多数""" E_EEdge_NORMAL = 0 """盈利最多的一类交易,可理解为最顶端""" E_STORE_TOP_WIN = 1 """在第二轮的相似度匹配中使用的方法,传递给ABuCorrcoef.corr_xy函数""" g_similar_type = ECoreCorrType.E_CORE_TYPE_PEARS class AbuUmpEdgeBase(AbuUmpBase): """边裁基类""" @classmethod def ump_edge_clf_dump(cls, orders_pd_train, show_info=False, market_name=None): """ 类方法,通过交易训练集orders_pd_train构造AbuUmpEdgeBase子类对象, 使用fit方法对训练集进行特征采集,后进行dump_clf即 本地序列化存贮等工作 :param orders_pd_train: 交易训练集,pd.DataFrame对象 :param show_info: 是否显示edge.fiter.df.head(),默认False :param market_name: 主裁训练或者获取裁判对应的存贮唯一名称,默认None, 根据env中的当前市场设置存储名称 :return: AbuUmpEdgeBase子类对象实例 """ edge = cls(orders_pd_train, market_name=market_name) edge.fit() edge.dump_clf() if show_info: print('edge.fiter.df.head():\n', edge.fiter.df.head()) return edge @abstractmethod def get_fiter_class(self): """abstractmethod子类必须实现,声明具体子类裁判使用的筛选特征形成特征的类""" pass @abstractmethod def get_predict_col(self): """abstractmethod子类必须实现,获取具体子类裁判需要的特征keys""" pass @classmethod @abstractmethod def class_unique_id(cls): """ 具体ump类关键字唯一名称,类方法,abstractmethod子类必须实现 主要针对外部user设置自定义ump使用, 需要user自己保证class_unique_id的唯一性,内部不做检测 具体使用见ABuUmpManager中extend_ump_block方法 """ pass def __init__(self, orders_pd=None, predict=False, market_name=None, **kwarg): """ :param orders_pd: 回测结果生成的交易订单构成的pd.DataFrame对象, 最好是经过度量类 AbuMetricsBase对象进行度量fit_metrics之后的orders_pd :param predict: 是否构造的裁判类型为预测,非训练裁判 :param market_name: 主裁训练或者获取裁判对应的存贮唯一名称,默认None, 根据env中的当前市场设置存储名称 :param kwarg: 将kwarg参数透传给fiter_cls的构造: self.fiter = self.fiter_cls(orders_pd=orders_pd, **kwarg) """ # 特征筛选类fiter_cls self.fiter_cls = self.get_fiter_class() # 对交易特征进行统一标准化的scaler对象 self.scaler = preprocessing.StandardScaler() if isinstance(market_name, ABuEnv.EMarketTargetType): market_name = market_name.value # predict或者训练的情况都需要对应裁判的唯一名称, 默认使用对应市场的字符串名字 eg,'us', 'cn' self.market_name = ABuEnv.g_market_target.value if market_name is None else market_name if not predict: # TODO 拆开predict和训练数据逻辑,不要纠缠在一起 if orders_pd is not None and 'profit_cg' not in orders_pd.columns: # profit_cg等度量参数是要在AbuMetricsBase结束后才会有 logging.info('you do better AbuMetricsBase.fit_metrics in orders_pd!!!!') from ..MetricsBu.ABuMetricsBase import AbuMetricsBase # 这里只做fit_metrics_order,没做fit_metrics因为比如期货,比特币会有自己的度量类,使用通用的fit_metrics_order AbuMetricsBase(orders_pd, None, None, None).fit_metrics_order() # 实例化特征构造对象self.fiter self.fiter = self.fiter_cls(orders_pd=orders_pd, **kwarg) """ 通过self.fiter_cls构造形成self.fiter后self.fiter.df中以存在特征 eg:self.fiter.df profit profit_cg buy_deg_ang42 buy_deg_ang252 buy_deg_ang60 buy_deg_ang21 2014-09-24 -22618.04 -0.0566 3.378 3.458 3.458 1.818 2014-10-24 -29690.28 -0.0742 0.191 2.889 2.809 -1.089 2014-10-29 18959.19 0.0542 -2.026 16.689 -0.761 1.980 2014-10-29 148209.36 0.5022 -3.427 -11.956 -8.296 6.507 2014-10-29 24867.60 0.0952 -2.915 39.469 -6.043 7.046 """ # 默认使用svm,这里需要参数可设置 self.fiter().estimator.svc() def fit(self): """ 边裁训练集拟合存储函数,相对主裁的训练fit函数,边裁的fit很简单 self.fiter.df经过fit后添加了新列p_rk_cg和rk形式如下所示 eg:self.fiter.df profit profit_cg buy_deg_ang42 buy_deg_ang252 \ 2014-09-24 -22618.04 -0.0566 3.378 3.458 2014-10-24 -29690.28 -0.0742 0.191 2.889 2014-10-29 18959.19 0.0542 -2.026 16.689 2014-10-29 148209.36 0.5022 -3.427 -11.956 2014-10-29 24867.60 0.0952 -2.915 39.469 2014-10-29 18959.19 0.0542 -2.026 16.689 2014-11-03 1250.80 0.0045 0.103 39.202 2014-11-11 59888.21 0.1857 8.341 -9.450 2014-11-12 -3578.78 -0.0140 3.963 6.595 2014-11-26 -29085.19 -0.0946 14.052 6.061 ... ... ... ... ... 