function_name
stringlengths
1
63
docstring
stringlengths
50
5.89k
masked_code
stringlengths
50
882k
implementation
stringlengths
169
12.9k
start_line
int32
1
14.6k
end_line
int32
16
14.6k
file_content
stringlengths
274
882k
generate_bubblesort
Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified number of examples. :param prefix: String prefix for saving the file ('train', 'test') :param num_examples: Number of examples to generate.
""" generate_data.py Core script for generating training/test addition data. First, generates random pairs of numbers, then steps through an execution trace, computing the exact order of subroutines that need to be called. """ import pickle import numpy as np from tasks.bubblesort.env.trace import Trace # MASKED: generate_bubblesort function (lines 15-34)
def generate_bubblesort(prefix, num_examples, debug=False, maximum=10000000000, debug_every=1000): """ Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified number of examples. :param prefix: String prefix for saving the file ('train', 'test') :param num_examples: Number of examples to generate. """ data = [] for i in range(num_examples): array = np.random.randint(10, size=5) if debug and i % debug_every == 0: traces = Trace(array, True).traces else: traces = Trace(array).traces data.append((array, traces)) # print(data) with open('tasks/bubblesort/data/{}.pik'.format(prefix), 'wb') as f: pickle.dump(data, f)
15
34
""" generate_data.py Core script for generating training/test addition data. First, generates random pairs of numbers, then steps through an execution trace, computing the exact order of subroutines that need to be called. """ import pickle import numpy as np from tasks.bubblesort.env.trace import Trace def generate_bubblesort(prefix, num_examples, debug=False, maximum=10000000000, debug_every=1000): """ Generates addition data with the given string prefix (i.e. 'train', 'test') and the specified number of examples. :param prefix: String prefix for saving the file ('train', 'test') :param num_examples: Number of examples to generate. """ data = [] for i in range(num_examples): array = np.random.randint(10, size=5) if debug and i % debug_every == 0: traces = Trace(array, True).traces else: traces = Trace(array).traces data.append((array, traces)) # print(data) with open('tasks/bubblesort/data/{}.pik'.format(prefix), 'wb') as f: pickle.dump(data, f)
get_age
Take a datetime and return its "age" as a string. The age can be in second, minute, hour, day, month or year. Only the biggest unit is considered, e.g. if it's 2 days and 3 hours, "2 days" will be returned. Make sure date is not in the future, or else it won't work.
"""Helper methods to handle the time in Home Assistant.""" import datetime as dt import re from typing import Any, Dict, List, Optional, Tuple, Union, cast import pytz import pytz.exceptions as pytzexceptions import pytz.tzinfo as pytzinfo from homeassistant.const import MATCH_ALL DATE_STR_FORMAT = "%Y-%m-%d" UTC = pytz.utc DEFAULT_TIME_ZONE: dt.tzinfo = pytz.utc # Copyright (c) Django Software Foundation and individual contributors. # All rights reserved. # https://github.com/django/django/blob/master/LICENSE DATETIME_RE = re.compile( r"(?P<year>\d{4})-(?P<month>\d{1,2})-(?P<day>\d{1,2})" r"[T ](?P<hour>\d{1,2}):(?P<minute>\d{1,2})" r"(?::(?P<second>\d{1,2})(?:\.(?P<microsecond>\d{1,6})\d{0,6})?)?" r"(?P<tzinfo>Z|[+-]\d{2}(?::?\d{2})?)?$" ) def set_default_time_zone(time_zone: dt.tzinfo) -> None: """Set a default time zone to be used when none is specified. Async friendly. """ global DEFAULT_TIME_ZONE # NOTE: Remove in the future in favour of typing assert isinstance(time_zone, dt.tzinfo) DEFAULT_TIME_ZONE = time_zone def get_time_zone(time_zone_str: str) -> Optional[dt.tzinfo]: """Get time zone from string. Return None if unable to determine. Async friendly. """ try: return pytz.timezone(time_zone_str) except pytzexceptions.UnknownTimeZoneError: return None def utcnow() -> dt.datetime: """Get now in UTC time.""" return dt.datetime.now(UTC) def now(time_zone: Optional[dt.tzinfo] = None) -> dt.datetime: """Get now in specified time zone.""" return dt.datetime.now(time_zone or DEFAULT_TIME_ZONE) def as_utc(dattim: dt.datetime) -> dt.datetime: """Return a datetime as UTC time. Assumes datetime without tzinfo to be in the DEFAULT_TIME_ZONE. """ if dattim.tzinfo == UTC: return dattim if dattim.tzinfo is None: dattim = DEFAULT_TIME_ZONE.localize(dattim) # type: ignore return dattim.astimezone(UTC) def as_timestamp(dt_value: dt.datetime) -> float: """Convert a date/time into a unix time (seconds since 1970).""" if hasattr(dt_value, "timestamp"): parsed_dt: Optional[dt.datetime] = dt_value else: parsed_dt = parse_datetime(str(dt_value)) if parsed_dt is None: raise ValueError("not a valid date/time.") return parsed_dt.timestamp() def as_local(dattim: dt.datetime) -> dt.datetime: """Convert a UTC datetime object to local time zone.""" if dattim.tzinfo == DEFAULT_TIME_ZONE: return dattim if dattim.tzinfo is None: dattim = UTC.localize(dattim) return dattim.astimezone(DEFAULT_TIME_ZONE) def utc_from_timestamp(timestamp: float) -> dt.datetime: """Return a UTC time from a timestamp.""" return UTC.localize(dt.datetime.utcfromtimestamp(timestamp)) def start_of_local_day( dt_or_d: Union[dt.date, dt.datetime, None] = None ) -> dt.datetime: """Return local datetime object of start of day from date or datetime.""" if dt_or_d is None: date: dt.date = now().date() elif isinstance(dt_or_d, dt.datetime): date = dt_or_d.date() return DEFAULT_TIME_ZONE.localize( # type: ignore dt.datetime.combine(date, dt.time()) ) # Copyright (c) Django Software Foundation and individual contributors. # All rights reserved. # https://github.com/django/django/blob/master/LICENSE def parse_datetime(dt_str: str) -> Optional[dt.datetime]: """Parse a string and return a datetime.datetime. This function supports time zone offsets. When the input contains one, the output uses a timezone with a fixed offset from UTC. Raises ValueError if the input is well formatted but not a valid datetime. Returns None if the input isn't well formatted. """ match = DATETIME_RE.match(dt_str) if not match: return None kws: Dict[str, Any] = match.groupdict() if kws["microsecond"]: kws["microsecond"] = kws["microsecond"].ljust(6, "0") tzinfo_str = kws.pop("tzinfo") tzinfo: Optional[dt.tzinfo] = None if tzinfo_str == "Z": tzinfo = UTC elif tzinfo_str is not None: offset_mins = int(tzinfo_str[-2:]) if len(tzinfo_str) > 3 else 0 offset_hours = int(tzinfo_str[1:3]) offset = dt.timedelta(hours=offset_hours, minutes=offset_mins) if tzinfo_str[0] == "-": offset = -offset tzinfo = dt.timezone(offset) kws = {k: int(v) for k, v in kws.items() if v is not None} kws["tzinfo"] = tzinfo return dt.datetime(**kws) def parse_date(dt_str: str) -> Optional[dt.date]: """Convert a date string to a date object.""" try: return dt.datetime.strptime(dt_str, DATE_STR_FORMAT).date() except ValueError: # If dt_str did not match our format return None def parse_time(time_str: str) -> Optional[dt.time]: """Parse a time string (00:20:00) into Time object. Return None if invalid. """ parts = str(time_str).split(":") if len(parts) < 2: return None try: hour = int(parts[0]) minute = int(parts[1]) second = int(parts[2]) if len(parts) > 2 else 0 return dt.time(hour, minute, second) except ValueError: # ValueError if value cannot be converted to an int or not in range return None # Found in this gist: https://gist.github.com/zhangsen/1199964 # MASKED: get_age function (lines 175-217) def parse_time_expression(parameter: Any, min_value: int, max_value: int) -> List[int]: """Parse the time expression part and return a list of times to match.""" if parameter is None or parameter == MATCH_ALL: res = list(range(min_value, max_value + 1)) elif isinstance(parameter, str) and parameter.startswith("/"): parameter = int(parameter[1:]) res = [x for x in range(min_value, max_value + 1) if x % parameter == 0] elif not hasattr(parameter, "__iter__"): res = [int(parameter)] else: res = list(sorted(int(x) for x in parameter)) for val in res: if val < min_value or val > max_value: raise ValueError( "Time expression '{}': parameter {} out of range ({} to {})" "".format(parameter, val, min_value, max_value) ) return res # pylint: disable=redefined-outer-name def find_next_time_expression_time( now: dt.datetime, seconds: List[int], minutes: List[int], hours: List[int] ) -> dt.datetime: """Find the next datetime from now for which the time expression matches. The algorithm looks at each time unit separately and tries to find the next one that matches for each. If any of them would roll over, all time units below that are reset to the first matching value. Timezones are also handled (the tzinfo of the now object is used), including daylight saving time. """ if not seconds or not minutes or not hours: raise ValueError("Cannot find a next time: Time expression never " "matches!") def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: """Return the first value in arr greater or equal to cmp. Return None if no such value exists. """ left = 0 right = len(arr) while left < right: mid = (left + right) // 2 if arr[mid] < cmp: left = mid + 1 else: right = mid if left == len(arr): return None return arr[left] result = now.replace(microsecond=0) # Match next second next_second = _lower_bound(seconds, result.second) if next_second is None: # No second to match in this minute. Roll-over to next minute. next_second = seconds[0] result += dt.timedelta(minutes=1) result = result.replace(second=next_second) # Match next minute next_minute = _lower_bound(minutes, result.minute) if next_minute != result.minute: # We're in the next minute. Seconds needs to be reset. result = result.replace(second=seconds[0]) if next_minute is None: # No minute to match in this hour. Roll-over to next hour. next_minute = minutes[0] result += dt.timedelta(hours=1) result = result.replace(minute=next_minute) # Match next hour next_hour = _lower_bound(hours, result.hour) if next_hour != result.hour: # We're in the next hour. Seconds+minutes needs to be reset. result = result.replace(second=seconds[0], minute=minutes[0]) if next_hour is None: # No minute to match in this day. Roll-over to next day. next_hour = hours[0] result += dt.timedelta(days=1) result = result.replace(hour=next_hour) if result.tzinfo is None: return result # Now we need to handle timezones. We will make this datetime object # "naive" first and then re-convert it to the target timezone. # This is so that we can call pytz's localize and handle DST changes. tzinfo: pytzinfo.DstTzInfo = result.tzinfo result = result.replace(tzinfo=None) try: result = tzinfo.localize(result, is_dst=None) except pytzexceptions.AmbiguousTimeError: # This happens when we're leaving daylight saving time and local # clocks are rolled back. In this case, we want to trigger # on both the DST and non-DST time. So when "now" is in the DST # use the DST-on time, and if not, use the DST-off time. use_dst = bool(now.dst()) result = tzinfo.localize(result, is_dst=use_dst) except pytzexceptions.NonExistentTimeError: # This happens when we're entering daylight saving time and local # clocks are rolled forward, thus there are local times that do # not exist. In this case, we want to trigger on the next time # that *does* exist. # In the worst case, this will run through all the seconds in the # time shift, but that's max 3600 operations for once per year result = result.replace(tzinfo=tzinfo) + dt.timedelta(seconds=1) return find_next_time_expression_time(result, seconds, minutes, hours) result_dst = cast(dt.timedelta, result.dst()) now_dst = cast(dt.timedelta, now.dst()) if result_dst >= now_dst: return result # Another edge-case when leaving DST: # When now is in DST and ambiguous *and* the next trigger time we *should* # trigger is ambiguous and outside DST, the excepts above won't catch it. # For example: if triggering on 2:30 and now is 28.10.2018 2:30 (in DST) # we should trigger next on 28.10.2018 2:30 (out of DST), but our # algorithm above would produce 29.10.2018 2:30 (out of DST) # Step 1: Check if now is ambiguous try: tzinfo.localize(now.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass # Step 2: Check if result of (now - DST) is ambiguous. check = now - now_dst check_result = find_next_time_expression_time(check, seconds, minutes, hours) try: tzinfo.localize(check_result.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass # OK, edge case does apply. We must override the DST to DST-off check_result = tzinfo.localize(check_result.replace(tzinfo=None), is_dst=False) return check_result
def get_age(date: dt.datetime) -> str: """ Take a datetime and return its "age" as a string. The age can be in second, minute, hour, day, month or year. Only the biggest unit is considered, e.g. if it's 2 days and 3 hours, "2 days" will be returned. Make sure date is not in the future, or else it won't work. """ def formatn(number: int, unit: str) -> str: """Add "unit" if it's plural.""" if number == 1: return f"1 {unit}" return f"{number:d} {unit}s" def q_n_r(first: int, second: int) -> Tuple[int, int]: """Return quotient and remaining.""" return first // second, first % second delta = now() - date day = delta.days second = delta.seconds year, day = q_n_r(day, 365) if year > 0: return formatn(year, "year") month, day = q_n_r(day, 30) if month > 0: return formatn(month, "month") if day > 0: return formatn(day, "day") hour, second = q_n_r(second, 3600) if hour > 0: return formatn(hour, "hour") minute, second = q_n_r(second, 60) if minute > 0: return formatn(minute, "minute") return formatn(second, "second")
175
217
