AdamCodd commited on
Commit
1d225a2
·
1 Parent(s): a778e56

Create emotion.py

Browse files
Files changed (1) hide show
  1. emotion.py +88 -0
emotion.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import datasets
4
+ from datasets.tasks import TextClassification
5
+
6
+
7
+ _CITATION = """\
8
+ @inproceedings{saravia-etal-2018-carer,
9
+ title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
10
+ author = "Saravia, Elvis and
11
+ Liu, Hsien-Chi Toby and
12
+ Huang, Yen-Hao and
13
+ Wu, Junlin and
14
+ Chen, Yi-Shin",
15
+ booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
16
+ month = oct # "-" # nov,
17
+ year = "2018",
18
+ address = "Brussels, Belgium",
19
+ publisher = "Association for Computational Linguistics",
20
+ url = "https://www.aclweb.org/anthology/D18-1404",
21
+ doi = "10.18653/v1/D18-1404",
22
+ pages = "3687--3697",
23
+ abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
24
+ }
25
+ """
26
+
27
+ _DESCRIPTION = """\
28
+ Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
29
+ """
30
+
31
+ _HOMEPAGE = "https://github.com/dair-ai/emotion_dataset"
32
+
33
+ _LICENSE = "The dataset should be used for educational and research purposes only"
34
+
35
+ _URLS = {
36
+ "split": {
37
+ "train": "data/train.jsonl.gz",
38
+ "validation": "data/validation.jsonl.gz",
39
+ "test": "data/test.jsonl.gz",
40
+ },
41
+ "unsplit": {
42
+ "train": "data/data.jsonl.gz",
43
+ },
44
+ }
45
+
46
+
47
+ class Emotion(datasets.GeneratorBasedBuilder):
48
+ VERSION = datasets.Version("1.0.0")
49
+ BUILDER_CONFIGS = [
50
+ datasets.BuilderConfig(
51
+ name="split", version=VERSION, description="Dataset split in train, validation and test"
52
+ ),
53
+ datasets.BuilderConfig(name="unsplit", version=VERSION, description="Unsplit dataset"),
54
+ ]
55
+ DEFAULT_CONFIG_NAME = "split"
56
+
57
+ def _info(self):
58
+ class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
59
+ return datasets.DatasetInfo(
60
+ description=_DESCRIPTION,
61
+ features=datasets.Features(
62
+ {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
63
+ ),
64
+ supervised_keys=("text", "label"),
65
+ homepage=_HOMEPAGE,
66
+ citation=_CITATION,
67
+ license=_LICENSE,
68
+ task_templates=[TextClassification(text_column="text", label_column="label")],
69
+ )
70
+
71
+ def _split_generators(self, dl_manager):
72
+ """Returns SplitGenerators."""
73
+ paths = dl_manager.download_and_extract(_URLS[self.config.name])
74
+ if self.config.name == "split":
75
+ return [
76
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}),
77
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}),
78
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}),
79
+ ]
80
+ else:
81
+ return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]})]
82
+
83
+ def _generate_examples(self, filepath):
84
+ """Generate examples."""
85
+ with open(filepath, encoding="utf-8") as f:
86
+ for idx, line in enumerate(f):
87
+ example = json.loads(line)
88
+ yield idx, example