2016-03-14 16220.57 0.0559 4.002 -10.559 2016-03-14 -25328.12 -0.1218 0.129 -6.649 2016-03-30 -29858.44 -0.0863 13.121 -8.461 2016-04-04 5373.76 0.0244 4.409 -33.097 2016-04-13 -28044.40 -0.1159 6.603 -31.459 2016-04-14 -18645.93 -0.0467 4.611 18.428 2016-04-15 -32484.79 -0.1149 4.238 -13.247 2016-04-15 -32484.79 -0.1149 4.238 -13.247 2016-04-29 290.96 0.0007 1.445 16.266 2016-04-29 290.96 0.0007 1.445 16.266 buy_deg_ang60 buy_deg_ang21 p_rk_cg rk 2014-09-24 3.458 1.818 19.0 0 2014-10-24 2.809 -1.089 13.0 -1 2014-10-29 -0.761 1.980 35.5 0 2014-10-29 -8.296 6.507 56.0 1 2014-10-29 -6.043 7.046 43.0 1 2014-10-29 -0.761 1.980 35.5 0 2014-11-03 -4.614 10.125 28.0 0 2014-11-11 0.730 12.397 48.0 1 2014-11-12 -7.524 6.671 23.0 0 2014-11-26 7.566 12.494 9.0 -1 ... ... ... ... .. 2016-03-14 -7.992 9.324 37.0 0 2016-03-14 -10.880 5.201 2.0 -1 2016-03-30 4.498 4.070 12.0 -1 2016-04-04 -6.281 5.618 33.0 0 2016-04-13 0.191 4.457 4.0 -1 2016-04-14 3.134 0.733 20.0 0 2016-04-15 4.693 1.162 5.5 -1 2016-04-15 4.693 1.162 5.5 -1 2016-04-29 4.615 -1.115 24.5 0 2016-04-29 4.615 -1.115 24.5 0 边裁裁决方式多次使用非均衡技术对最后的结果概率进行干预,目的是使最终的裁决正确率达成非均衡的目标, 非均衡技术思想是量化中很很重要的一种设计思路,因为我们量化的目标结果就是非均衡(我们想要赢的钱比输的多) """ # 对训练特征fiter.df中的profit_cg进行rank,即针对训练集中的交易盈利亏损值进行rank排序, rank结果添加到self.fiter.df新列 # TODO 暂时只使用profit_cg不使用profit做为训练参数,需要整合profit为训练的rank等综合权重处理 self.fiter.df['p_rk_cg'] = self.fiter.df['profit_cg'].rank() """ eg: self.fiter.df['p_rk_cg'] 2014-09-24 19.0 2014-10-24 13.0 2014-10-29 35.5 2014-10-29 56.0 2014-10-29 43.0 2014-10-29 35.5 2014-11-03 28.0 2014-11-11 48.0 2014-11-12 23.0 2014-11-26 9.0 ... 2016-03-14 37.0 2016-03-14 2.0 2016-03-30 12.0 2016-04-04 33.0 2016-04-13 4.0 2016-04-14 20.0 2016-04-15 5.5 2016-04-15 5.5 2016-04-29 24.5 2016-04-29 24.5 """ # K_CG_TOP_RATE=0.236, 由于策略的胜负的非均衡,win_top的位置实际比较loss_top为非均衡,为后续制造概率优势 win_top = len(self.fiter.df['profit_cg']) - len(self.fiter.df['profit_cg']) * K_CG_TOP_RATE """ eg: len(self.fiter.df['profit_cg']) == 100 -> win_top = 100 - 100 * 0.236 -> win_top = 100 - 23.6 -> win_top = 76.4 """ loss_top = len(self.fiter.df['profit_cg']) * K_CG_TOP_RATE """ eg: len(self.fiter.df['profit_cg']) == 100 -> loss_top = 100 * 0.236 -> loss_top = 23.6 """ # self.fiter.df添加新列'rk',初始值都为EEdgeType.E_EEdge_NORMAL.value,即0 self.fiter.df['rk'] = EEdgeType.E_EEdge_NORMAL.value """ 根据win_top, loss_top将整体切分为三段,rk:-1, 0, 1 rk profit_cg p_rk_cg 2011-09-21 0 0.036216 58816.0 2011-09-21 1 0.046784 61581.0 2011-09-21 -1 -0.191184 1276.0 2011-09-21 0 -0.000428 43850.0 2011-09-21 0 0.001724 44956.0 """ # noinspection PyTypeChecker self.fiter.df['rk'] = np.where(self.fiter.df['p_rk_cg'] > win_top, EEdgeType.E_STORE_TOP_WIN.value, self.fiter.df['rk']) # noinspection PyTypeChecker self.fiter.df['rk'] = np.where(self.fiter.df['p_rk_cg'] < loss_top, EEdgeType.E_EEdge_TOP_LOSS.value, self.fiter.df['rk']) def