"""Helper methods to handle the time in Home Assistant.""" import datetime as dt import re from typing import Any, Dict, List, Optional, Tuple, Union, cast import pytz import pytz.exceptions as pytzexceptions import pytz.tzinfo as pytzinfo from homeassistant.const import MATCH_ALL DATE_STR_FORMAT = "%Y-%m-%d" UTC = pytz.utc DEFAULT_TIME_ZONE: dt.tzinfo = pytz.utc # Copyright (c) Django Software Foundation and individual contributors. # All rights reserved. # https://github.com/django/django/blob/master/LICENSE DATETIME_RE = re.compile( r"(?P<year>\d{4})-(?P<month>\d{1,2})-(?P<day>\d{1,2})" r"[T ](?P<hour>\d{1,2}):(?P<minute>\d{1,2})" r"(?::(?P<second>\d{1,2})(?:\.(?P<microsecond>\d{1,6})\d{0,6})?)?" r"(?P<tzinfo>Z|[+-]\d{2}(?::?\d{2})?)?$" ) def set_default_time_zone(time_zone: dt.tzinfo) -> None: """Set a default time zone to be used when none is specified. Async friendly. """ global DEFAULT_TIME_ZONE # NOTE: Remove in the future in favour of typing assert isinstance(time_zone, dt.tzinfo) DEFAULT_TIME_ZONE = time_zone def get_time_zone(time_zone_str: str) -> Optional[dt.tzinfo]: """Get time zone from string. Return None if unable to determine. Async friendly. """ try: return pytz.timezone(time_zone_str) except pytzexceptions.UnknownTimeZoneError: return None def utcnow() -> dt.datetime: """Get now in UTC time.""" return dt.datetime.now(UTC) def now(time_zone: Optional[dt.tzinfo] = None) -> dt.datetime: """Get now in specified time zone.""" return dt.datetime.now(time_zone or DEFAULT_TIME_ZONE) def as_utc(dattim: dt.datetime) -> dt.datetime: """Return a datetime as UTC time. Assumes datetime without tzinfo to be in the DEFAULT_TIME_ZONE. """ if dattim.tzinfo == UTC: return dattim if dattim.tzinfo is None: dattim = DEFAULT_TIME_ZONE.localize(dattim) # type: ignore return dattim.astimezone(UTC) def as_timestamp(dt_value: dt.datetime) -> float: """Convert a date/time into a unix time (seconds since 1970).""" if hasattr(dt_value, "timestamp"): parsed_dt: Optional[dt.datetime] = dt_value else: parsed_dt = parse_datetime(str(dt_value)) if parsed_dt is None: raise ValueError("not a valid date/time.") return parsed_dt.timestamp() def as_local(dattim: dt.datetime) -> dt.datetime: """Convert a UTC datetime object to local time zone.""" if dattim.tzinfo == DEFAULT_TIME_ZONE: return dattim if dattim.tzinfo is None: dattim = UTC.localize(dattim) return dattim.astimezone(DEFAULT_TIME_ZONE) def utc_from_timestamp(timestamp: float) -> dt.datetime: """Return a UTC time from a timestamp.""" return UTC.localize(dt.datetime.utcfromtimestamp(timestamp)) def start_of_local_day( dt_or_d: Union[dt.date, dt.datetime, None] = None ) -> dt.datetime: """Return local datetime object of start of day from date or datetime.""" if dt_or_d is None: date: dt.date = now().date() elif isinstance(dt_or_d, dt.datetime): date = dt_or_d.date() return DEFAULT_TIME_ZONE.localize( # type: ignore dt.datetime.combine(date, dt.time()) ) # Copyright (c) Django Software Foundation and individual contributors. # All rights reserved. # https://github.com/django/django/blob/master/LICENSE def parse_datetime(dt_str: str) -> Optional[dt.datetime]: """Parse a string and return a datetime.datetime. This function supports time zone offsets. When the input contains one, the output uses a timezone with a fixed offset from UTC. Raises ValueError if the input is well formatted but not a valid datetime. Returns None if the input isn't well formatted. """ match = DATETIME_RE.match(dt_str) if not match: return None kws: Dict[str, Any] = match.groupdict() if kws["microsecond"]: kws["microsecond"] = kws["microsecond"].ljust(6, "0") tzinfo_str = kws.pop("tzinfo") tzinfo: Optional[dt.tzinfo] = None if tzinfo_str == "Z": tzinfo = UTC elif tzinfo_str is not None: offset_mins = int(tzinfo_str[-2:]) if len(tzinfo_str) > 3 else 0 offset_hours = int(tzinfo_str[1:3]) offset = dt.timedelta(hours=offset_hours, minutes=offset_mins) if tzinfo_str[0] == "-": offset = -offset tzinfo = dt.timezone(offset) kws = {k: int(v) for k, v in kws.items() if v is not None} kws["tzinfo"] = tzinfo return dt.datetime(**kws) def parse_date(dt_str: str) -> Optional[dt.date]: """Convert a date string to a date object.""" try: return dt.datetime.strptime(dt_str, DATE_STR_FORMAT).date() except ValueError: # If dt_str did not match our format return None def parse_time(time_str: str) -> Optional[dt.time]: """Parse a time string (00:20:00) into Time object. Return None if invalid. """ parts = str(time_str).split(":") if len(parts) < 2: return None try: hour = int(parts[0]) minute = int(parts[1]) second = int(parts[2]) if len(parts) > 2 else 0 return dt.time(hour, minute, second) except ValueError: # ValueError if value cannot be converted to an int or not in range return None # Found in this gist: https://gist.github.com/zhangsen/1199964 def get_age(date: dt.datetime) -> str: """ Take a datetime and return its "age" as a string. The age can be in second, minute, hour, day, month or year. Only the biggest unit is considered, e.g. if it's 2 days and 3 hours, "2 days" will be returned. Make sure date is not in the future, or else it won't work. """ def formatn(number: int, unit: str) -> str: """Add "unit" if it's plural.""" if number == 1: return f"1 {unit}" return f"{number:d} {unit}s" def q_n_r(first: int, second: int) -> Tuple[int, int]: """Return quotient and remaining.""" return first // second, first % second delta = now() - date day = delta.days second = delta.seconds year, day = q_n_r(day, 365) if year > 0: return formatn(year, "year") month, day = q_n_r(day, 30) if month > 0: return formatn(month, "month") if day > 0: return formatn(day, "day") hour, second = q_n_r(second, 3600) if hour > 0: return formatn(hour, "hour") minute, second = q_n_r(second, 60) if minute > 0: return formatn(minute, "minute") return formatn(second, "second") def parse_time_expression(parameter: Any, min_value: int, max_value: int) -> List[int]: """Parse the time expression part and return a list of times to match.""" if parameter is None or parameter == MATCH_ALL: res = list(range(min_value, max_value + 1)) elif isinstance(parameter, str) and parameter.startswith("/"): parameter = int(parameter[1:]) res = [x for x in range(min_value, max_value + 1) if x % parameter == 0] elif not hasattr(parameter, "__iter__"): res = [int(parameter)] else: res = list(sorted(int(x) for x in parameter)) for val in res: if val < min_value or val > max_value: raise ValueError( "Time expression '{}': parameter {} out of range ({} to {})" "".format(parameter, val, min_value, max_value) ) return res # pylint: disable=redefined-outer-name def find_next_time_expression_time( now: dt.datetime, seconds: List[int], minutes: List[int], hours: List[int] ) -> dt.datetime: """Find the next datetime from now for which the time expression matches. The algorithm looks at each time unit separately and tries to find the next one that matches for each. If any of them would roll over, all time units below that are reset to the first matching value. Timezones are also handled (the tzinfo of the now object is used), including daylight saving time. """ if not seconds or not minutes or not hours: raise ValueError("Cannot find a next time: Time expression never " "matches!") def _lower_bound(arr: List[int], cmp: int) -> Optional[int]: """Return the first value in arr greater or equal to cmp. Return None if no such value exists. """ left = 0 right = len(arr) while left < right: mid = (left + right) // 2 if arr[mid] < cmp: left = mid + 1 else: right = mid if left == len(arr): return None return arr[left] result = now.replace(microsecond=0) # Match next second next_second = _lower_bound(seconds, result.second) if next_second is None: # No second to match in this minute. Roll-over to next minute. next_second = seconds[0] result += dt.timedelta(minutes=1) result = result.replace(second=next_second) # Match next minute next_minute = _lower_bound(minutes, result.minute) if next_minute != result.minute: # We're in the next minute. Seconds needs to be reset. result = result.replace(second=seconds[0]) if next_minute is None: # No minute to match in this hour. Roll-over to next hour. next_minute = minutes[0] result += dt.timedelta(hours=1) result = result.replace(minute=next_minute) # Match next hour next_hour = _lower_bound(hours, result.hour) if next_hour != result.hour: # We're in the next hour. Seconds+minutes needs to be reset. result = result.replace(second=seconds[0], minute=minutes[0]) if next_hour is None: # No minute to match in this day. Roll-over to next day. next_hour = hours[0] result += dt.timedelta(days=1) result = result.replace(hour=next_hour) if result.tzinfo is None: return result # Now we need to handle timezones. We will make this datetime object # "naive" first and then re-convert it to the target timezone. # This is so that we can call pytz's localize and handle DST changes. tzinfo: pytzinfo.DstTzInfo = result.tzinfo result = result.replace(tzinfo=None) try: result = tzinfo.localize(result, is_dst=None) except pytzexceptions.AmbiguousTimeError: # This happens when we're leaving daylight saving time and local # clocks are rolled back. In this case, we want to trigger # on both the DST and non-DST time. So when "now" is in the DST # use the DST-on time, and if not, use the DST-off time. use_dst = bool(now.dst()) result = tzinfo.localize(result, is_dst=use_dst) except pytzexceptions.NonExistentTimeError: # This happens when we're entering daylight saving time and local # clocks are rolled forward, thus there are local times that do # not exist. In this case, we want to trigger on the next time # that *does* exist. # In the worst case, this will run through all the seconds in the # time shift, but that's max 3600 operations for once per year result = result.replace(tzinfo=tzinfo) + dt.timedelta(seconds=1) return find_next_time_expression_time(result, seconds, minutes, hours) result_dst = cast(dt.timedelta, result.dst()) now_dst = cast(dt.timedelta, now.dst()) if result_dst >= now_dst: return result # Another edge-case when leaving DST: # When now is in DST and ambiguous *and* the next trigger time we *should* # trigger is ambiguous and outside DST, the excepts above won't catch it. # For example: if triggering on 2:30 and now is 28.10.2018 2:30 (in DST) # we should trigger next on 28.10.2018 2:30 (out of DST), but our # algorithm above would produce 29.10.2018 2:30 (out of DST) # Step 1: Check if now is ambiguous try: tzinfo.localize(now.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass # Step 2: Check if result of (now - DST) is ambiguous. check = now - now_dst check_result = find_next_time_expression_time(check, seconds, minutes, hours) try: tzinfo.localize(check_result.replace(tzinfo=None), is_dst=None) return result except pytzexceptions.AmbiguousTimeError: pass # OK, edge case does apply. We must override the DST to DST-off check_result = tzinfo.localize(check_result.replace(tzinfo=None), is_dst=False) return check_result
tokenizeChoice
Splits the `choice` into a series of tokens based on the user's criteria. If suffix indexing is enabled, the individual tokens are further broken down and indexed by their suffix offsets. e.g. 'Banana', 'anana', 'nana', 'ana'
import re import pygtrie as trie # type: ignore from functools import reduce __ALL__ = ('PrefixTokenizers', 'PrefixSearch') class PrefixTokenizers: # This string here is just an arbitrary long string so that # re.split finds no matches and returns the entire phrase ENTIRE_PHRASE = '::gooey/tokenization/entire-phrase' # \s == any whitespace character WORDS = r'\s' @classmethod def REGEX(cls, expression): return expression class OperatorType: AND = 'AND' OR = 'OR' class SearchOptions: def __init__(self, choice_tokenizer=PrefixTokenizers.ENTIRE_PHRASE, input_tokenizer=PrefixTokenizers.ENTIRE_PHRASE, ignore_case=True, operator='AND', index_suffix= False, **kwargs): self.choice_tokenizer = choice_tokenizer self.input_tokenizer = input_tokenizer self.ignore_case = ignore_case self.operator = operator self.index_suffix = index_suffix class PrefixSearch(object): """ A trie backed index for quickly finding substrings in a list of options. """ def __init__(self, choices, options={}, *args, **kwargs): self.choices = sorted(filter(None, choices)) self.options: SearchOptions = SearchOptions(**options) self.searchtree = self.buildSearchTrie(choices) def updateChoices(self, choices): self.choices = sorted(filter(None, choices)) self.searchtree = self.buildSearchTrie(choices) def findMatches(self, token): if not token: return sorted(self.choices) tokens = self.tokenizeInput(token) matches = [set(flatten(self._vals(self.searchtree, prefix=t))) for t in tokens] op = intersection if self.options.operator == 'AND' else union return sorted(reduce(op, matches)) def tokenizeInput(self, token): """ Cleans and tokenizes the user's input. empty characters and spaces are trimmed to prevent matching all paths in the index. """ return list(filter(None, re.split(self.options.input_tokenizer, self.clean(token)))) # MASKED: tokenizeChoice function (lines 73-90) def clean(self, text): return text.lower() if self.options.ignore_case else text def buildSearchTrie(self, choices): searchtrie = trie.Trie() for choice in choices: for token in self.tokenizeChoice(choice): if not searchtrie.has_key(token): searchtrie[token] = [] searchtrie[token].append(choice) return searchtrie def _vals(self, searchtrie, **kwargs): try: return searchtrie.values(**kwargs) except KeyError: return [] def intersection(a, b): return a.intersection(b) def union(a, b): return a.union(b) def flatten(xs): return [item for x in xs for item in x]
def tokenizeChoice(self, choice): """ Splits the `choice` into a series of tokens based on the user's criteria. If suffix indexing is enabled, the individual tokens are further broken down and indexed by their suffix offsets. e.g. 'Banana', 'anana', 'nana', 'ana' """ choice_ = self.clean(choice) tokens = re.split(self.options.choice_tokenizer, choice_) if self.options.index_suffix: return [token[i:] for token in tokens for i in range(len(token) - 2)] else: return tokens
73
90
import re import pygtrie as trie # type: ignore from functools import reduce __ALL__ = ('PrefixTokenizers', 'PrefixSearch') class PrefixTokenizers: # This string here is just an arbitrary long string so that # re.split finds no matches and returns the entire phrase ENTIRE_PHRASE = '::gooey/tokenization/entire-phrase' # \s == any whitespace character WORDS = r'\s' @classmethod def REGEX(cls, expression): return expression class OperatorType: AND = 'AND' OR = 'OR' class SearchOptions: def __init__(self, choice_tokenizer=PrefixTokenizers.ENTIRE_PHRASE, input_tokenizer=PrefixTokenizers.ENTIRE_PHRASE, ignore_case=True, operator='AND', index_suffix= False, **kwargs): self.choice_tokenizer = choice_tokenizer self.input_tokenizer = input_tokenizer self.ignore_case = ignore_case self.operator = operator self.index_suffix = index_suffix class PrefixSearch(object): """ A trie backed index for quickly finding substrings in a list of options. """ def __init__(self, choices, options={}, *args, **kwargs): self.choices = sorted(filter(None, choices)) self.options: SearchOptions = SearchOptions(**options) self.searchtree = self.buildSearchTrie(choices) def updateChoices(self, choices): self.choices = sorted(filter(None, choices)) self.searchtree = self.buildSearchTrie(choices) def findMatches(self, token): if not token: return sorted(self.choices) tokens = self.tokenizeInput(token) matches = [set(flatten(self._vals(self.searchtree, prefix=t))) for t in tokens] op = intersection if self.options.operator == 'AND' else union return sorted(reduce(op, matches)) def tokenizeInput(self, token): """ Cleans and tokenizes the user's input. empty characters and spaces are trimmed to prevent matching all paths in the index. """ return list(filter(None, re.split(self.options.input_tokenizer, self.clean(token)))) def tokenizeChoice(self, choice): """ Splits the `choice` into a series of tokens based on the user's criteria. If suffix indexing is enabled, the individual tokens are further broken down and indexed by their suffix offsets. e.g. 'Banana', 'anana', 'nana', 'ana' """ choice_ = self.clean(choice) tokens = re.split(self.options.choice_tokenizer, choice_) if self.options.index_suffix: return [token[i:] for token in tokens for i in range(len(token) - 2)] else: return tokens def clean(self, text): return text.lower() if self.options.ignore_case else text def buildSearchTrie(self, choices): searchtrie = trie.Trie() for choice in choices: for token in self.tokenizeChoice(choice): if not searchtrie.has_key(token): searchtrie[token] = [] searchtrie[token].append(choice) return searchtrie def _vals(self, searchtrie, **kwargs): try: return searchtrie.values(**kwargs) except KeyError: return [] def intersection(a, b): return a.intersection(b) def union(a, b): return a.union(b) def flatten(xs): return [item for x in xs for item in x]
list_combinations_generator
Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list.
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) # MASKED: list_combinations_generator function (lines 29-53) def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations
29
53
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
data_combiner
Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities.
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations # MASKED: data_combiner function (lines 56-121) def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information
56
121
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
retrieve_hyperparameters
Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} # MASKED: retrieve_hyperparameters function (lines 146-177) def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters
146
177
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
per_combination_results_export
Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None.
