Achitha commited on
Commit
b22611b
·
1 Parent(s): 301028a

Delete tamil_eng_data.py

Browse files
Files changed (1) hide show
  1. tamil_eng_data.py +0 -129
tamil_eng_data.py DELETED
@@ -1,129 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- """Simple sentences Dataset - contains 90 mins of speech data"""
16
-
17
- import csv
18
- import json
19
- import os
20
-
21
- import datasets
22
-
23
- _CITATION = """\
24
- @misc{simpledata_1,
25
- title = {Whisper model for tamil-to-eng translation},
26
- publisher = {Achitha},
27
- year = {2022},
28
- }
29
- @misc{simpledata_2,
30
- title = {Fine-tuning whisper model},
31
- publisher = {Achitha},
32
- year = {2022},
33
- }
34
- """
35
- _DESCRIPTION = """\
36
- The data contains roughly one and half hours of audio and transcripts in Tamil language.
37
- """
38
-
39
- _HOMEPAGE = ""
40
-
41
- _LICENSE = "MIT"
42
-
43
-
44
- _METADATA_URLS = {
45
- "train": "data/train.jsonl",
46
- "test": "data/test.jsonl"
47
- }
48
- _URLS = {
49
- "train": "data/train.tar.gz",
50
- "test": "data/test.tar.gz",
51
-
52
- }
53
-
54
- class simple_data(datasets.GeneratorBasedBuilder):
55
-
56
-
57
- VERSION = datasets.Version("1.1.0")
58
- def _info(self):
59
- features = datasets.Features(
60
- {
61
- "audio": datasets.Audio(sampling_rate=16_000),
62
- "path": datasets.Value("string"),
63
- "sentence": datasets.Value("string"),
64
- "length": datasets.Value("float")
65
-
66
- }
67
- )
68
- return datasets.DatasetInfo(
69
- description=_DESCRIPTION,
70
- features=features,
71
- supervised_keys=("sentence", "label"),
72
- homepage=_HOMEPAGE,
73
- license=_LICENSE,
74
- citation=_CITATION,
75
- )
76
-
77
- def _split_generators(self, dl_manager):
78
- metadata_paths = dl_manager.download(_METADATA_URLS)
79
- train_archive = dl_manager.download(_URLS["train"])
80
- test_archive = dl_manager.download(_URLS["test"])
81
- local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
82
- local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
83
- test_archive = dl_manager.download(_URLS["test"])
84
- train_dir = "train"
85
- test_dir = "test"
86
-
87
- return [
88
- datasets.SplitGenerator(
89
- name=datasets.Split.TRAIN,
90
- gen_kwargs={
91
- "metadata_path": metadata_paths["train"],
92
- "local_extracted_archive": local_extracted_train_archive,
93
- "path_to_clips": train_dir,
94
- "audio_files": dl_manager.iter_archive(train_archive),
95
- },
96
- ),
97
- datasets.SplitGenerator(
98
- name=datasets.Split.TEST,
99
- gen_kwargs={
100
- "metadata_path": metadata_paths["test"],
101
- "local_extracted_archive": local_extracted_test_archive,
102
- "path_to_clips": test_dir,
103
- "audio_files": dl_manager.iter_archive(test_archive),
104
- },
105
- ),
106
-
107
- ]
108
-
109
- def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
110
- """Yields examples as (key, example) tuples."""
111
- examples = {}
112
- with open(metadata_path, encoding="utf-8") as f:
113
- for key, row in enumerate(f):
114
- data = json.loads(row)
115
- examples[data["path"]] = data
116
- inside_clips_dir = False
117
- id_ = 0
118
- for path, f in audio_files:
119
- if path.startswith(path_to_clips):
120
- inside_clips_dir = True
121
- if path in examples:
122
- result = examples[path]
123
- path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
124
- result["audio"] = {"path": path, "bytes": f.read()}
125
- result["path"] = path
126
- yield id_, result
127
- id_ += 1
128
- elif inside_clips_dir:
129
- break