dump_file_fn(self): """ 边裁本地缓存的存储路径规则: ABuEnv.g_project_data_dir + 'ump/ump_edge_' + market_name + self.class_unique_id() """ # TODO 如果有裁判覆盖,保留备份,显示通知 unique_ump_name = 'ump/ump_edge_{}_{}'.format(self.market_name, self.class_unique_id()) return os.path.join(ABuEnv.g_project_data_dir, unique_ump_name) def dump_clf(self): """ 边裁的本地序列化相对主裁的dump_clf也简单很多, 将self.fiter.df和self.fiter.x打包成一个字典对象df_x_dict 通过ABuFileUtil.dump_pickle进行保存 """ df_x_dict = {'fiter_df': self.fiter.df, 'fiter_x': self.fiter.x} """ eg:df_x_dict array([[ 3.378, 3.458, 3.458, 1.818], [ 0.191, 2.889, 2.809, -1.089], [ -2.026, 16.689, -0.761, 1.98 ], [ -3.427, -11.956, -8.296, 6.507], [ -2.915, 39.469, -6.043, 7.046], [ -2.026, 16.689, -0.761, 1.98 ], [ 0.103, 39.202, -4.614, 10.125], [ 8.341, -9.45 , 0.73 , 12.397], [ 3.963, 6.595, -7.524, 6.671], .................................... [ 4.002, -10.559, -7.992, 9.324], [ 0.129, -6.649, -10.88 , 5.201], [ 13.121, -8.461, 4.498, 4.07 ], [ 4.409, -33.097, -6.281, 5.618], [ 6.603, -31.459, 0.191, 4.457], [ 4.611, 18.428, 3.134, 0.733], [ 4.238, -13.247, 4.693, 1.162], [ 4.238, -13.247, 4.693, 1.162], [ 1.445, 16.266, 4.615, -1.115], [ 1.445, 16.266, 4.615, -1.115]]) """ ABuFileUtil.dump_pickle(df_x_dict, self.dump_file_fn(), how='zero') def predict(self, **kwargs): """ 边裁交易决策函数,从CachedUmpManager中获取缓存df_x_dict,对kwargs关键字参数所描述的交易特征进行拦截决策 边裁的predict()实现相对主裁来说比较复杂,大致思路如下: 1. 从输入的新交易中挑选需要的特征组成x 2. 将x和之前保存的训练集数据组合concatenate(),一起做数据标准化scaler 3. 使用sklearn.metrics.pairwise.pairwise_distances()度量输入特征和训练集矩阵中的距离序列 4. 取pairwise_distances() TOP个作为种子,继续匹配相似度 5. 相似度由大到小排序,保留大于保留阀值的相似度交易数据做为最终有投票权利的 6. 保留的交易认为是与新交易最相似的交易,保留的交易使用之前非均衡的rk对新交易进行投票 7. 最后的判断需要大于一定比例才被结果认可,即再次启动非均衡 :param kwargs: 需要和子类对象实现的虚方法get_predict_col中获取特征列对应的 关键字参数,eg: buy_deg_ang42=3.378, buy_deg_ang60=3.458 buy_deg_ang21=3.191, buy_deg_ang252=1.818 :return: 是否对kwargs关键字参数所描述的交易特征进行拦截, EEdgeType: 不拦截: EEdgeType.E_EEdge_NORMAL or EEdgeType.E_STORE_TOP_WIN 拦截: EEdgeType.E_EEdge_TOP_LOSS """ # 统一从CachedUmpManager中获取缓存ump,没有缓存的情况下load_pickle df_x_dict = AbuUmpBase.dump_clf_manager.get_ump(self) # 从df_x_dict['fiter_df'].columns中筛选特征列 feature_columns = df_x_dict['fiter_df'].columns.drop(['profit', 'profit_cg', 'p_rk_cg', 'rk']) """ eg: df_x_dict['fiter_df'].columns Index(['profit', 'profit_cg', 'buy_deg_ang42', 'buy_deg_ang252', 'buy_deg_ang60', 'buy_deg_ang21', 'p_rk_cg', 'rk'], dtype='object') drop(['profit', 'profit_cg', 'p_rk_cg', 'rk'] -> ['buy_deg_ang42', 'buy_deg_ang252', 'buy_deg_ang60', 'buy_deg_ang21'] """ # eg, x: array([ 3.378, 3.458, 3.458, 1.818]) x = np.array([kwargs[col] for col in feature_columns]) x = x.reshape(1, -1) # 把新的x concatenate到之前保存的矩阵中 con_x = np.concatenate((x, df_x_dict['fiter_x']), axis=0) # 将输入的x和原始矩阵组装好的新矩阵con_x一起标准化 con_x = self.scaler.fit_transform(con_x) # 使用输入的x即con_x[0]和矩阵中其它的进行pairwise_distances比较 distances_cx = pairwise_distances(con_x[0].reshape(1, -1), con_x[1:], metric='euclidean') distances_cx = distances_cx[0] """ eg: distances_cx array([[ 0. , 0.8432, 1.4371, 2.4178, 3.1302, 1.4371, 3.1774, 2.5422, 1.7465, 3.0011, 0.7233, 2.264 , 0.8279, 0.8279, 2.309 , 1.4878, 