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics # MASKED: per_combination_results_export function (lines 293-311) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False)
293
311
# authors_name = 'Preetham Ganesh' # project_title = 'Multi Sensor-based Human Activity Recognition using OpenCV and Sensor Fusion' # email = '[email protected]' import numpy as np import os import pandas as pd import itertools import logging import sklearn.pipeline from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import ParameterGrid logging.getLogger('sklearn').setLevel(logging.FATAL) def list_combinations_generator(modalities: list): """Generates combinations for items in the given list. Args: modalities: List of modalities available in the dataset. Returns: Combinations of items in the given list. """ modality_combinations = list() # Iterates across modalities to generate combinations based on length. for length in range(1, len(modalities) + 1): # Generate combinations for the current length. current_length_combinations = itertools.combinations(modalities, length) # Iterates across the generated combinations to convert it into a list. for combination in current_length_combinations: current_combination_list = list() for k in combination: current_combination_list.append(k) modality_combinations.append(current_combination_list) return modality_combinations def data_combiner(n_actions: int, subject_ids: list, n_takes: int, modalities: list, skeleton_pose_model: str): """Combines skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. Args: n_actions: Total number of actions in the original dataset. subject_ids: List of subjects in the current set. n_takes: Total number of takes in the original dataset. modalities: Current combination of modalities. skeleton_pose_model: Current skeleton pose model name which will be used to import skeleton point information. Returns: A pandas dataframe which contains combined skeleton point information for all actions, all takes, given list of subject ids and given list of modalities. """ combined_modality_skeleton_information = pd.DataFrame() # Iterates across actions, subject_ids, takes, and modalities to combine skeleton point information. for i in range(1, n_actions + 1): for j in range(len(subject_ids)): for k in range(1, n_takes + 1): data_name = 'a{}_s{}_t{}'.format(i, subject_ids[j], k) # Iterates across modalities to import skeleton point information file and adds it to # combined_modality_skeleton_information. If file not found, it moves on to the next combination. try: # Imports 1st modality's skeleton point information for current data_name and skeleton_pose_model. current_data_name_modality_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[0], data_name, skeleton_pose_model)) except FileNotFoundError: continue # Since, length of modalities in each combination is different. Hence, if length of modalities is # greater than 1, then the imported skeleton point information for other modalities will be merged to # the skeleton point information for the first modality. if len(modalities) != 1: for m in range(1, len(modalities)): current_skeleton_point_information = pd.read_csv('../data/normalized_data/{}/{}_{}.csv'.format( modalities[m], data_name, skeleton_pose_model)) current_data_name_modality_information = pd.merge(current_data_name_modality_information, current_skeleton_point_information, on='frame', how='outer') # Adds data_name to the imported skeleton point information. current_data_name_modality_information['data_name'] = [data_name for _ in range(len( current_data_name_modality_information))] # Removes frame column from the imported skeleton point information. current_data_name_modality_information = current_data_name_modality_information.drop(columns=['frame']) # Adds action column to the imported skeleton point information. current_data_name_modality_information['action'] = [i for _ in range(len( current_data_name_modality_information))] # Appends currently imported & modified skeleton point information to the combined modality skeleton # point information combined_modality_skeleton_information = combined_modality_skeleton_information.append( current_data_name_modality_information) return combined_modality_skeleton_information def calculate_metrics(actual_values: np.ndarray, predicted_values: np.ndarray): """Using actual_values, predicted_values calculates metrics such as accuracy, balanced accuracy, precision, recall, and f1 scores. Args: actual_values: Actual action labels in the dataset predicted_values: Action labels predicted by the currently trained model Returns: Dictionary contains keys as score names and values as scores which are floating point values. """ return {'accuracy_score': round(accuracy_score(actual_values, predicted_values) * 100, 3), 'balanced_accuracy_score': round(balanced_accuracy_score(actual_values, predicted_values) * 100, 3), 'precision_score': round(precision_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'recall_score': round(recall_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3), 'f1_score': round(f1_score(actual_values, predicted_values, average='weighted', labels=np.unique(predicted_values)) * 100, 3)} def retrieve_hyperparameters(current_model_name: str): """Based on the current_model_name returns a list of hyperparameters used for optimizing the model (if necessary). Args: current_model_name: Name of the model currently expected to be trained Returns: A dictionary containing the hyperparameter name and the values that will be used to optimize the model """ # For support_vector_classifier, the hyperparameter tuned is kernel. if current_model_name == 'support_vector_classifier': parameters = {'kernel': ['linear', 'poly', 'rbf']} # For decision_tree_classifier, the hyperparameters tuned are criterion, splitter, and max_depth. elif current_model_name == 'decision_tree_classifier': parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For random_forest_classifier or extra_trees_classifier, the hyperparameters tuned are n_estimators, criterion, and # max_depth elif current_model_name == 'random_forest_classifier' or current_model_name == 'extra_trees_classifier': parameters = {'n_estimators': [i * 10 for i in range(2, 11, 2)], 'criterion': ['gini', 'entropy'], 'max_depth': [2, 3, 4, 5, 6, 7]} # For gradient_boosting_classifier, the hyperparameters tuned are loss, n_estimators, criterion, and max_depth. elif current_model_name == 'gradient_boosting_classifier': parameters = {'max_depth': [2, 3, 4, 5, 6, 7], 'n_estimators': [i * 10 for i in range(2, 11, 2)]} # For gaussian_naive_bayes, none of the hyperparameters are tuned. else: parameters = {'None': ['None']} return parameters def split_data_input_target(skeleton_data: pd.DataFrame): """Splits skeleton_data into input and target datasets by filtering / selecting certain columns. Args: skeleton_data: Train / Validation / Test dataset used to split / filter certain columns. Returns: A tuple containing 2 numpy ndarrays for the input and target datasets. """ skeleton_data_input = skeleton_data.drop(columns=['data_name', 'action']) skeleton_data_target = skeleton_data['action'] return np.array(skeleton_data_input), np.array(skeleton_data_target) def video_based_model_testing(test_skeleton_information: pd.DataFrame, current_model: sklearn): """Tests performance of the currently trained model on the validation or testing sets, where the performance is evaluated per video / file, instead of evaluating per frame. Args: test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the validation or testing sets. current_model: Scikit-learn model that is currently being trained and tested. Returns: A tuple contains the target and predicted action for each video in the validation / testing set. """ # Identifies unique data_names in the validation / testing set. test_data_names = np.unique(test_skeleton_information['data_name']) test_target_data = [] test_predicted_data = [] # Iterates across the identified unique data names for i in range(len(test_data_names)): # Filters skeleton point information for the current data name. current_data_name_skeleton_information = test_skeleton_information[test_skeleton_information['data_name'] == test_data_names[i]] # Splits filtered skeleton point information into input and target data. test_skeleton_input_data, test_skeleton_target_data = split_data_input_target( current_data_name_skeleton_information) # Predicts labels for each frame in the filtered skeleton point information. test_skeleton_predicted_data = list(current_model.predict(test_skeleton_input_data)) # Identifies which predicted label has highest count and appends it to the final predicted data. Also, appends # target label to the target data. test_target_data.append(max(current_data_name_skeleton_information['action'])) test_predicted_data.append(max(test_skeleton_predicted_data, key=test_skeleton_predicted_data.count)) return np.array(test_target_data), np.array(test_predicted_data) def model_training_testing(train_skeleton_information: pd.DataFrame, validation_skeleton_information: pd.DataFrame, test_skeleton_information: pd.DataFrame, current_model_name: str, parameters: dict): """Trains and validates model for the current model name and hyperparameters on the train_skeleton_informaiton and validation_skeleton_information. Args: train_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Training set. validation_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Validation set. test_skeleton_information: Pandas dataframe which contains skeleton point information for all actions, subject_ids, and takes in the Test set. current_model_name: Name of the model currently expected to be trained. parameters: Current parameter values used for training and validating the model. Returns: A tuple which contains the training metrics, validation metrics, & test metrics. """ # Based on the current_model_name, the scikit-learn object is initialized using the hyperparameter (if necessary) if current_model_name == 'support_vector_classifier': model = SVC(kernel=parameters['kernel']) elif current_model_name == 'decision_tree_classifier': model = DecisionTreeClassifier(criterion=parameters['criterion'], splitter=parameters['splitter'], max_depth=parameters['max_depth']) elif current_model_name == 'random_forest_classifier': model = RandomForestClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'extra_trees_classifier': model = ExtraTreesClassifier(n_estimators=parameters['n_estimators'], criterion=parameters['criterion'], max_depth=parameters['max_depth']) elif current_model_name == 'gradient_boosting_classifier': model = GradientBoostingClassifier(n_estimators=parameters['n_estimators'], max_depth=parameters['max_depth']) else: model = GaussianNB() # Splits Training skeleton information into input and target data. train_skeleton_input_data, train_skeleton_target_data = split_data_input_target(train_skeleton_information) # Trains the object created for the model using the training input and target. model.fit(train_skeleton_input_data, train_skeleton_target_data) # Predict video based action labels for training and validation skeleton information data. train_skeleton_target_data, train_skeleton_predicted_data = video_based_model_testing(train_skeleton_information, model) validation_skeleton_target_data, validation_skeleton_predicted_data = video_based_model_testing( validation_skeleton_information, model) test_skeleton_target_data, test_skeleton_predicted_data = video_based_model_testing(test_skeleton_information, model) # Calculates metrics for the predicted action labels for the training and testing sets. train_metrics = calculate_metrics(train_skeleton_target_data, train_skeleton_predicted_data) validation_metrics = calculate_metrics(validation_skeleton_target_data, validation_skeleton_predicted_data) test_metrics = calculate_metrics(test_skeleton_target_data, test_skeleton_predicted_data) return train_metrics, validation_metrics, test_metrics def per_combination_results_export(combination_name: str, data_split: str, metrics_dataframe: pd.DataFrame): """Exports the metrics_dataframe into a CSV format to the mentioned data_split folder. If the folder does not exist, then the folder is created. Args: combination_name: Name of the current combination of modalities and skeleton pose model. data_split: Name of the split the subset of the dataset belongs to. metrics_dataframe: A dataframe containing the mean of all the metrics for all the hyperparameters & models. Returns: None. """ directory_path = '{}/{}'.format('../results/combination_results', combination_name) if not os.path.isdir(directory_path): os.mkdir(directory_path) file_path = '{}/{}.csv'.format(directory_path, data_split) metrics_dataframe.to_csv(file_path, index=False) def appends_parameter_metrics_combination(current_model_name: str, current_combination_name: str, current_split_metrics: dict, split_metrics_dataframe: pd.DataFrame): """Appends the metrics for the current model and current parameter combination to the main dataframe. Args: current_model_name: Name of the model currently being trained. current_combination_name: Current combination of parameters used for training the model. current_split_metrics: Metrics for the current parameter combination for the model. split_metrics_dataframe: Pandas dataframe which contains metrics for the current combination of modalities. Returns: Updated version of the pandas dataframe which contains metrics for the current combination of modalities. """ current_split_metrics['model_names'] = current_model_name current_split_metrics['parameters'] = current_combination_name split_metrics_dataframe = split_metrics_dataframe.append(current_split_metrics, ignore_index=True) return split_metrics_dataframe def per_combination_model_training_testing(train_subject_ids: list, validation_subject_ids: list, test_subject_ids: list, n_actions: int, n_takes: int, current_combination_modalities: list, skeleton_pose_model: str, model_names: list): """Combines skeleton point information based on modality combination, and subject id group. Trains, validates, and tests the list of classifier models. Calculates metrics for each data split, model and parameter combination. Args: train_subject_ids: List of subject ids in the training set. validation_subject_ids: List of subject ids in the validation set. test_subject_ids: List of subject ids in the testing set. n_actions: Total number of actions in the original dataset. n_takes: Total number of takes in the original dataset. current_combination_modalities: Current combination of modalities which will be used to import and combine the dataset. skeleton_pose_model: Name of the model currently used for extracting skeleton model. model_names: List of ML classifier model names which will used creating the objects. Returns: None. """ # Combines skeleton point information based on modality combination, and subject id group. train_skeleton_information = data_combiner(n_actions, train_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) validation_skeleton_information = data_combiner(n_actions, validation_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) test_skeleton_information = data_combiner(n_actions, test_subject_ids, n_takes, current_combination_modalities, skeleton_pose_model) # Creating empty dataframes for the metrics for current modality combination's training, validation, and testing # datasets. metrics_features = ['accuracy_score', 'balanced_accuracy_score', 'precision_score', 'recall_score', 'f1_score'] train_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) validation_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) test_models_parameters_metrics = pd.DataFrame(columns=['model_names', 'parameters'] + metrics_features) combination_name = '_'.join(current_combination_modalities + [skeleton_pose_model]) # Iterates across model names and parameter grid for training and testing the classification models. for i in range(len(model_names)): # Retrieves parameters and generates parameter combinations. parameters = retrieve_hyperparameters(model_names[i]) parameters_grid = ParameterGrid(parameters) for j in range(len(parameters_grid)): current_parameters_grid_name = ', '.join(['{}={}'.format(k, parameters_grid[j][k]) for k in parameters_grid[j].keys()]) # Performs model training and testing. Also, generates metrics for the data splits. training_metrics, validation_metrics, test_metrics = model_training_testing( train_skeleton_information, validation_skeleton_information, test_skeleton_information, model_names[i], parameters_grid[j]) # Appends current modality's train, validation, and test metrics to the main dataframes. train_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, training_metrics, train_models_parameters_metrics) validation_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, validation_metrics, validation_models_parameters_metrics) test_models_parameters_metrics = appends_parameter_metrics_combination( model_names[i], current_parameters_grid_name, test_metrics, test_models_parameters_metrics) if model_names[i] != 'gaussian_naive_bayes': print('modality_combination={}, model={}, {} completed successfully.'.format( combination_name, model_names[i], current_parameters_grid_name)) else: print('modality_combination={}, model={} completed successfully.'.format(combination_name, model_names[i])) # Exports main training, validation and testing metrics into CSV files. per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'train_metrics', train_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'validation_metrics', validation_models_parameters_metrics) per_combination_results_export('_'.join(current_combination_modalities + [skeleton_pose_model]), 'test_metrics', test_models_parameters_metrics) def main(): print() n_actions = 27 n_subjects = 8 n_takes = 4 skeleton_pose_models = ['coco', 'mpi'] modalities = ['rgb', 'depth', 'inertial'] model_names = ['gaussian_naive_bayes', 'support_vector_classifier', 'decision_tree_classifier', 'random_forest_classifier', 'extra_trees_classifier', 'gradient_boosting_classifier'] modality_combinations = list_combinations_generator(modalities) train_subject_ids = [i for i in range(1, n_subjects - 1)] validation_subject_ids = [n_subjects - 1] test_subject_ids = [n_subjects] for i in range(len(modality_combinations)): for j in range(len(skeleton_pose_models)): per_combination_model_training_testing(train_subject_ids, validation_subject_ids, test_subject_ids, n_actions, n_takes, modality_combinations[i], skeleton_pose_models[j], model_names) print() if __name__ == '__main__': main()
__init__
Initialize Generator object. Args: batch_size: The size of the batches to generate. group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')). shuffle_groups: If True, shuffles the groups each epoch. input_size: max_objects:
