File size: 3,239 Bytes
f6e8e29 2a3c6e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
task_categories:
- text-generation
tags:
- legal
size_categories:
- 10M<n<100M
---
# Swahili Text Dataset
## Overview
This dataset contains a comprehensive collection of Swahili text data, derived from the [AfriBERTa Corpus](https://huggingface.co/datasets/castorini/afriberta-corpus). It provides a rich resource for natural language processing tasks focused on the Swahili language.
## Dataset Details
- **Source**: [AfriBERTa Corpus](https://huggingface.co/datasets/castorini/afriberta-corpus) (Swahili subset)
- **Language**: Swahili
- **Size**: [Insert total number of samples here]
- **Format**: Hugging Face Dataset
## Content
The dataset consists of two main columns:
1. `id`: A unique identifier for each text entry
2. `text`: The Swahili text content
## Usage
You can load this dataset using the Hugging Face `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset("[Your_HuggingFace_Username]/[Your_Dataset_Name]")
```
Replace `[Your_HuggingFace_Username]` and `[Your_Dataset_Name]` with the appropriate values for your uploaded dataset.
## Data Fields
- `id`: string
- `text`: string
## Data Splits
This dataset combines training and test splits from the original AfriBERTa Corpus. The data has been shuffled with a fixed seed (42) to ensure reproducibility.
## Dataset Creation
This dataset was created by:
1. Loading the Swahili subset of the AfriBERTa Corpus
2. Concatenating the training and test splits
3. Shuffling the combined dataset
4. Extracting the 'id' and 'text' fields
## Intended Uses
This dataset can be used for various natural language processing tasks involving the Swahili language, such as:
- Language modeling
- Text classification
- Named entity recognition
- Machine translation (as a source or target language)
- Sentiment analysis
- And more...
## Limitations
- The dataset is limited to the content available in the original AfriBERTa Corpus.
- It may not represent all dialects or variations of the Swahili language.
- The quality and accuracy of the text content depend on the original data source.
## Citation
If you use this dataset, please cite the original AfriBERTa Corpus:
```
@inproceedings{ogueji-etal-2021-small,
title = "Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages",
author = "Ogueji, Kelechi and
Zhu, Yuxin and
Lin, Jimmy",
booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.mrl-1.11",
pages = "116--126",
}
```
## Licensing Information
This dataset is derived from the AfriBERTa Corpus. For usage terms and conditions, please refer to the [original dataset's license](https://huggingface.co/datasets/castorini/afriberta-corpus).
## Contact
If you have questions or comments about this specific version of the dataset, please open an issue in this repository or contact [[email protected]].
---
Dataset created and curated by [AdeptSchneider].
Last updated: [09/10/2024] |