1.9396, 0.7438, 0.9731, 0.4494, 2.0755, 2.9762, 4.5869, 5.2029, 0.7362, 0.7362, 3.623 , 0.6105, 0.6105, 1.2288, 2.0991, 2.0991, 3.2272, 0.8599, 0.7419, 0.7419, 0.7804, 2.5241, 1.8116, 2.5373, 2.2742, 2.1726, 3.2738, 1.293 , 2.4555, 2.4555, 2.3358, 2.1673, 2.0187, 2.8637, 2.5066, 1.052 , 1.1481, 1.1481, 1.1175, 1.1175]]) """ # 如果最小距离大于阀值,认为无效,K_DISTANCE_THRESHOLD = 0.668 if distances_cx.min() > K_DISTANCE_THRESHOLD: return EEdgeType.E_EEdge_NORMAL distances_sort = distances_cx.argsort() """ eg: distances_sort array([ 0, 19, 28, 27, 10, 24, 25, 35, 34, 17, 36, 13, 12, 1, 33, 18, 51, 54, 55, 52, 53, 29, 43, 5, 2, 15, 8, 38, 16, 48, 20, 30, 31, 47, 41, 11, 40, 14, 46, 3, 45, 44, 50, 37, 39, 7, 49, 21, 9, 4, 6, 32, 42, 26, 22, 23]) """ n_top = K_N_TOP_SEED if len(distances_cx) > K_N_TOP_SEED else len(distances_cx) # 取前100个作为种子继续匹配相似度做数据准备 distances_sort = distances_sort[:n_top] # 进行第二轮的相似度匹配,使用输入的x即con_x[0]和distances_sort中记录的其它矩阵矢量进行corr_xy similar_cx = {arg: corr_xy(con_x[0], con_x[arg + 1], g_similar_type) for arg in distances_sort} """ eg: similar_cx {0: 1.0, 19: 0.9197507467964976, 28: 0.57289288329659238, 27: 0.57289288329659238, 10: 0.44603792013583493, 24: 0.4103293780402798, 25: 0.4103293780402798, 35: 0.22026514236282496, 34: 0.22026514236282496, 17: -0.24170074544552811, 36: 0.43863838382081699, 13: 0.16234971594751921, 12: 0.16234971594751921, 1: 0.92424298737490296, 33: 0.47818723914034433, 18: -0.17734957863273493, 51: 0.63704694680797502, 54: 0.75395818997353681, 55: 0.75395818997353681, 52: 0.6485413094804453, 53: 0.6485413094804453, 29: 0.89796883127042837, 43: 0.86342390437553329, 5: 0.12738173851484677, 2: 0.12738173851484677, 15: 0.53496775815355813, 8: -0.92624283913287053, 38: -0.52046967255944876, 16: -0.65837858483393186, 48: 0.26241267262766549, 20: 0.45007515315947716, 30: -0.78037071039800843, 31: -0.78037071039800843, 47: -0.99196576241088685, 41: 0.71286817166895511, 11: -0.57565781272205685, 40: -0.089683927257343574, 14: -0.49743962329463148, 46: -0.84622925585859421, 3: -0.82066914234853283, 45: 0.30735926720691314, 44: 0.30735926720691314, 50: 0.010871213734502339, 37: -0.65150765047066517, 39: -0.38809703338219459, 7: -0.57947244493007666, 49: -0.33103296960584466, 21: 0.69444344588208717, 9: -0.3435188573004419, 4: -0.39204446380766983, 6: -0.54996919528831723, 32: -0.9481034251744791, 42: 0.20829094732022327, 26: 0.9936229414412624, 22: -0.35972456962349542, 23: -0.085747705364200594} """ # 相似度大到小排序 similar_sorted = sorted(zip(similar_cx.values(), similar_cx.keys()))[::-1] """ eg: similar_sorted [(1.0, 0), (0.9936229414412624, 26), (0.92424298737490296, 1), (0.9197507467964976, 19), ( 0.89796883127042837, 29), (0.86342390437553329, 43), (0.75395818997353681, 55), (0.75395818997353681, 54), (0.71286817166895511, 41), (0.69444344588208717, 21), (0.6485413094804453, 53), (0.6485413094804453, 52), (0.63704694680797502, 51), (0.57289288329659238, 28), (0.57289288329659238, 27), (0.53496775815355813, 15), (0.47818723914034433, 33), (0.45007515315947716, 20), (0.44603792013583493, 10), (0.43863838382081699, 36), (0.4103293780402798, 25), (0.4103293780402798, 