import cv2 import keras import math import matplotlib.pyplot as plt import numpy as np import random import warnings from generators.utils import get_affine_transform, affine_transform from generators.utils import gaussian_radius, draw_gaussian, gaussian_radius_2, draw_gaussian_2 class Generator(keras.utils.Sequence): """ Abstract generator class. """ # MASKED: __init__ function (lines 18-58) def on_epoch_end(self): if self.shuffle_groups: random.shuffle(self.groups) self.current_index = 0 def size(self): """ Size of the dataset. """ raise NotImplementedError('size method not implemented') def num_classes(self): """ Number of classes in the dataset. """ raise NotImplementedError('num_classes method not implemented') def has_label(self, label): """ Returns True if label is a known label. """ raise NotImplementedError('has_label method not implemented') def has_name(self, name): """ Returns True if name is a known class. """ raise NotImplementedError('has_name method not implemented') def name_to_label(self, name): """ Map name to label. """ raise NotImplementedError('name_to_label method not implemented') def label_to_name(self, label): """ Map label to name. """ raise NotImplementedError('label_to_name method not implemented') def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ raise NotImplementedError('image_aspect_ratio method not implemented') def load_image(self, image_index): """ Load an image at the image_index. """ raise NotImplementedError('load_image method not implemented') def load_annotations(self, image_index): """ Load annotations for an image_index. """ raise NotImplementedError('load_annotations method not implemented') def load_annotations_group(self, group): """ Load annotations for all images in group. """ # load_annotations {'labels': np.array, 'annotations': np.array} annotations_group = [self.load_annotations(image_index) for image_index in group] for annotations in annotations_group: assert (isinstance(annotations, dict)), '\'load_annotations\' should return a list of dictionaries, received: {}'.format( type(annotations)) assert ( 'labels' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.' assert ( 'bboxes' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.' return annotations_group def filter_annotations(self, image_group, annotations_group, group): """ Filter annotations by removing those that are outside of the image bounds or whose width/height < 0. """ # test all annotations for index, (image, annotations) in enumerate(zip(image_group, annotations_group)): # test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0] invalid_indices = np.where( (annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) | (annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1]) | (annotations['bboxes'][:, 0] < 0) | (annotations['bboxes'][:, 1] < 0) | (annotations['bboxes'][:, 2] <= 0) | (annotations['bboxes'][:, 3] <= 0) | (annotations['bboxes'][:, 2] > image.shape[1]) | (annotations['bboxes'][:, 3] > image.shape[0]) )[0] # delete invalid indices if len(invalid_indices): warnings.warn('Image with id {} (shape {}) contains the following invalid boxes: {}.'.format( group[index], image.shape, annotations['bboxes'][invalid_indices, :] )) for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0) if annotations['bboxes'].shape[0] == 0: warnings.warn('Image with id {} (shape {}) contains no valid boxes before transform'.format( group[index], image.shape, )) return image_group, annotations_group def clip_transformed_annotations(self, image_group, annotations_group, group): """ Filter annotations by removing those that are outside of the image bounds or whose width/height < 0. """ # test all annotations filtered_image_group = [] filtered_annotations_group = [] for index, (image, annotations) in enumerate(zip(image_group, annotations_group)): image_height = image.shape[0] image_width = image.shape[1] # x1 annotations['bboxes'][:, 0] = np.clip(annotations['bboxes'][:, 0], 0, image_width - 2) # y1 annotations['bboxes'][:, 1] = np.clip(annotations['bboxes'][:, 1], 0, image_height - 2) # x2 annotations['bboxes'][:, 2] = np.clip(annotations['bboxes'][:, 2], 1, image_width - 1) # y2 annotations['bboxes'][:, 3] = np.clip(annotations['bboxes'][:, 3], 1, image_height - 1) # test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0] small_indices = np.where( (annotations['bboxes'][:, 2] - annotations['bboxes'][:, 0] < 10) | (annotations['bboxes'][:, 3] - annotations['bboxes'][:, 1] < 10) )[0] # delete invalid indices if len(small_indices): for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], small_indices, axis=0) # import cv2 # for invalid_index in small_indices: # x1, y1, x2, y2 = annotations['bboxes'][invalid_index] # label = annotations['labels'][invalid_index] # class_name = self.labels[label] # print('width: {}'.format(x2 - x1)) # print('height: {}'.format(y2 - y1)) # cv2.rectangle(image, (int(round(x1)), int(round(y1))), (int(round(x2)), int(round(y2))), (0, 255, 0), 2) # cv2.putText(image, class_name, (int(round(x1)), int(round(y1))), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 1) # cv2.namedWindow('image', cv2.WINDOW_NORMAL) # cv2.imshow('image', image) # cv2.waitKey(0) if annotations_group[index]['bboxes'].shape[0] != 0: filtered_image_group.append(image) filtered_annotations_group.append(annotations_group[index]) else: warnings.warn('Image with id {} (shape {}) contains no valid boxes after transform'.format( group[index], image.shape, )) return filtered_image_group, filtered_annotations_group def load_image_group(self, group): """ Load images for all images in a group. """ return [self.load_image(image_index) for image_index in group] def random_visual_effect_group_entry(self, image, annotations): """ Randomly transforms image and annotation. """ # apply visual effect image = self.visual_effect(image) return image, annotations def random_visual_effect_group(self, image_group, annotations_group): """ Randomly apply visual effect on each image. """ assert (len(image_group) == len(annotations_group)) if self.visual_effect is None: # do nothing return image_group, annotations_group for index in range(len(image_group)): # apply effect on a single group entry image_group[index], annotations_group[index] = self.random_visual_effect_group_entry( image_group[index], annotations_group[index] ) return image_group, annotations_group def random_transform_group_entry(self, image, annotations, transform=None): """ Randomly transforms image and annotation. """ # randomly transform both image and annotations if transform is not None or self.transform_generator: if transform is None: transform = adjust_transform_for_image(next(self.transform_generator), image, self.transform_parameters.relative_translation) # apply transformation to image image = apply_transform(transform, image, self.transform_parameters) # Transform the bounding boxes in the annotations. annotations['bboxes'] = annotations['bboxes'].copy() for index in range(annotations['bboxes'].shape[0]): annotations['bboxes'][index, :] = transform_aabb(transform, annotations['bboxes'][index, :]) return image, annotations def random_transform_group(self, image_group, annotations_group): """ Randomly transforms each image and its annotations. """ assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): # transform a single group entry image_group[index], annotations_group[index] = self.random_transform_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def random_misc_group_entry(self, image, annotations): """ Randomly transforms image and annotation. """ assert annotations['bboxes'].shape[0] != 0 # randomly transform both image and annotations image, boxes = self.misc_effect(image, annotations['bboxes']) # Transform the bounding boxes in the annotations. annotations['bboxes'] = boxes return image, annotations def random_misc_group(self, image_group, annotations_group): """ Randomly transforms each image and its annotations. """ assert (len(image_group) == len(annotations_group)) if self.misc_effect is None: return image_group, annotations_group for index in range(len(image_group)): # transform a single group entry image_group[index], annotations_group[index] = self.random_misc_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def preprocess_group_entry(self, image, annotations): """ Preprocess image and its annotations. """ # preprocess the image image, scale, offset_h, offset_w = self.preprocess_image(image) # apply resizing to annotations too annotations['bboxes'] *= scale annotations['bboxes'][:, [0, 2]] += offset_w annotations['bboxes'][:, [1, 3]] += offset_h # print(annotations['bboxes'][:, [2, 3]] - annotations['bboxes'][:, [0, 1]]) return image, annotations def preprocess_group(self, image_group, annotations_group): """ Preprocess each image and its annotations in its group. """ assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): # preprocess a single group entry image_group[index], annotations_group[index] = self.preprocess_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def group_images(self): """ Order the images according to self.order and makes groups of self.batch_size. """ # determine the order of the images order = list(range(self.size())) if self.group_method == 'random': random.shuffle(order) elif self.group_method == 'ratio': order.sort(key=lambda x: self.image_aspect_ratio(x)) # divide into groups, one group = one batch self.groups = [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)] def compute_inputs(self, image_group, annotations_group): """ Compute inputs for the network using an image_group. """ # construct an image batch object batch_images = np.zeros((len(image_group), self.input_size, self.input_size, 3), dtype=np.float32) batch_hms = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_hms_2 = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_whs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_regs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_reg_masks = np.zeros((len(image_group), self.max_objects), dtype=np.float32) batch_indices = np.zeros((len(image_group), self.max_objects), dtype=np.float32) # copy all images to the upper left part of the image batch object for b, (image, annotations) in enumerate(zip(image_group, annotations_group)): c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32) s = max(image.shape[0], image.shape[1]) * 1.0 trans_input = get_affine_transform(c, s, self.input_size) # inputs image = self.preprocess_image(image, c, s, tgt_w=self.input_size, tgt_h=self.input_size) batch_images[b] = image # outputs bboxes = annotations['bboxes'] assert bboxes.shape[0] != 0 class_ids = annotations['labels'] assert class_ids.shape[0] != 0 trans_output = get_affine_transform(c, s, self.output_size) for i in range(bboxes.shape[0]): bbox = bboxes[i].copy() cls_id = class_ids[i] # (x1, y1) bbox[:2] = affine_transform(bbox[:2], trans_output) # (x2, y2) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, self.output_size - 1) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, self.output_size - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if h > 0 and w > 0: radius_h, radius_w = gaussian_radius((math.ceil(h), math.ceil(w))) radius_h = max(0, int(radius_h)) radius_w = max(0, int(radius_w)) radius = gaussian_radius_2((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(batch_hms[b, :, :, cls_id], ct_int, radius_h, radius_w) draw_gaussian_2(batch_hms_2[b, :, :, cls_id], ct_int, radius) batch_whs[b, i] = 1. * w, 1. * h batch_indices[b, i] = ct_int[1] * self.output_size + ct_int[0] batch_regs[b, i] = ct - ct_int batch_reg_masks[b, i] = 1 # hm = batch_hms[b, :, :, cls_id] # hm = np.round(hm * 255).astype(np.uint8) # hm = cv2.cvtColor(hm, cv2.COLOR_GRAY2BGR) # hm_2 = batch_hms_2[b, :, :, cls_id] # hm_2 = np.round(hm_2 * 255).astype(np.uint8) # hm_2 = cv2.cvtColor(hm_2, cv2.COLOR_GRAY2BGR) # cv2.rectangle(hm, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 1) # cv2.rectangle(hm_2, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 1) # cv2.namedWindow('hm', cv2.WINDOW_NORMAL) # cv2.imshow('hm', np.hstack([hm, hm_2])) # cv2.waitKey() # print(np.sum(batch_reg_masks[b])) # for i in range(self.num_classes()): # plt.subplot(4, 5, i + 1) # hm = batch_hms[b, :, :, i] # plt.imshow(hm, cmap='gray') # plt.axis('off') # plt.show() # hm = np.sum(batch_hms[0], axis=-1) # hm = np.round(hm * 255).astype(np.uint8) # hm = cv2.cvtColor(hm, cv2.COLOR_GRAY2BGR) # hm_2 = np.sum(batch_hms_2[0], axis=-1) # hm_2 = np.round(hm_2 * 255).astype(np.uint8) # hm_2 = cv2.cvtColor(hm_2, cv2.COLOR_GRAY2BGR) # for i in range(bboxes.shape[0]): # x1, y1 = np.round(affine_transform(bboxes[i, :2], trans_input)).astype(np.int32) # x2, y2 = np.round(affine_transform(bboxes[i, 2:], trans_input)).astype(np.int32) # x1_, y1_ = np.round(affine_transform(bboxes[i, :2], trans_output)).astype(np.int32) # x2_, y2_ = np.round(affine_transform(bboxes[i, 2:], trans_output)).astype(np.int32) # class_id = class_ids[i] # cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1) # cv2.putText(image, str(class_id), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 2.0getAffineTransform, (0, 0, 0), 3) # cv2.rectangle(hm, (x1_, y1_), (x2_, y2_), (0, 255, 0), 1) # cv2.rectangle(hm_2, (x1_, y1_), (x2_, y2_), (0, 255, 0), 1) # cv2.namedWindow('hm', cv2.WINDOW_NORMAL) # cv2.imshow('hm', np.hstack([hm, hm_2])) # cv2.namedWindow('image', cv2.WINDOW_NORMAL) # cv2.imshow('image', image) # cv2.waitKey() return [batch_images, batch_hms_2, batch_whs, batch_regs, batch_reg_masks, batch_indices] def compute_targets(self, image_group, annotations_group): """ Compute target outputs for the network using images and their annotations. """ return np.zeros((len(image_group),)) def compute_inputs_targets(self, group): """ Compute inputs and target outputs for the network. """ # load images and annotations # list image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly apply visual effect image_group, annotations_group = self.random_visual_effect_group(image_group, annotations_group) # # # randomly transform data # image_group, annotations_group = self.random_transform_group(image_group, annotations_group) # randomly apply misc effect image_group, annotations_group = self.random_misc_group(image_group, annotations_group) # # # perform preprocessing steps # image_group, annotations_group = self.preprocess_group(image_group, annotations_group) # # # check validity of annotations # image_group, annotations_group = self.clip_transformed_annotations(image_group, annotations_group, group) if len(image_group) == 0: return None, None # compute network inputs inputs = self.compute_inputs(image_group, annotations_group) # compute network targets targets = self.compute_targets(image_group, annotations_group) return inputs, targets def __len__(self): """ Number of batches for generator. """ return len(self.groups) def __getitem__(self, index): """ Keras sequence method for generating batches. """ group = self.groups[self.current_index] if self.multi_scale: if self.current_index % 10 == 0: random_size_index = np.random.randint(0, len(self.multi_image_sizes)) self.image_size = self.multi_image_sizes[random_size_index] inputs, targets = self.compute_inputs_targets(group) while inputs is None: current_index = self.current_index + 1 if current_index >= len(self.groups): current_index = current_index % (len(self.groups)) self.current_index = current_index group = self.groups[self.current_index] inputs, targets = self.compute_inputs_targets(group) current_index = self.current_index + 1 if current_index >= len(self.groups): current_index = current_index % (len(self.groups)) self.current_index = current_index return inputs, targets def preprocess_image(self, image, c, s, tgt_w, tgt_h): trans_input = get_affine_transform(c, s, (tgt_w, tgt_h)) image = cv2.warpAffine(image, trans_input, (tgt_w, tgt_h), flags=cv2.INTER_LINEAR) image = image.astype(np.float32) image[..., 0] -= 103.939 image[..., 1] -= 116.779 image[..., 2] -= 123.68 return image def get_transformed_group(self, group): image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly transform data image_group, annotations_group = self.random_transform_group(image_group, annotations_group) return image_group, annotations_group def get_cropped_and_rotated_group(self, group): image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly transform data image_group, annotations_group = self.random_crop_group(image_group, annotations_group) image_group, annotations_group = self.random_rotate_group(image_group, annotations_group) return image_group, annotations_group
def __init__( self, multi_scale=False, multi_image_sizes=(320, 352, 384, 416, 448, 480, 512, 544, 576, 608), misc_effect=None, visual_effect=None, batch_size=1, group_method='ratio', # one of 'none', 'random', 'ratio' shuffle_groups=True, input_size=512, max_objects=100 ): """ Initialize Generator object. Args: batch_size: The size of the batches to generate. group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')). shuffle_groups: If True, shuffles the groups each epoch. input_size: max_objects: """ self.misc_effect = misc_effect self.visual_effect = visual_effect self.batch_size = int(batch_size) self.group_method = group_method self.shuffle_groups = shuffle_groups self.input_size = input_size self.output_size = self.input_size // 4 self.max_objects = max_objects self.groups = None self.multi_scale = multi_scale self.multi_image_sizes = multi_image_sizes self.current_index = 0 # Define groups self.group_images() # Shuffle when initializing if self.shuffle_groups: random.shuffle(self.groups)
18
58
import cv2 import keras import math import matplotlib.pyplot as plt import numpy as np import random import warnings from generators.utils import get_affine_transform, affine_transform from generators.utils import gaussian_radius, draw_gaussian, gaussian_radius_2, draw_gaussian_2 class Generator(keras.utils.Sequence): """ Abstract generator class. """ def __init__( self, multi_scale=False, multi_image_sizes=(320, 352, 384, 416, 448, 480, 512, 544, 576, 608), misc_effect=None, visual_effect=None, batch_size=1, group_method='ratio', # one of 'none', 'random', 'ratio' shuffle_groups=True, input_size=512, max_objects=100 ): """ Initialize Generator object. Args: batch_size: The size of the batches to generate. group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')). shuffle_groups: If True, shuffles the groups each epoch. input_size: max_objects: """ self.misc_effect = misc_effect self.visual_effect = visual_effect self.batch_size = int(batch_size) self.group_method = group_method self.shuffle_groups = shuffle_groups self.input_size = input_size self.output_size = self.input_size // 4 self.max_objects = max_objects self.groups = None self.multi_scale = multi_scale self.multi_image_sizes = multi_image_sizes self.current_index = 0 # Define groups self.group_images() # Shuffle when initializing if self.shuffle_groups: random.shuffle(self.groups) def on_epoch_end(self): if self.shuffle_groups: random.shuffle(self.groups) self.current_index = 0 def size(self): """ Size of the dataset. """ raise NotImplementedError('size method not implemented') def num_classes(self): """ Number of classes in the dataset. """ raise NotImplementedError('num_classes method not implemented') def has_label(self, label): """ Returns True if label is a known label. """ raise NotImplementedError('has_label method not implemented') def has_name(self, name): """ Returns True if name is a known class. """ raise NotImplementedError('has_name method not implemented') def name_to_label(self, name): """ Map name to label. """ raise NotImplementedError('name_to_label method not implemented') def label_to_name(self, label): """ Map label to name. """ raise NotImplementedError('label_to_name method not implemented') def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ raise NotImplementedError('image_aspect_ratio method not implemented') def load_image(self, image_index): """ Load an image at the image_index. """ raise NotImplementedError('load_image method not implemented') def load_annotations(self, image_index): """ Load annotations for an image_index. """ raise NotImplementedError('load_annotations method not implemented') def load_annotations_group(self, group): """ Load annotations for all images in group. """ # load_annotations {'labels': np.array, 'annotations': np.array} annotations_group = [self.load_annotations(image_index) for image_index in group] for annotations in annotations_group: assert (isinstance(annotations, dict)), '\'load_annotations\' should return a list of dictionaries, received: {}'.format( type(annotations)) assert ( 'labels' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.' assert ( 'bboxes' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.' return annotations_group def filter_annotations(self, image_group, annotations_group, group): """ Filter annotations by removing those that are outside of the image bounds or whose width/height < 0. """ # test all annotations for index, (image, annotations) in enumerate(zip(image_group, annotations_group)): # test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0] invalid_indices = np.where( (annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) | (annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1]) | (annotations['bboxes'][:, 0] < 0) | (annotations['bboxes'][:, 1] < 0) | (annotations['bboxes'][:, 2] <= 0) | (annotations['bboxes'][:, 3] <= 0) | (annotations['bboxes'][:, 2] > image.shape[1]) | (annotations['bboxes'][:, 3] > image.shape[0]) )[0] # delete invalid indices if len(invalid_indices): warnings.warn('Image with id {} (shape {}) contains the following invalid boxes: {}.'.format( group[index], image.shape, annotations['bboxes'][invalid_indices, :] )) for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0) if annotations['bboxes'].shape[0] == 0: warnings.warn('Image with id {} (shape {}) contains no valid boxes before transform'.format( group[index], image.shape, )) return image_group, annotations_group def clip_transformed_annotations(self, image_group, annotations_group, group): """ Filter annotations by removing those that are outside of the image bounds or whose width/height < 0. """ # test all annotations filtered_image_group = [] filtered_annotations_group = [] for index, (image, annotations) in enumerate(zip(image_group, annotations_group)): image_height = image.shape[0] image_width = image.shape[1] # x1 annotations['bboxes'][:, 0] = np.clip(annotations['bboxes'][:, 0], 0, image_width - 2) # y1 annotations['bboxes'][:, 1] = np.clip(annotations['bboxes'][:, 1], 0, image_height - 2) # x2 annotations['bboxes'][:, 2] = np.clip(annotations['bboxes'][:, 2], 1, image_width - 1) # y2 annotations['bboxes'][:, 3] = np.clip(annotations['bboxes'][:, 3], 1, image_height - 1) # test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0] small_indices = np.where( (annotations['bboxes'][:, 2] - annotations['bboxes'][:, 0] < 10) | (annotations['bboxes'][:, 3] - annotations['bboxes'][:, 1] < 10) )[0] # delete invalid indices if len(small_indices): for k in annotations_group[index].keys(): annotations_group[index][k] = np.delete(annotations[k], small_indices, axis=0) # import cv2 # for invalid_index in small_indices: # x1, y1, x2, y2 = annotations['bboxes'][invalid_index] # label = annotations['labels'][invalid_index] # class_name = self.labels[label] # print('width: {}'.format(x2 - x1)) # print('height: {}'.format(y2 - y1)) # cv2.rectangle(image, (int(round(x1)), int(round(y1))), (int(round(x2)), int(round(y2))), (0, 255, 0), 2) # cv2.putText(image, class_name, (int(round(x1)), int(round(y1))), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 1) # cv2.namedWindow('image', cv2.WINDOW_NORMAL) # cv2.imshow('image', image) # cv2.waitKey(0) if annotations_group[index]['bboxes'].shape[0] != 0: filtered_image_group.append(image) filtered_annotations_group.append(annotations_group[index]) else: warnings.warn('Image with id {} (shape {}) contains no valid boxes after transform'.format( group[index], image.shape, )) return filtered_image_group, filtered_annotations_group def load_image_group(self, group): """ Load images for all images in a group. """ return [self.load_image(image_index) for image_index in group] def random_visual_effect_group_entry(self, image, annotations): """ Randomly transforms image and annotation. """ # apply visual effect image = self.visual_effect(image) return image, annotations def random_visual_effect_group(self, image_group, annotations_group): """ Randomly apply visual effect on each image. """ assert (len(image_group) == len(annotations_group)) if self.visual_effect is None: # do nothing return image_group, annotations_group for index in range(len(image_group)): # apply effect on a single group entry image_group[index], annotations_group[index] = self.random_visual_effect_group_entry( image_group[index], annotations_group[index] ) return image_group, annotations_group def random_transform_group_entry(self, image, annotations, transform=None): """ Randomly transforms image and annotation. """ # randomly transform both image and annotations if transform is not None or self.transform_generator: if transform is None: transform = adjust_transform_for_image(next(self.transform_generator), image, self.transform_parameters.relative_translation) # apply transformation to image image = apply_transform(transform, image, self.transform_parameters) # Transform the bounding boxes in the annotations. annotations['bboxes'] = annotations['bboxes'].copy() for index in range(annotations['bboxes'].shape[0]): annotations['bboxes'][index, :] = transform_aabb(transform, annotations['bboxes'][index, :]) return image, annotations def random_transform_group(self, image_group, annotations_group): """ Randomly transforms each image and its annotations. """ assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): # transform a single group entry image_group[index], annotations_group[index] = self.random_transform_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def random_misc_group_entry(self, image, annotations): """ Randomly transforms image and annotation. """ assert annotations['bboxes'].shape[0] != 0 # randomly transform both image and annotations image, boxes = self.misc_effect(image, annotations['bboxes']) # Transform the bounding boxes in the annotations. annotations['bboxes'] = boxes return image, annotations def random_misc_group(self, image_group, annotations_group): """ Randomly transforms each image and its annotations. """ assert (len(image_group) == len(annotations_group)) if self.misc_effect is None: return image_group, annotations_group for index in range(len(image_group)): # transform a single group entry image_group[index], annotations_group[index] = self.random_misc_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def preprocess_group_entry(self, image, annotations): """ Preprocess image and its annotations. """ # preprocess the image image, scale, offset_h, offset_w = self.preprocess_image(image) # apply resizing to annotations too annotations['bboxes'] *= scale annotations['bboxes'][:, [0, 2]] += offset_w annotations['bboxes'][:, [1, 3]] += offset_h # print(annotations['bboxes'][:, [2, 3]] - annotations['bboxes'][:, [0, 1]]) return image, annotations def preprocess_group(self, image_group, annotations_group): """ Preprocess each image and its annotations in its group. """ assert (len(image_group) == len(annotations_group)) for index in range(len(image_group)): # preprocess a single group entry image_group[index], annotations_group[index] = self.preprocess_group_entry(image_group[index], annotations_group[index]) return image_group, annotations_group def group_images(self): """ Order the images according to self.order and makes groups of self.batch_size. """ # determine the order of the images order = list(range(self.size())) if self.group_method == 'random': random.shuffle(order) elif self.group_method == 'ratio': order.sort(key=lambda x: self.image_aspect_ratio(x)) # divide into groups, one group = one batch self.groups = [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)] def compute_inputs(self, image_group, annotations_group): """ Compute inputs for the network using an image_group. """ # construct an image batch object batch_images = np.zeros((len(image_group), self.input_size, self.input_size, 3), dtype=np.float32) batch_hms = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_hms_2 = np.zeros((len(image_group), self.output_size, self.output_size, self.num_classes()), dtype=np.float32) batch_whs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_regs = np.zeros((len(image_group), self.max_objects, 2), dtype=np.float32) batch_reg_masks = np.zeros((len(image_group), self.max_objects), dtype=np.float32) batch_indices = np.zeros((len(image_group), self.max_objects), dtype=np.float32) # copy all images to the upper left part of the image batch object for b, (image, annotations) in enumerate(zip(image_group, annotations_group)): c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32) s = max(image.shape[0], image.shape[1]) * 1.0 trans_input = get_affine_transform(c, s, self.input_size) # inputs image = self.preprocess_image(image, c, s, tgt_w=self.input_size, tgt_h=self.input_size) batch_images[b] = image # outputs bboxes = annotations['bboxes'] assert bboxes.shape[0] != 0 class_ids = annotations['labels'] assert class_ids.shape[0] != 0 trans_output = get_affine_transform(c, s, self.output_size) for i in range(bboxes.shape[0]): bbox = bboxes[i].copy() cls_id = class_ids[i] # (x1, y1) bbox[:2] = affine_transform(bbox[:2], trans_output) # (x2, y2) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, self.output_size - 1) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, self.output_size - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if h > 0 and w > 0: radius_h, radius_w = gaussian_radius((math.ceil(h), math.ceil(w))) radius_h = max(0, int(radius_h)) radius_w = max(0, int(radius_w)) radius = gaussian_radius_2((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(batch_hms[b, :, :, cls_id], ct_int, radius_h, radius_w) draw_gaussian_2(batch_hms_2[b, :, :, cls_id], ct_int, radius) batch_whs[b, i] = 1. * w, 1. * h batch_indices[b, i] = ct_int[1] * self.output_size + ct_int[0] batch_regs[b, i] = ct - ct_int batch_reg_masks[b, i] = 1 # hm = batch_hms[b, :, :, cls_id] # hm = np.round(hm * 255).astype(np.uint8) # hm = cv2.cvtColor(hm, cv2.COLOR_GRAY2BGR) # hm_2 = batch_hms_2[b, :, :, cls_id] # hm_2 = np.round(hm_2 * 255).astype(np.uint8) # hm_2 = cv2.cvtColor(hm_2, cv2.COLOR_GRAY2BGR) # cv2.rectangle(hm, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 1) # cv2.rectangle(hm_2, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 1) # cv2.namedWindow('hm', cv2.WINDOW_NORMAL) # cv2.imshow('hm', np.hstack([hm, hm_2])) # cv2.waitKey() # print(np.sum(batch_reg_masks[b])) # for i in range(self.num_classes()): # plt.subplot(4, 5, i + 1) # hm = batch_hms[b, :, :, i] # plt.imshow(hm, cmap='gray') # plt.axis('off') # plt.show() # hm = np.sum(batch_hms[0], axis=-1) # hm = np.round(hm * 255).astype(np.uint8) # hm = cv2.cvtColor(hm, cv2.COLOR_GRAY2BGR) # hm_2 = np.sum(batch_hms_2[0], axis=-1) # hm_2 = np.round(hm_2 * 255).astype(np.uint8) # hm_2 = cv2.cvtColor(hm_2, cv2.COLOR_GRAY2BGR) # for i in range(bboxes.shape[0]): # x1, y1 = np.round(affine_transform(bboxes[i, :2], trans_input)).astype(np.int32) # x2, y2 = np.round(affine_transform(bboxes[i, 2:], trans_input)).astype(np.int32) # x1_, y1_ = np.round(affine_transform(bboxes[i, :2], trans_output)).astype(np.int32) # x2_, y2_ = np.round(affine_transform(bboxes[i, 2:], trans_output)).astype(np.int32) # class_id = class_ids[i] # cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1) # cv2.putText(image, str(class_id), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 2.0getAffineTransform, (0, 0, 0), 3) # cv2.rectangle(hm, (x1_, y1_), (x2_, y2_), (0, 255, 0), 1) # cv2.rectangle(hm_2, (x1_, y1_), (x2_, y2_), (0, 255, 0), 1) # cv2.namedWindow('hm', cv2.WINDOW_NORMAL) # cv2.imshow('hm', np.hstack([hm, hm_2])) # cv2.namedWindow('image', cv2.WINDOW_NORMAL) # cv2.imshow('image', image) # cv2.waitKey() return [batch_images, batch_hms_2, batch_whs, batch_regs, batch_reg_masks, batch_indices] def compute_targets(self, image_group, annotations_group): """ Compute target outputs for the network using images and their annotations. """ return np.zeros((len(image_group),)) def compute_inputs_targets(self, group): """ Compute inputs and target outputs for the network. """ # load images and annotations # list image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly apply visual effect image_group, annotations_group = self.random_visual_effect_group(image_group, annotations_group) # # # randomly transform data # image_group, annotations_group = self.random_transform_group(image_group, annotations_group) # randomly apply misc effect image_group, annotations_group = self.random_misc_group(image_group, annotations_group) # # # perform preprocessing steps # image_group, annotations_group = self.preprocess_group(image_group, annotations_group) # # # check validity of annotations # image_group, annotations_group = self.clip_transformed_annotations(image_group, annotations_group, group) if len(image_group) == 0: return None, None # compute network inputs inputs = self.compute_inputs(image_group, annotations_group) # compute network targets targets = self.compute_targets(image_group, annotations_group) return inputs, targets def __len__(self): """ Number of batches for generator. """ return len(self.groups) def __getitem__(self, index): """ Keras sequence method for generating batches. """ group = self.groups[self.current_index] if self.multi_scale: if self.current_index % 10 == 0: random_size_index = np.random.randint(0, len(self.multi_image_sizes)) self.image_size = self.multi_image_sizes[random_size_index] inputs, targets = self.compute_inputs_targets(group) while inputs is None: current_index = self.current_index + 1 if current_index >= len(self.groups): current_index = current_index % (len(self.groups)) self.current_index = current_index group = self.groups[self.current_index] inputs, targets = self.compute_inputs_targets(group) current_index = self.current_index + 1 if current_index >= len(self.groups): current_index = current_index % (len(self.groups)) self.current_index = current_index return inputs, targets def preprocess_image(self, image, c, s, tgt_w, tgt_h): trans_input = get_affine_transform(c, s, (tgt_w, tgt_h)) image = cv2.warpAffine(image, trans_input, (tgt_w, tgt_h), flags=cv2.INTER_LINEAR) image = image.astype(np.float32) image[..., 0] -= 103.939 image[..., 1] -= 116.779 image[..., 2] -= 123.68 return image def get_transformed_group(self, group): image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly transform data image_group, annotations_group = self.random_transform_group(image_group, annotations_group) return image_group, annotations_group def get_cropped_and_rotated_group(self, group): image_group = self.load_image_group(group) annotations_group = self.load_annotations_group(group) # check validity of annotations image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group) # randomly transform data image_group, annotations_group = self.random_crop_group(image_group, annotations_group) image_group, annotations_group = self.random_rotate_group(image_group, annotations_group) return image_group, annotations_group
group_stat_vars_by_observation_properties
Groups stat vars by their observation schemas. Groups Stat Vars by their inclusion of StatVar Observation properties like measurementMethod or Unit. The current template MCF schema does not support optional values in the CSV so we must place these stat vars into different template MCFs and CSVs. Args: indicator_codes: List of World Bank indicator codes with their Data Commons mappings, as a pandas dataframe. Returns: Array of tuples for each statistical variable grouping. 1) template MCF, as a string. 2) columns to include in exported csv, as a list of strings. 3) indicator codes in this grouping, as a list of strings.