24), (0.30735926720691314, 45), (0.30735926720691314, 44), (0.26241267262766549, 48), (0.22026514236282496, 35), (0.22026514236282496, 34), (0.20829094732022327, 42), (0.16234971594751921, 13), (0.16234971594751921, 12), (0.12738173851484677, 5), (0.12738173851484677, 2), (0.010871213734502339, 50), (-0.085747705364200594, 23), (-0.089683927257343574, 40), (-0.17734957863273493, 18), (-0.24170074544552811, 17), (-0.33103296960584466, 49), (-0.3435188573004419, 9), (-0.35972456962349542, 22), (-0.38809703338219459, 39), (-0.39204446380766983, 4), (-0.49743962329463148, 14), (-0.52046967255944876, 38), (-0.54996919528831723, 6), (-0.57565781272205685, 11), (-0.57947244493007666, 7), (-0.65150765047066517, 37), (-0.65837858483393186, 16), (-0.78037071039800843, 31), (-0.78037071039800843, 30), (-0.82066914234853283, 3), (-0.84622925585859421, 46), (-0.92624283913287053, 8), (-0.9481034251744791, 32), (-0.99196576241088685, 47)] """ # 只取大于阀值相似度K_SIMILAR_THRESHOLD的做为最终有投票权利的 similar_filters = list(filter(lambda sm: sm[0] > K_SIMILAR_THRESHOLD, similar_sorted)) """ eg: similar_filters [(1.0, 0), (0.9936229414412624, 26), (0.92424298737490296, 1), (0.9197507467964976, 19)] """ if len(similar_filters) < int(n_top * 0.1): # 投票的太少,初始相似种子n_top的0.1为阀值,认为无效,eg:int(100 * 0.1) == 10 return EEdgeType.E_EEdge_NORMAL top_loss_cluster_cnt = 0 top_win_cluster_cnt = 0 # 由于gmm_component_filter中win_top的非均衡,导致top_win_cluster_cnt > top_loss_cluster_cnt概率大 for similar in similar_filters: """ eg: similar: (0.9936229414412624, 26) order_ind = similar[1] = 26 similar_val = similar[0] = 0.9936229414412624 """ order_ind = similar[1] similar_val = similar[0] # 通过order_ind获取有投票权利的交易的rk值 rk = df_x_dict['fiter_df'].iloc[order_ind]['rk'] # 对应这个最相似的在哪一个分类中,判断edge if rk == -1: # 需要 * similar_val eg: top_loss_cluster_cnt += 1 * 0.9936229414412624 top_loss_cluster_cnt += 1 * similar_val elif rk == 1: top_win_cluster_cnt += 1 * similar_val # 最后的投票结果需要大于一定比例才被认可, 即对有争议的投票需要一方拥有相对优势才认可 if int(top_win_cluster_cnt * K_EDGE_JUDGE_RATE) > top_loss_cluster_cnt: """ eg: top_win_cluster_cnt = 100 top_loss_cluster_cnt = 50 int(top_win_cluster_cnt * K_EDGE_JUDGE_RATE) == 62 62 > 50 -> EEdgeType.E_STORE_TOP_WIN """ return EEdgeType.E_STORE_TOP_WIN elif int(top_loss_cluster_cnt * K_EDGE_JUDGE_RATE) > top_win_cluster_cnt: """ eg: top_loss_cluster_cnt = 100 top_win_cluster_cnt = 50 int(top_loss_cluster_cnt * K_EDGE_JUDGE_RATE) == 62 62 > 50 -> EEdgeType.E_EEdge_TOP_LOSS """ # 由于top_win_cluster_cnt > top_loss_cluster_cnt的非均衡本来就有概率优势,* K_EDGE_JUDGE_RATE进一步扩大概率优势 return EEdgeType.E_EEdge_TOP_LOSS return EEdgeType.E_EEdge_NORMAL
gpl-3.0
Aasmi/scikit-learn
sklearn/decomposition/tests/test_nmf.py
32
6044