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fetches, cleans, outputs TMCFs and CSVs for all World Bank development indicator codes provided in WorldBankIndicators.csv for all years and for all countries provided in WorldBankCountries.csv. """ from absl import app import pandas as pd import itertools import requests import zipfile import io import re # Remaps the columns provided by World Bank API. WORLDBANK_COL_REMAP = { 'Country Name': 'CountryName', 'Country Code': 'CountryCode', 'Indicator Name': 'IndicatorName', 'Indicator Code': 'IndicatorCode' } TEMPLATE_TMCF = """ Node: E:WorldBank->E0 typeOf: dcs:StatVarObservation variableMeasured: C:WorldBank->StatisticalVariable observationDate: C:WorldBank->Year observationPeriod: "P1Y" observationAbout: C:WorldBank->ISO3166Alpha3 value: C:WorldBank->Value """ TEMPLATE_STAT_VAR = """ Node: dcid:WorldBank/{INDICATOR} name: "{NAME}" description: "{DESCRIPTION}" typeOf: dcs:StatisticalVariable populationType: dcs:{populationType} statType: dcs:{statType} measuredProperty: dcs:{measuredProperty} measurementDenominator: dcs:{measurementDenominator} {CONSTRAINTS} """ def read_worldbank(iso3166alpha3): """ Fetches and tidies all ~1500 World Bank indicators for a given ISO 3166 alpha 3 code. For a particular alpha 3 code, this function fetches the entire ZIP file for that particular country for all World Bank indicators in a wide format where years are columns. The dataframe is changed into a narrow format so that year becomes a single column with each row representing a different year for a single indicator. Args: iso3166alpha3: ISO 3166 alpha 3 for a country, as a string. Returns: A tidied pandas dataframe with all indicator codes for a particular country in the format of (country, indicator, year, value). Notes: Takes approximately 10 seconds to download and tidy one country in a Jupyter notebook. """ country_zip = ("http://api.worldbank.org/v2/en/country/" + iso3166alpha3 + "?downloadformat=csv") r = requests.get(country_zip) filebytes = io.BytesIO(r.content) myzipfile = zipfile.ZipFile(filebytes) # We need to select the data file which starts with "API", # but does not have an otherwise regular filename structure. file_to_open = None for file in myzipfile.namelist(): if file.startswith("API"): file_to_open = file break assert file_to_open is not None, \ "Failed to find data for" + iso3166alpha3 df = None # Captures any text contained in double quotatations. line_match = re.compile(r"\"([^\"]*)\"") for line in myzipfile.open(file_to_open).readlines(): # Cells are contained in quotations and comma separated. cols = line_match.findall(line.decode("utf-8")) # CSVs include header informational lines which should be ignored. if len(cols) > 2: # Use first row as the header. if df is None: df = pd.DataFrame(columns=cols) else: df = df.append(pd.DataFrame([cols], columns=df.columns), ignore_index=True) df = df.rename(columns=WORLDBANK_COL_REMAP) # Turn each year into its own row. df = df.set_index( ['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode']) df = df.stack() df.index = df.index.rename('year', level=4) df.name = "Value" df = df.reset_index() # Convert to numeric and drop empty values. df['Value'] = pd.to_numeric(df['Value']) df = df.dropna() return df def build_stat_vars_from_indicator_list(row): """ Generates World Bank StatVar for a row in the indicators dataframe. """ def row_to_constraints(row): """ Helper to generate list of constraints. """ constraints_text = "" next_constraint = 1 while (f"p{next_constraint}" in row and not pd.isna(row[f"p{next_constraint}"])): variable = row[f'p{next_constraint}'] constraint = row[f'v{next_constraint}'] constraints_text += f"{variable}: dcs:{constraint}\n" next_constraint += 1 return constraints_text # yapf: disable # Input all required statistical variable fields. new_stat_var = (TEMPLATE_STAT_VAR .replace("{INDICATOR}", row['IndicatorCode'].replace(".", "_")) .replace("{NAME}", row['IndicatorName']) .replace("{DESCRIPTION}", row['SourceNote']) .replace("{measuredProperty}", row['measuredProp']) .replace("{CONSTRAINTS}", row_to_constraints(row)) ) # yapf: enable # Include or remove option fields. for optional_col in ([ 'populationType', 'statType', 'measurementDenominator' ]): if not pd.isna(row[optional_col]): new_stat_var = new_stat_var.replace(f"{{{optional_col}}}", row[optional_col]) else: new_stat_var = new_stat_var.replace( f"{optional_col}: dcs:{{{optional_col}}}\n", "") return new_stat_var # MASKED: group_stat_vars_by_observation_properties function (lines 165-216) def download_indicator_data(worldbank_countries, indicator_codes): """ Downloads World Bank country data for all countries and indicators provided. Retains only the unique indicator codes provided. Args: worldbank_countries: Dataframe with ISO 3166 alpha 3 code for each country. indicator_code: Dataframe with INDICATOR_CODES to include. Returns: worldbank_dataframe: A tidied pandas dataframe where each row has the format (indicator code, ISO 3166 alpha 3, year, value) for all countries and all indicators provided. """ worldbank_dataframe = pd.DataFrame() indicators_to_keep = list(indicator_codes['IndicatorCode'].unique()) for index, country_code in enumerate(worldbank_countries['ISO3166Alpha3']): print(f"Downloading {country_code}") country_df = read_worldbank(country_code) # Remove unneccessary indicators. country_df = country_df[country_df['IndicatorCode'].isin( indicators_to_keep)] # Map country codes to ISO. country_df['ISO3166Alpha3'] = country_code # Add new row to main datframe. worldbank_dataframe = worldbank_dataframe.append(country_df) # Map indicator codes to unique Statistical Variable. worldbank_dataframe['StatisticalVariable'] = ( worldbank_dataframe['IndicatorCode'].apply( lambda code: f"WorldBank/{code.replace('.', '_')}")) return worldbank_dataframe.rename({'year': 'Year'}, axis=1) def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes): """ Outputs TMCFs and CSVs for each grouping of stat vars. Args: worldbank_dataframe: Dataframe containing all indicators for all countries. tmcfs_for_stat_vars: Array of tuples of template MCF, columns on stat var observations, indicator codes for that template. indicator_codes -> Dataframe with INDICATOR_CODES to include. """ # Only include a subset of columns in the final csv output_csv = worldbank_dataframe[[ 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', 'Value' ]] # Output tmcf and csv for each unique World Bank grouping. for index, enum in enumerate(tmcfs_for_stat_vars): tmcf, stat_var_obs_cols, stat_vars_in_group = enum if len(stat_vars_in_group) != 0: with open(f"output/WorldBank_{index}.tmcf", 'w', newline='') as f_out: f_out.write(tmcf) # Output only the indicator codes in that grouping. matching_csv = output_csv[output_csv['IndicatorCode'].isin( stat_vars_in_group)] # Include the Stat Observation columns in the output CSV. if len(stat_var_obs_cols) > 1: matching_csv = pd.merge(matching_csv, indicator_codes[stat_var_obs_cols], on="IndicatorCode") # Format to decimals. matching_csv = matching_csv.round(10) matching_csv.drop("IndicatorCode", axis=1).to_csv(f"output/WorldBank_{index}.csv", float_format='%.10f', index=False) def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): """ Scales values by sourceScalingFactor and inputs exisiting stat vars. First, this function converts all values to per capita. Some measures in the World Bank dataset are per thousand or per hundred thousand, but we need to scale these to the common denomination format. Secondly, some statistical variables such as Count_Person_InLaborForce are not World Bank specific and need to be replaced. Both of these are imputted from the following two lists in args. Args: scaling_factor_lookup: A dictionary of a mapping between World Bank indicator code to the respective numeric scaling factor. existing_stat_var_lookup: A dictionary of a mapping between all indicator to be replaced with the exisiting stat var to replace it. """ indicator_code = row['IndicatorCode'] if indicator_code in scaling_factor_lookup: row['Value'] = (row['Value'] / int(scaling_factor_lookup[indicator_code])) if indicator_code in existing_stat_var_lookup: row['StatisticalVariable'] = ("dcid:" + existing_stat_var_lookup[indicator_code]) return row def main(_): # Load statistical variable configuration file. indicator_codes = pd.read_csv("WorldBankIndicators.csv") # Add source description to note. def add_source_to_description(row): if not pd.isna(row['Source']): return row['SourceNote'] + " " + str(row['Source']) else: return row['SourceNote'] indicator_codes['SourceNote'] = indicator_codes.apply( add_source_to_description, axis=1) # Generate stat vars with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: # Generate StatVars for fields that don't exist. Some fields such as # Count_Person_Unemployed are already statistical variables so we do # not need to recreate them. for _, row in indicator_codes[ indicator_codes['ExistingStatVar'].isna()].iterrows(): f_out.write(build_stat_vars_from_indicator_list(row)) # Create template MCFs for each grouping of stat vars. tmcfs_for_stat_vars = ( group_stat_vars_by_observation_properties(indicator_codes)) # Download data for all countries. worldbank_countries = pd.read_csv("WorldBankCountries.csv") worldbank_dataframe = download_indicator_data(worldbank_countries, indicator_codes) # Remap columns to match expected format. worldbank_dataframe['Value'] = pd.to_numeric(worldbank_dataframe['Value']) worldbank_dataframe['ISO3166Alpha3'] = ( worldbank_dataframe['ISO3166Alpha3'].apply( lambda code: "dcs:country/" + code)) worldbank_dataframe['StatisticalVariable'] = \ worldbank_dataframe['StatisticalVariable'].apply( lambda code: "dcs:" + code) # Scale values by scaling factor and replace exisiting StatVars. scaling_factor_lookup = (indicator_codes.set_index("IndicatorCode") ['sourceScalingFactor'].dropna().to_dict()) existing_stat_var_lookup = (indicator_codes.set_index("IndicatorCode") ['ExistingStatVar'].dropna().to_dict()) worldbank_dataframe = worldbank_dataframe.apply( lambda row: source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup), axis=1) # Convert integer columns. int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == True] ['IndicatorCode'].unique())) worldbank_subset = worldbank_dataframe[ worldbank_dataframe['IndicatorCode'].isin(int_cols)].index worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( worldbank_dataframe.loc[worldbank_subset, "Value"], downcast="integer")) # Output final CSVs and variables. output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes) if __name__ == '__main__': app.run(main)
def group_stat_vars_by_observation_properties(indicator_codes): """ Groups stat vars by their observation schemas. Groups Stat Vars by their inclusion of StatVar Observation properties like measurementMethod or Unit. The current template MCF schema does not support optional values in the CSV so we must place these stat vars into different template MCFs and CSVs. Args: indicator_codes: List of World Bank indicator codes with their Data Commons mappings, as a pandas dataframe. Returns: Array of tuples for each statistical variable grouping. 1) template MCF, as a string. 2) columns to include in exported csv, as a list of strings. 3) indicator codes in this grouping, as a list of strings. """ # All the statistical observation properties that we included. properties_of_stat_var_observation = ([ 'measurementMethod', 'scalingFactor', 'sourceScalingFactor', 'unit' ]) # List of tuples to return. tmcfs_for_stat_vars = [] # Dataframe that tracks which values are null. null_status = indicator_codes.notna() # Iterates over all permutations of stat var properties being included. for permutation in list( itertools.product([False, True], repeat=len(properties_of_stat_var_observation))): codes_that_match = null_status.copy() base_template_mcf = TEMPLATE_TMCF cols_to_include_in_csv = ['IndicatorCode'] # Loop over each obs column and whether to include it. for include_col, column in (zip(permutation, properties_of_stat_var_observation)): # Filter the dataframe by this observation. codes_that_match = codes_that_match.query( f"{column} == {include_col}") # Include the column in TMCF and column list. if include_col: base_template_mcf += f"{column}: C:WorldBank->{column}\n" cols_to_include_in_csv.append(f"{column}") tmcfs_for_stat_vars.append( (base_template_mcf, cols_to_include_in_csv, list( indicator_codes.loc[codes_that_match.index]['IndicatorCode']))) return tmcfs_for_stat_vars
165
216
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fetches, cleans, outputs TMCFs and CSVs for all World Bank development indicator codes provided in WorldBankIndicators.csv for all years and for all countries provided in WorldBankCountries.csv. """ from absl import app import pandas as pd import itertools import requests import zipfile import io import re # Remaps the columns provided by World Bank API. WORLDBANK_COL_REMAP = { 'Country Name': 'CountryName', 'Country Code': 'CountryCode', 'Indicator Name': 'IndicatorName', 'Indicator Code': 'IndicatorCode' } TEMPLATE_TMCF = """ Node: E:WorldBank->E0 typeOf: dcs:StatVarObservation variableMeasured: C:WorldBank->StatisticalVariable observationDate: C:WorldBank->Year observationPeriod: "P1Y" observationAbout: C:WorldBank->ISO3166Alpha3 value: C:WorldBank->Value """ TEMPLATE_STAT_VAR = """ Node: dcid:WorldBank/{INDICATOR} name: "{NAME}" description: "{DESCRIPTION}" typeOf: dcs:StatisticalVariable populationType: dcs:{populationType} statType: dcs:{statType} measuredProperty: dcs:{measuredProperty} measurementDenominator: dcs:{measurementDenominator} {CONSTRAINTS} """ def read_worldbank(iso3166alpha3): """ Fetches and tidies all ~1500 World Bank indicators for a given ISO 3166 alpha 3 code. For a particular alpha 3 code, this function fetches the entire ZIP file for that particular country for all World Bank indicators in a wide format where years are columns. The dataframe is changed into a narrow format so that year becomes a single column with each row representing a different year for a single indicator. Args: iso3166alpha3: ISO 3166 alpha 3 for a country, as a string. Returns: A tidied pandas dataframe with all indicator codes for a particular country in the format of (country, indicator, year, value). Notes: Takes approximately 10 seconds to download and tidy one country in a Jupyter notebook. """ country_zip = ("http://api.worldbank.org/v2/en/country/" + iso3166alpha3 + "?downloadformat=csv") r = requests.get(country_zip) filebytes = io.BytesIO(r.content) myzipfile = zipfile.ZipFile(filebytes) # We need to select the data file which starts with "API", # but does not have an otherwise regular filename structure. file_to_open = None for file in myzipfile.namelist(): if file.startswith("API"): file_to_open = file break assert file_to_open is not None, \ "Failed to find data for" + iso3166alpha3 df = None # Captures any text contained in double quotatations. line_match = re.compile(r"\"([^\"]*)\"") for line in myzipfile.open(file_to_open).readlines(): # Cells are contained in quotations and comma separated. cols = line_match.findall(line.decode("utf-8")) # CSVs include header informational lines which should be ignored. if len(cols) > 2: # Use first row as the header. if df is None: df = pd.DataFrame(columns=cols) else: df = df.append(pd.DataFrame([cols], columns=df.columns), ignore_index=True) df = df.rename(columns=WORLDBANK_COL_REMAP) # Turn each year into its own row. df = df.set_index( ['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode']) df = df.stack() df.index = df.index.rename('year', level=4) df.name = "Value" df = df.reset_index() # Convert to numeric and drop empty values. df['Value'] = pd.to_numeric(df['Value']) df = df.dropna() return df def build_stat_vars_from_indicator_list(row): """ Generates World Bank StatVar for a row in the indicators dataframe. """ def row_to_constraints(row): """ Helper to generate list of constraints. """ constraints_text = "" next_constraint = 1 while (f"p{next_constraint}" in row and not pd.isna(row[f"p{next_constraint}"])): variable = row[f'p{next_constraint}'] constraint = row[f'v{next_constraint}'] constraints_text += f"{variable}: dcs:{constraint}\n" next_constraint += 1 return constraints_text # yapf: disable # Input all required statistical variable fields. new_stat_var = (TEMPLATE_STAT_VAR .replace("{INDICATOR}", row['IndicatorCode'].replace(".", "_")) .replace("{NAME}", row['IndicatorName']) .replace("{DESCRIPTION}", row['SourceNote']) .replace("{measuredProperty}", row['measuredProp']) .replace("{CONSTRAINTS}", row_to_constraints(row)) ) # yapf: enable # Include or remove option fields. for optional_col in ([ 'populationType', 'statType', 'measurementDenominator' ]): if not pd.isna(row[optional_col]): new_stat_var = new_stat_var.replace(f"{{{optional_col}}}", row[optional_col]) else: new_stat_var = new_stat_var.replace( f"{optional_col}: dcs:{{{optional_col}}}\n", "") return new_stat_var def group_stat_vars_by_observation_properties(indicator_codes): """ Groups stat vars by their observation schemas. Groups Stat Vars by their inclusion of StatVar Observation properties like measurementMethod or Unit. The current template MCF schema does not support optional values in the CSV so we must place these stat vars into different template MCFs and CSVs. Args: indicator_codes: List of World Bank indicator codes with their Data Commons mappings, as a pandas dataframe. Returns: Array of tuples for each statistical variable grouping. 1) template MCF, as a string. 2) columns to include in exported csv, as a list of strings. 3) indicator codes in this grouping, as a list of strings. """ # All the statistical observation properties that we included. properties_of_stat_var_observation = ([ 'measurementMethod', 'scalingFactor', 'sourceScalingFactor', 'unit' ]) # List of tuples to return. tmcfs_for_stat_vars = [] # Dataframe that tracks which values are null. null_status = indicator_codes.notna() # Iterates over all permutations of stat var properties being included. for permutation in list( itertools.product([False, True], repeat=len(properties_of_stat_var_observation))): codes_that_match = null_status.copy() base_template_mcf = TEMPLATE_TMCF cols_to_include_in_csv = ['IndicatorCode'] # Loop over each obs column and whether to include it. for include_col, column in (zip(permutation, properties_of_stat_var_observation)): # Filter the dataframe by this observation. codes_that_match = codes_that_match.query( f"{column} == {include_col}") # Include the column in TMCF and column list. if include_col: base_template_mcf += f"{column}: C:WorldBank->{column}\n" cols_to_include_in_csv.append(f"{column}") tmcfs_for_stat_vars.append( (base_template_mcf, cols_to_include_in_csv, list( indicator_codes.loc[codes_that_match.index]['IndicatorCode']))) return tmcfs_for_stat_vars def download_indicator_data(worldbank_countries, indicator_codes): """ Downloads World Bank country data for all countries and indicators provided. Retains only the unique indicator codes provided. Args: worldbank_countries: Dataframe with ISO 3166 alpha 3 code for each country. indicator_code: Dataframe with INDICATOR_CODES to include. Returns: worldbank_dataframe: A tidied pandas dataframe where each row has the format (indicator code, ISO 3166 alpha 3, year, value) for all countries and all indicators provided. """ worldbank_dataframe = pd.DataFrame() indicators_to_keep = list(indicator_codes['IndicatorCode'].unique()) for index, country_code in enumerate(worldbank_countries['ISO3166Alpha3']): print(f"Downloading {country_code}") country_df = read_worldbank(country_code) # Remove unneccessary indicators. country_df = country_df[country_df['IndicatorCode'].isin( indicators_to_keep)] # Map country codes to ISO. country_df['ISO3166Alpha3'] = country_code # Add new row to main datframe. worldbank_dataframe = worldbank_dataframe.append(country_df) # Map indicator codes to unique Statistical Variable. worldbank_dataframe['StatisticalVariable'] = ( worldbank_dataframe['IndicatorCode'].apply( lambda code: f"WorldBank/{code.replace('.', '_')}")) return worldbank_dataframe.rename({'year': 'Year'}, axis=1) def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes): """ Outputs TMCFs and CSVs for each grouping of stat vars. Args: worldbank_dataframe: Dataframe containing all indicators for all countries. tmcfs_for_stat_vars: Array of tuples of template MCF, columns on stat var observations, indicator codes for that template. indicator_codes -> Dataframe with INDICATOR_CODES to include. """ # Only include a subset of columns in the final csv output_csv = worldbank_dataframe[[ 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', 'Value' ]] # Output tmcf and csv for each unique World Bank grouping. for index, enum in enumerate(tmcfs_for_stat_vars): tmcf, stat_var_obs_cols, stat_vars_in_group = enum if len(stat_vars_in_group) != 0: with open(f"output/WorldBank_{index}.tmcf", 'w', newline='') as f_out: f_out.write(tmcf) # Output only the indicator codes in that grouping. matching_csv = output_csv[output_csv['IndicatorCode'].isin( stat_vars_in_group)] # Include the Stat Observation columns in the output CSV. if len(stat_var_obs_cols) > 1: matching_csv = pd.merge(matching_csv, indicator_codes[stat_var_obs_cols], on="IndicatorCode") # Format to decimals. matching_csv = matching_csv.round(10) matching_csv.drop("IndicatorCode", axis=1).to_csv(f"output/WorldBank_{index}.csv", float_format='%.10f', index=False) def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): """ Scales values by sourceScalingFactor and inputs exisiting stat vars. First, this function converts all values to per capita. Some measures in the World Bank dataset are per thousand or per hundred thousand, but we need to scale these to the common denomination format. Secondly, some statistical variables such as Count_Person_InLaborForce are not World Bank specific and need to be replaced. Both of these are imputted from the following two lists in args. Args: scaling_factor_lookup: A dictionary of a mapping between World Bank indicator code to the respective numeric scaling factor. existing_stat_var_lookup: A dictionary of a mapping between all indicator to be replaced with the exisiting stat var to replace it. """ indicator_code = row['IndicatorCode'] if indicator_code in scaling_factor_lookup: row['Value'] = (row['Value'] / int(scaling_factor_lookup[indicator_code])) if indicator_code in existing_stat_var_lookup: row['StatisticalVariable'] = ("dcid:" + existing_stat_var_lookup[indicator_code]) return row def main(_): # Load statistical variable configuration file. indicator_codes = pd.read_csv("WorldBankIndicators.csv") # Add source description to note. def add_source_to_description(row): if not pd.isna(row['Source']): return row['SourceNote'] + " " + str(row['Source']) else: return row['SourceNote'] indicator_codes['SourceNote'] = indicator_codes.apply( add_source_to_description, axis=1) # Generate stat vars with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: # Generate StatVars for fields that don't exist. Some fields such as # Count_Person_Unemployed are already statistical variables so we do # not need to recreate them. for _, row in indicator_codes[ indicator_codes['ExistingStatVar'].isna()].iterrows(): f_out.write(build_stat_vars_from_indicator_list(row)) # Create template MCFs for each grouping of stat vars. tmcfs_for_stat_vars = ( group_stat_vars_by_observation_properties(indicator_codes)) # Download data for all countries. worldbank_countries = pd.read_csv("WorldBankCountries.csv") worldbank_dataframe = download_indicator_data(worldbank_countries, indicator_codes) # Remap columns to match expected format. worldbank_dataframe['Value'] = pd.to_numeric(worldbank_dataframe['Value']) worldbank_dataframe['ISO3166Alpha3'] = ( worldbank_dataframe['ISO3166Alpha3'].apply( lambda code: "dcs:country/" + code)) worldbank_dataframe['StatisticalVariable'] = \ worldbank_dataframe['StatisticalVariable'].apply( lambda code: "dcs:" + code) # Scale values by scaling factor and replace exisiting StatVars. scaling_factor_lookup = (indicator_codes.set_index("IndicatorCode") ['sourceScalingFactor'].dropna().to_dict()) existing_stat_var_lookup = (indicator_codes.set_index("IndicatorCode") ['ExistingStatVar'].dropna().to_dict()) worldbank_dataframe = worldbank_dataframe.apply( lambda row: source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup), axis=1) # Convert integer columns. int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == True] ['IndicatorCode'].unique())) worldbank_subset = worldbank_dataframe[ worldbank_dataframe['IndicatorCode'].isin(int_cols)].index worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( worldbank_dataframe.loc[worldbank_subset, "Value"], downcast="integer")) # Output final CSVs and variables. output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes) if __name__ == '__main__': app.run(main)
output_csv_and_tmcf_by_grouping
Outputs TMCFs and CSVs for each grouping of stat vars. Args: worldbank_dataframe: Dataframe containing all indicators for all countries. tmcfs_for_stat_vars: Array of tuples of template MCF, columns on stat var observations, indicator codes for that template. indicator_codes -> Dataframe with INDICATOR_CODES to include.
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fetches, cleans, outputs TMCFs and CSVs for all World Bank development indicator codes provided in WorldBankIndicators.csv for all years and for all countries provided in WorldBankCountries.csv. """ from absl import app import pandas as pd import itertools import requests import zipfile import io import re # Remaps the columns provided by World Bank API. WORLDBANK_COL_REMAP = { 'Country Name': 'CountryName', 'Country Code': 'CountryCode', 'Indicator Name': 'IndicatorName', 'Indicator Code': 'IndicatorCode' } TEMPLATE_TMCF = """ Node: E:WorldBank->E0 typeOf: dcs:StatVarObservation variableMeasured: C:WorldBank->StatisticalVariable observationDate: C:WorldBank->Year observationPeriod: "P1Y" observationAbout: C:WorldBank->ISO3166Alpha3 value: C:WorldBank->Value """ TEMPLATE_STAT_VAR = """ Node: dcid:WorldBank/{INDICATOR} name: "{NAME}" description: "{DESCRIPTION}" typeOf: dcs:StatisticalVariable populationType: dcs:{populationType} statType: dcs:{statType} measuredProperty: dcs:{measuredProperty} measurementDenominator: dcs:{measurementDenominator} {CONSTRAINTS} """ def read_worldbank(iso3166alpha3): """ Fetches and tidies all ~1500 World Bank indicators for a given ISO 3166 alpha 3 code. For a particular alpha 3 code, this function fetches the entire ZIP file for that particular country for all World Bank indicators in a wide format where years are columns. The dataframe is changed into a narrow format so that year becomes a single column with each row representing a different year for a single indicator. Args: iso3166alpha3: ISO 3166 alpha 3 for a country, as a string. Returns: A tidied pandas dataframe with all indicator codes for a particular country in the format of (country, indicator, year, value). Notes: Takes approximately 10 seconds to download and tidy one country in a Jupyter notebook. """ country_zip = ("http://api.worldbank.org/v2/en/country/" + iso3166alpha3 + "?downloadformat=csv") r = requests.get(country_zip) filebytes = io.BytesIO(r.content) myzipfile = zipfile.ZipFile(filebytes) # We need to select the data file which starts with "API", # but does not have an otherwise regular filename structure. file_to_open = None for file in myzipfile.namelist(): if file.startswith("API"): file_to_open = file break assert file_to_open is not None, \ "Failed to find data for" + iso3166alpha3 df = None # Captures any text contained in double quotatations. line_match = re.compile(r"\"([^\"]*)\"") for line in myzipfile.open(file_to_open).readlines(): # Cells are contained in quotations and comma separated. cols = line_match.findall(line.decode("utf-8")) # CSVs include header informational lines which should be ignored. if len(cols) > 2: # Use first row as the header. if df is None: df = pd.DataFrame(columns=cols) else: df = df.append(pd.DataFrame([cols], columns=df.columns), ignore_index=True) df = df.rename(columns=WORLDBANK_COL_REMAP) # Turn each year into its own row. df = df.set_index( ['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode']) df = df.stack() df.index = df.index.rename('year', level=4) df.name = "Value" df = df.reset_index() # Convert to numeric and drop empty values. df['Value'] = pd.to_numeric(df['Value']) df = df.dropna() return df def build_stat_vars_from_indicator_list(row): """ Generates World Bank StatVar for a row in the indicators dataframe. """ def row_to_constraints(row): """ Helper to generate list of constraints. """ constraints_text = "" next_constraint = 1 while (f"p{next_constraint}" in row and not pd.isna(row[f"p{next_constraint}"])): variable = row[f'p{next_constraint}'] constraint = row[f'v{next_constraint}'] constraints_text += f"{variable}: dcs:{constraint}\n" next_constraint += 1 return constraints_text # yapf: disable # Input all required statistical variable fields. new_stat_var = (TEMPLATE_STAT_VAR .replace("{INDICATOR}", row['IndicatorCode'].replace(".", "_")) .replace("{NAME}", row['IndicatorName']) .replace("{DESCRIPTION}", row['SourceNote']) .replace("{measuredProperty}", row['measuredProp']) .replace("{CONSTRAINTS}", row_to_constraints(row)) ) # yapf: enable # Include or remove option fields. for optional_col in ([ 'populationType', 'statType', 'measurementDenominator' ]): if not pd.isna(row[optional_col]): new_stat_var = new_stat_var.replace(f"{{{optional_col}}}", row[optional_col]) else: new_stat_var = new_stat_var.replace( f"{optional_col}: dcs:{{{optional_col}}}\n", "") return new_stat_var def group_stat_vars_by_observation_properties(indicator_codes): """ Groups stat vars by their observation schemas. Groups Stat Vars by their inclusion of StatVar Observation properties like measurementMethod or Unit. The current template MCF schema does not support optional values in the CSV so we must place these stat vars into different template MCFs and CSVs. Args: indicator_codes: List of World Bank indicator codes with their Data Commons mappings, as a pandas dataframe. Returns: Array of tuples for each statistical variable grouping. 1) template MCF, as a string. 2) columns to include in exported csv, as a list of strings. 3) indicator codes in this grouping, as a list of strings. """ # All the statistical observation properties that we included. properties_of_stat_var_observation = ([ 'measurementMethod', 'scalingFactor', 'sourceScalingFactor', 'unit' ]) # List of tuples to return. tmcfs_for_stat_vars = [] # Dataframe that tracks which values are null. null_status = indicator_codes.notna() # Iterates over all permutations of stat var properties being included. for permutation in list( itertools.product([False, True], repeat=len(properties_of_stat_var_observation))): codes_that_match = null_status.copy() base_template_mcf = TEMPLATE_TMCF cols_to_include_in_csv = ['IndicatorCode'] # Loop over each obs column and whether to include it. for include_col, column in (zip(permutation, properties_of_stat_var_observation)): # Filter the dataframe by this observation. codes_that_match = codes_that_match.query( f"{column} == {include_col}") # Include the column in TMCF and column list. if include_col: base_template_mcf += f"{column}: C:WorldBank->{column}\n" cols_to_include_in_csv.append(f"{column}") tmcfs_for_stat_vars.append( (base_template_mcf, cols_to_include_in_csv, list( indicator_codes.loc[codes_that_match.index]['IndicatorCode']))) return tmcfs_for_stat_vars def download_indicator_data(worldbank_countries, indicator_codes): """ Downloads World Bank country data for all countries and indicators provided. Retains only the unique indicator codes provided. Args: worldbank_countries: Dataframe with ISO 3166 alpha 3 code for each country. indicator_code: Dataframe with INDICATOR_CODES to include. Returns: worldbank_dataframe: A tidied pandas dataframe where each row has the format (indicator code, ISO 3166 alpha 3, year, value) for all countries and all indicators provided. """ worldbank_dataframe = pd.DataFrame() indicators_to_keep = list(indicator_codes['IndicatorCode'].unique()) for index, country_code in enumerate(worldbank_countries['ISO3166Alpha3']): print(f"Downloading {country_code}") country_df = read_worldbank(country_code) # Remove unneccessary indicators. country_df = country_df[country_df['IndicatorCode'].isin( indicators_to_keep)] # Map country codes to ISO. country_df['ISO3166Alpha3'] = country_code # Add new row to main datframe. worldbank_dataframe = worldbank_dataframe.append(country_df) # Map indicator codes to unique Statistical Variable. worldbank_dataframe['StatisticalVariable'] = ( worldbank_dataframe['IndicatorCode'].apply( lambda code: f"WorldBank/{code.replace('.', '_')}")) return worldbank_dataframe.rename({'year': 'Year'}, axis=1) # MASKED: output_csv_and_tmcf_by_grouping function (lines 259-299) def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): """ Scales values by sourceScalingFactor and inputs exisiting stat vars. First, this function converts all values to per capita. Some measures in the World Bank dataset are per thousand or per hundred thousand, but we need to scale these to the common denomination format. Secondly, some statistical variables such as Count_Person_InLaborForce are not World Bank specific and need to be replaced. Both of these are imputted from the following two lists in args. Args: scaling_factor_lookup: A dictionary of a mapping between World Bank indicator code to the respective numeric scaling factor. existing_stat_var_lookup: A dictionary of a mapping between all indicator to be replaced with the exisiting stat var to replace it. """ indicator_code = row['IndicatorCode'] if indicator_code in scaling_factor_lookup: row['Value'] = (row['Value'] / int(scaling_factor_lookup[indicator_code])) if indicator_code in existing_stat_var_lookup: row['StatisticalVariable'] = ("dcid:" + existing_stat_var_lookup[indicator_code]) return row def main(_): # Load statistical variable configuration file. indicator_codes = pd.read_csv("WorldBankIndicators.csv") # Add source description to note. def add_source_to_description(row): if not pd.isna(row['Source']): return row['SourceNote'] + " " + str(row['Source']) else: return row['SourceNote'] indicator_codes['SourceNote'] = indicator_codes.apply( add_source_to_description, axis=1) # Generate stat vars with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: # Generate StatVars for fields that don't exist. Some fields such as # Count_Person_Unemployed are already statistical variables so we do # not need to recreate them. for _, row in indicator_codes[ indicator_codes['ExistingStatVar'].isna()].iterrows(): f_out.write(build_stat_vars_from_indicator_list(row)) # Create template MCFs for each grouping of stat vars. tmcfs_for_stat_vars = ( group_stat_vars_by_observation_properties(indicator_codes)) # Download data for all countries. worldbank_countries = pd.read_csv("WorldBankCountries.csv") worldbank_dataframe = download_indicator_data(worldbank_countries, indicator_codes) # Remap columns to match expected format. worldbank_dataframe['Value'] = pd.to_numeric(worldbank_dataframe['Value']) worldbank_dataframe['ISO3166Alpha3'] = ( worldbank_dataframe['ISO3166Alpha3'].apply( lambda code: "dcs:country/" + code)) worldbank_dataframe['StatisticalVariable'] = \ worldbank_dataframe['StatisticalVariable'].apply( lambda code: "dcs:" + code) # Scale values by scaling factor and replace exisiting StatVars. scaling_factor_lookup = (indicator_codes.set_index("IndicatorCode") ['sourceScalingFactor'].dropna().to_dict()) existing_stat_var_lookup = (indicator_codes.set_index("IndicatorCode") ['ExistingStatVar'].dropna().to_dict()) worldbank_dataframe = worldbank_dataframe.apply( lambda row: source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup), axis=1) # Convert integer columns. int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == True] ['IndicatorCode'].unique())) worldbank_subset = worldbank_dataframe[ worldbank_dataframe['IndicatorCode'].isin(int_cols)].index worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( worldbank_dataframe.loc[worldbank_subset, "Value"], downcast="integer")) # Output final CSVs and variables. output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes) if __name__ == '__main__': app.run(main)
def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes): """ Outputs TMCFs and CSVs for each grouping of stat vars. Args: worldbank_dataframe: Dataframe containing all indicators for all countries. tmcfs_for_stat_vars: Array of tuples of template MCF, columns on stat var observations, indicator codes for that template. indicator_codes -> Dataframe with INDICATOR_CODES to include. """ # Only include a subset of columns in the final csv output_csv = worldbank_dataframe[[ 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', 'Value' ]] # Output tmcf and csv for each unique World Bank grouping. for index, enum in enumerate(tmcfs_for_stat_vars): tmcf, stat_var_obs_cols, stat_vars_in_group = enum if len(stat_vars_in_group) != 0: with open(f"output/WorldBank_{index}.tmcf", 'w', newline='') as f_out: f_out.write(tmcf) # Output only the indicator codes in that grouping. matching_csv = output_csv[output_csv['IndicatorCode'].isin( stat_vars_in_group)] # Include the Stat Observation columns in the output CSV. if len(stat_var_obs_cols) > 1: matching_csv = pd.merge(matching_csv, indicator_codes[stat_var_obs_cols], on="IndicatorCode") # Format to decimals. matching_csv = matching_csv.round(10) matching_csv.drop("IndicatorCode", axis=1).to_csv(f"output/WorldBank_{index}.csv", float_format='%.10f', index=False)
259
299
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fetches, cleans, outputs TMCFs and CSVs for all World Bank development indicator codes provided in WorldBankIndicators.csv for all years and for all countries provided in WorldBankCountries.csv. """ from absl import app import pandas as pd import itertools import requests import zipfile import io import re # Remaps the columns provided by World Bank API. WORLDBANK_COL_REMAP = { 'Country Name': 'CountryName', 'Country Code': 'CountryCode', 'Indicator Name': 'IndicatorName', 'Indicator Code': 'IndicatorCode' } TEMPLATE_TMCF = """ Node: E:WorldBank->E0 typeOf: dcs:StatVarObservation variableMeasured: C:WorldBank->StatisticalVariable observationDate: C:WorldBank->Year observationPeriod: "P1Y" observationAbout: C:WorldBank->ISO3166Alpha3 value: C:WorldBank->Value """ TEMPLATE_STAT_VAR = """ Node: dcid:WorldBank/{INDICATOR} name: "{NAME}" description: "{DESCRIPTION}" typeOf: dcs:StatisticalVariable populationType: dcs:{populationType} statType: dcs:{statType} measuredProperty: dcs:{measuredProperty} measurementDenominator: dcs:{measurementDenominator} {CONSTRAINTS} """ def read_worldbank(iso3166alpha3): """ Fetches and tidies all ~1500 World Bank indicators for a given ISO 3166 alpha 3 code. For a particular alpha 3 code, this function fetches the entire ZIP file for that particular country for all World Bank indicators in a wide format where years are columns. The dataframe is changed into a narrow format so that year becomes a single column with each row representing a different year for a single indicator. Args: iso3166alpha3: ISO 3166 alpha 3 for a country, as a string. Returns: A tidied pandas dataframe with all indicator codes for a particular country in the format of (country, indicator, year, value). Notes: Takes approximately 10 seconds to download and tidy one country in a Jupyter notebook. """ country_zip = ("http://api.worldbank.org/v2/en/country/" + iso3166alpha3 + "?downloadformat=csv") r = requests.get(country_zip) filebytes = io.BytesIO(r.content) myzipfile = zipfile.ZipFile(filebytes) # We need to select the data file which starts with "API", # but does not have an otherwise regular filename structure. file_to_open = None for file in myzipfile.namelist(): if file.startswith("API"): file_to_open = file break assert file_to_open is not None, \ "Failed to find data for" + iso3166alpha3 df = None # Captures any text contained in double quotatations. line_match = re.compile(r"\"([^\"]*)\"") for line in myzipfile.open(file_to_open).readlines(): # Cells are contained in quotations and comma separated. cols = line_match.findall(line.decode("utf-8")) # CSVs include header informational lines which should be ignored. if len(cols) > 2: # Use first row as the header. if df is None: df = pd.DataFrame(columns=cols) else: df = df.append(pd.DataFrame([cols], columns=df.columns), ignore_index=True) df = df.rename(columns=WORLDBANK_COL_REMAP) # Turn each year into its own row. df = df.set_index( ['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode']) df = df.stack() df.index = df.index.rename('year', level=4) df.name = "Value" df = df.reset_index() # Convert to numeric and drop empty values. df['Value'] = pd.to_numeric(df['Value']) df = df.dropna() return df def build_stat_vars_from_indicator_list(row): """ Generates World Bank StatVar for a row in the indicators dataframe. """ def row_to_constraints(row): """ Helper to generate list of constraints. """ constraints_text = "" next_constraint = 1 while (f"p{next_constraint}" in row and not pd.isna(row[f"p{next_constraint}"])): variable = row[f'p{next_constraint}'] constraint = row[f'v{next_constraint}'] constraints_text += f"{variable}: dcs:{constraint}\n" next_constraint += 1 return constraints_text # yapf: disable # Input all required statistical variable fields. new_stat_var = (TEMPLATE_STAT_VAR .replace("{INDICATOR}", row['IndicatorCode'].replace(".", "_")) .replace("{NAME}", row['IndicatorName']) .replace("{DESCRIPTION}", row['SourceNote']) .replace("{measuredProperty}", row['measuredProp']) .replace("{CONSTRAINTS}", row_to_constraints(row)) ) # yapf: enable # Include or remove option fields. for optional_col in ([ 'populationType', 'statType', 'measurementDenominator' ]): if not pd.isna(row[optional_col]): new_stat_var = new_stat_var.replace(f"{{{optional_col}}}", row[optional_col]) else: new_stat_var = new_stat_var.replace( f"{optional_col}: dcs:{{{optional_col}}}\n", "") return new_stat_var def group_stat_vars_by_observation_properties(indicator_codes): """ Groups stat vars by their observation schemas. Groups Stat Vars by their inclusion of StatVar Observation properties like measurementMethod or Unit. The current template MCF schema does not support optional values in the CSV so we must place these stat vars into different template MCFs and CSVs. Args: indicator_codes: List of World Bank indicator codes with their Data Commons mappings, as a pandas dataframe. Returns: Array of tuples for each statistical variable grouping. 