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): # Test NNDSVD behaviour on negative input nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): # Test that NNDSVD does not return negative values data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'a' and 'ar' differ from basic NNDSVD only where # the basic version has zeros. data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): # Test model fit behaviour on negative input A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): # Test that the fit is not too far away pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): # Test that NLS solver doesn't return negative values A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): # Test that the NLS results should be close A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): # Test that NMF.transform returns close values # (transform uses scipy.optimize.nnls for now) A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): # Test sparseness # Test that sparsity constraints actually increase sparseness in the # part where they are applied. A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): # Test that transform works on sparse data. Issue #2124 from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF() A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2)
bsd-3-clause
xavierwu/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
ElDeveloper/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
examples/applications/plot_model_complexity_influence.py
323
6372
""" ========================== Model Complexity Influence ========================== Demonstrate how model complexity influences both prediction accuracy and computational performance. The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification). For each class of models we make the model complexity vary through the choice of relevant model parameters and measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss). """ print(__doc__) # Author: Eustache Diemert <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.parasite_axes import host_subplot from mpl_toolkits.axisartist.axislines import Axes from scipy.sparse.csr import csr_matrix from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error from sklearn.svm.classes import NuSVR from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor from sklearn.linear_model.stochastic_gradient import SGDClassifier from sklearn.metrics import hamming_loss ############################################################################### # Routines # initialize random generator np.random.seed(0) def generate_data(case, sparse=False): """Generate regression/classification data.""" bunch = None if case == 'regression': bunch = datasets.load_boston() elif case == 'classification': bunch = datasets.fetch_20newsgroups_vectorized(subset='all') X, y = shuffle(bunch.data, bunch.target) offset = int(X.shape[0] * 0.8) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] if sparse: X_train = csr_matrix(X_train) X_test = csr_matrix(X_test) else: X_train = np.array(X_train) X_test = np.array(X_test) y_test = np.array(y_test) y_train = np.array(y_train) data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test} return data def benchmark_influence(conf): """ Benchmark influence of :changing_param: on both MSE and latency. """ prediction_times = [] prediction_powers = [] complexities = [] for param_value in conf['changing_param_values']: conf['tuned_params'][conf['changing_param']] = param_value estimator = conf['estimator'](**conf['tuned_params']) print("Benchmarking %s" % estimator) estimator.fit(conf['data']['X_train'], conf['data']['y_train']) conf['postfit_hook'](estimator) complexity = conf['complexity_computer'](estimator) complexities.append(complexity) start_time = time.time() for _ in range(conf['n_samples']): y_pred = estimator.predict(conf['data']['X_test']) elapsed_time = (time.time() - start_time) / float(conf['n_samples']) prediction_times.append(elapsed_time) pred_score = conf['prediction_performance_computer']( conf['data']['y_test'], y_pred) prediction_powers.append(pred_score) print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % ( complexity, conf['prediction_performance_label'], pred_score, elapsed_time)) return prediction_powers, prediction_times, complexities def plot_influence(conf, mse_values, prediction_times, complexities): """ Plot influence of model complexity on both accuracy and latency. """ plt.figure(figsize=(12, 6)) host = host_subplot(111, axes_class=Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() host.set_xlabel('Model Complexity (%s)' % conf['complexity_label']) y1_label = conf['prediction_performance_label'] y2_label = "Time (s)" host.set_ylabel(y1_label) par1.set_ylabel(y2_label) p1, = host.plot(complexities, mse_values, 'b-', label="prediction error") p2, = par1.plot(complexities, prediction_times, 'r-', label="latency") host.legend(loc='upper right') host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__) plt.show() def _count_nonzero_coefficients(estimator): a = estimator.coef_.toarray() return np.count_nonzero(a) ############################################################################### # main code regression_data = generate_data('regression') classification_data = generate_data('classification', sparse=True) configurations = [ {'estimator': SGDClassifier, 'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss': 'modified_huber', 'fit_intercept': True}, 'changing_param': 'l1_ratio', 'changing_param_values': [0.25, 0.5, 0.75, 0.9], 'complexity_label': 'non_zero coefficients', 'complexity_computer': _count_nonzero_coefficients, 'prediction_performance_computer': hamming_loss, 'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)', 'postfit_hook': lambda x: x.sparsify(), 'data': classification_data, 'n_samples': 30}, {'estimator': NuSVR, 'tuned_params': {'C': 1e3, 'gamma': 2 ** -15}, 'changing_param': 'nu', 'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9], 'complexity_label': 'n_support_vectors', 'complexity_computer': lambda x: len(x.support_vectors_), 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, {'estimator': GradientBoostingRegressor, 'tuned_params': {'loss': 'ls'}, 'changing_param': 'n_estimators', 'changing_param_values': [10, 50, 100, 200, 500], 'complexity_label': 'n_trees', 'complexity_computer': lambda x: x.n_estimators, 'data': regression_data, 'postfit_hook': lambda x: x, 'prediction_performance_computer': mean_squared_error, 'prediction_performance_label': 'MSE', 'n_samples': 30}, ] for conf in configurations: prediction_performances, prediction_times, complexities = \ benchmark_influence(conf) plot_influence(conf, prediction_performances, prediction_times, complexities)
bsd-3-clause