1) template MCF, as a string. 2) columns to include in exported csv, as a list of strings. 3) indicator codes in this grouping, as a list of strings. """ # All the statistical observation properties that we included. properties_of_stat_var_observation = ([ 'measurementMethod', 'scalingFactor', 'sourceScalingFactor', 'unit' ]) # List of tuples to return. tmcfs_for_stat_vars = [] # Dataframe that tracks which values are null. null_status = indicator_codes.notna() # Iterates over all permutations of stat var properties being included. for permutation in list( itertools.product([False, True], repeat=len(properties_of_stat_var_observation))): codes_that_match = null_status.copy() base_template_mcf = TEMPLATE_TMCF cols_to_include_in_csv = ['IndicatorCode'] # Loop over each obs column and whether to include it. for include_col, column in (zip(permutation, properties_of_stat_var_observation)): # Filter the dataframe by this observation. codes_that_match = codes_that_match.query( f"{column} == {include_col}") # Include the column in TMCF and column list. if include_col: base_template_mcf += f"{column}: C:WorldBank->{column}\n" cols_to_include_in_csv.append(f"{column}") tmcfs_for_stat_vars.append( (base_template_mcf, cols_to_include_in_csv, list( indicator_codes.loc[codes_that_match.index]['IndicatorCode']))) return tmcfs_for_stat_vars def download_indicator_data(worldbank_countries, indicator_codes): """ Downloads World Bank country data for all countries and indicators provided. Retains only the unique indicator codes provided. Args: worldbank_countries: Dataframe with ISO 3166 alpha 3 code for each country. indicator_code: Dataframe with INDICATOR_CODES to include. Returns: worldbank_dataframe: A tidied pandas dataframe where each row has the format (indicator code, ISO 3166 alpha 3, year, value) for all countries and all indicators provided. """ worldbank_dataframe = pd.DataFrame() indicators_to_keep = list(indicator_codes['IndicatorCode'].unique()) for index, country_code in enumerate(worldbank_countries['ISO3166Alpha3']): print(f"Downloading {country_code}") country_df = read_worldbank(country_code) # Remove unneccessary indicators. country_df = country_df[country_df['IndicatorCode'].isin( indicators_to_keep)] # Map country codes to ISO. country_df['ISO3166Alpha3'] = country_code # Add new row to main datframe. worldbank_dataframe = worldbank_dataframe.append(country_df) # Map indicator codes to unique Statistical Variable. worldbank_dataframe['StatisticalVariable'] = ( worldbank_dataframe['IndicatorCode'].apply( lambda code: f"WorldBank/{code.replace('.', '_')}")) return worldbank_dataframe.rename({'year': 'Year'}, axis=1) def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes): """ Outputs TMCFs and CSVs for each grouping of stat vars. Args: worldbank_dataframe: Dataframe containing all indicators for all countries. tmcfs_for_stat_vars: Array of tuples of template MCF, columns on stat var observations, indicator codes for that template. indicator_codes -> Dataframe with INDICATOR_CODES to include. """ # Only include a subset of columns in the final csv output_csv = worldbank_dataframe[[ 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', 'Value' ]] # Output tmcf and csv for each unique World Bank grouping. for index, enum in enumerate(tmcfs_for_stat_vars): tmcf, stat_var_obs_cols, stat_vars_in_group = enum if len(stat_vars_in_group) != 0: with open(f"output/WorldBank_{index}.tmcf", 'w', newline='') as f_out: f_out.write(tmcf) # Output only the indicator codes in that grouping. matching_csv = output_csv[output_csv['IndicatorCode'].isin( stat_vars_in_group)] # Include the Stat Observation columns in the output CSV. if len(stat_var_obs_cols) > 1: matching_csv = pd.merge(matching_csv, indicator_codes[stat_var_obs_cols], on="IndicatorCode") # Format to decimals. matching_csv = matching_csv.round(10) matching_csv.drop("IndicatorCode", axis=1).to_csv(f"output/WorldBank_{index}.csv", float_format='%.10f', index=False) def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): """ Scales values by sourceScalingFactor and inputs exisiting stat vars. First, this function converts all values to per capita. Some measures in the World Bank dataset are per thousand or per hundred thousand, but we need to scale these to the common denomination format. Secondly, some statistical variables such as Count_Person_InLaborForce are not World Bank specific and need to be replaced. Both of these are imputted from the following two lists in args. Args: scaling_factor_lookup: A dictionary of a mapping between World Bank indicator code to the respective numeric scaling factor. existing_stat_var_lookup: A dictionary of a mapping between all indicator to be replaced with the exisiting stat var to replace it. """ indicator_code = row['IndicatorCode'] if indicator_code in scaling_factor_lookup: row['Value'] = (row['Value'] / int(scaling_factor_lookup[indicator_code])) if indicator_code in existing_stat_var_lookup: row['StatisticalVariable'] = ("dcid:" + existing_stat_var_lookup[indicator_code]) return row def main(_): # Load statistical variable configuration file. indicator_codes = pd.read_csv("WorldBankIndicators.csv") # Add source description to note. def add_source_to_description(row): if not pd.isna(row['Source']): return row['SourceNote'] + " " + str(row['Source']) else: return row['SourceNote'] indicator_codes['SourceNote'] = indicator_codes.apply( add_source_to_description, axis=1) # Generate stat vars with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: # Generate StatVars for fields that don't exist. Some fields such as # Count_Person_Unemployed are already statistical variables so we do # not need to recreate them. for _, row in indicator_codes[ indicator_codes['ExistingStatVar'].isna()].iterrows(): f_out.write(build_stat_vars_from_indicator_list(row)) # Create template MCFs for each grouping of stat vars. tmcfs_for_stat_vars = ( group_stat_vars_by_observation_properties(indicator_codes)) # Download data for all countries. worldbank_countries = pd.read_csv("WorldBankCountries.csv") worldbank_dataframe = download_indicator_data(worldbank_countries, indicator_codes) # Remap columns to match expected format. worldbank_dataframe['Value'] = pd.to_numeric(worldbank_dataframe['Value']) worldbank_dataframe['ISO3166Alpha3'] = ( worldbank_dataframe['ISO3166Alpha3'].apply( lambda code: "dcs:country/" + code)) worldbank_dataframe['StatisticalVariable'] = \ worldbank_dataframe['StatisticalVariable'].apply( lambda code: "dcs:" + code) # Scale values by scaling factor and replace exisiting StatVars. scaling_factor_lookup = (indicator_codes.set_index("IndicatorCode") ['sourceScalingFactor'].dropna().to_dict()) existing_stat_var_lookup = (indicator_codes.set_index("IndicatorCode") ['ExistingStatVar'].dropna().to_dict()) worldbank_dataframe = worldbank_dataframe.apply( lambda row: source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup), axis=1) # Convert integer columns. int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == True] ['IndicatorCode'].unique())) worldbank_subset = worldbank_dataframe[ worldbank_dataframe['IndicatorCode'].isin(int_cols)].index worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( worldbank_dataframe.loc[worldbank_subset, "Value"], downcast="integer")) # Output final CSVs and variables. output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes) if __name__ == '__main__': app.run(main)
request_file
从远端下载文件, 并构建request.FILES中的uploaded file对象返回. @param url: 文件url路径, 如http://abc.im/12345.jpg @return: SimpleUploadedFile object, it is containned by the request.FILES(dictionary-like object)
#coding=utf-8 # # Created on Apr 23, 2014, by Junn # # import json from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from rest_framework.response import Response as RfResponse from core import codes import urllib import httplib import requests from django.core.files.uploadedfile import SimpleUploadedFile # MASKED: request_file function (lines 21-31) def send_request(host, send_url, method='GET', port=80, params={}, timeout=30, headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"}): '''发起http请求. 执行结果返回响应字符串 @param: The sample parameters format like following: params = {'token': 'dF0zeqAPWs'} headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} host = 'fir.im' port = 80 method = 'GET' send_url = '/api/v2/app/version/541a7131f?token=dF0zeqBMXAP' ''' encoded_params = urllib.urlencode(params) conn = httplib.HTTPConnection(host, port=port, timeout=timeout) conn.request(method, send_url, encoded_params, headers) response = conn.getresponse() response_str = response.read() conn.close() return response_str class JResponse(HttpResponse): '''for simple dict response, like success and failed, etc''' def __init__(self, result, status=200, *args, **kwargs): if not isinstance(result, list): if 'errors' in result.keys(): dt = result.pop('errors', {}) or {} result['msg'] = ''.join([e[0] for e in dt.values()]) super(JResponse, self).__init__( json.dumps(result), status=status, mimetype='application/json', *args, **kwargs ) def standard_response(template, req, context): '''返回http Web response''' return render_to_response(template, RequestContext(req, context)) class Response(RfResponse): '''for object json response''' def __init__(self, data, *args, **kwargs): if isinstance(data, dict) and 'code' in data.keys(): #data为dict, 且已有code则无需再添加code返回 super(Response, self).__init__(data, *args, **kwargs) else: super(Response, self).__init__(codes.append('ok', {'data': data}), *args, **kwargs) ## 注: 此必须声明为函数, 不可声明为常量. 常量值将只在模块import时被赋值 def ok(data={}): '''data为字典类型数据''' return JResponse(codes.append('ok', data)) if data else resp('ok') def failed(msg=''): return resp('failed', msg) def object_not_found(): return resp('object_not_found') def http404(): return resp('not_found') def resp(crr, msg=''): '''返回常量错误码. msg可格式化具有占位符的字符串 params: @crr 错误码标识 ''' return JResponse(codes.fmat(crr, msg))
def request_file(url): '''从远端下载文件, 并构建request.FILES中的uploaded file对象返回. @param url: 文件url路径, 如http://abc.im/12345.jpg @return: SimpleUploadedFile object, it is containned by the request.FILES(dictionary-like object) ''' if not url: return response = requests.get(url) return SimpleUploadedFile('file', response.content)
21
31
#coding=utf-8 # # Created on Apr 23, 2014, by Junn # # import json from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from rest_framework.response import Response as RfResponse from core import codes import urllib import httplib import requests from django.core.files.uploadedfile import SimpleUploadedFile def request_file(url): '''从远端下载文件, 并构建request.FILES中的uploaded file对象返回. @param url: 文件url路径, 如http://abc.im/12345.jpg @return: SimpleUploadedFile object, it is containned by the request.FILES(dictionary-like object) ''' if not url: return response = requests.get(url) return SimpleUploadedFile('file', response.content) def send_request(host, send_url, method='GET', port=80, params={}, timeout=30, headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"}): '''发起http请求. 执行结果返回响应字符串 @param: The sample parameters format like following: params = {'token': 'dF0zeqAPWs'} headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} host = 'fir.im' port = 80 method = 'GET' send_url = '/api/v2/app/version/541a7131f?token=dF0zeqBMXAP' ''' encoded_params = urllib.urlencode(params) conn = httplib.HTTPConnection(host, port=port, timeout=timeout) conn.request(method, send_url, encoded_params, headers) response = conn.getresponse() response_str = response.read() conn.close() return response_str class JResponse(HttpResponse): '''for simple dict response, like success and failed, etc''' def __init__(self, result, status=200, *args, **kwargs): if not isinstance(result, list): if 'errors' in result.keys(): dt = result.pop('errors', {}) or {} result['msg'] = ''.join([e[0] for e in dt.values()]) super(JResponse, self).__init__( json.dumps(result), status=status, mimetype='application/json', *args, **kwargs ) def standard_response(template, req, context): '''返回http Web response''' return render_to_response(template, RequestContext(req, context)) class Response(RfResponse): '''for object json response''' def __init__(self, data, *args, **kwargs): if isinstance(data, dict) and 'code' in data.keys(): #data为dict, 且已有code则无需再添加code返回 super(Response, self).__init__(data, *args, **kwargs) else: super(Response, self).__init__(codes.append('ok', {'data': data}), *args, **kwargs) ## 注: 此必须声明为函数, 不可声明为常量. 常量值将只在模块import时被赋值 def ok(data={}): '''data为字典类型数据''' return JResponse(codes.append('ok', data)) if data else resp('ok') def failed(msg=''): return resp('failed', msg) def object_not_found(): return resp('object_not_found') def http404(): return resp('not_found') def resp(crr, msg=''): '''返回常量错误码. msg可格式化具有占位符的字符串 params: @crr 错误码标识 ''' return JResponse(codes.fmat(crr, msg))
send_request
发起http请求. 执行结果返回响应字符串 @param: The sample parameters format like following: params = {'token': 'dF0zeqAPWs'} headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} host = 'fir.im' port = 80 method = 'GET' send_url = '/api/v2/app/version/541a7131f?token=dF0zeqBMXAP'
#coding=utf-8 # # Created on Apr 23, 2014, by Junn # # import json from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from rest_framework.response import Response as RfResponse from core import codes import urllib import httplib import requests from django.core.files.uploadedfile import SimpleUploadedFile def request_file(url): '''从远端下载文件, 并构建request.FILES中的uploaded file对象返回. @param url: 文件url路径, 如http://abc.im/12345.jpg @return: SimpleUploadedFile object, it is containned by the request.FILES(dictionary-like object) ''' if not url: return response = requests.get(url) return SimpleUploadedFile('file', response.content) # MASKED: send_request function (lines 33-54) class JResponse(HttpResponse): '''for simple dict response, like success and failed, etc''' def __init__(self, result, status=200, *args, **kwargs): if not isinstance(result, list): if 'errors' in result.keys(): dt = result.pop('errors', {}) or {} result['msg'] = ''.join([e[0] for e in dt.values()]) super(JResponse, self).__init__( json.dumps(result), status=status, mimetype='application/json', *args, **kwargs ) def standard_response(template, req, context): '''返回http Web response''' return render_to_response(template, RequestContext(req, context)) class Response(RfResponse): '''for object json response''' def __init__(self, data, *args, **kwargs): if isinstance(data, dict) and 'code' in data.keys(): #data为dict, 且已有code则无需再添加code返回 super(Response, self).__init__(data, *args, **kwargs) else: super(Response, self).__init__(codes.append('ok', {'data': data}), *args, **kwargs) ## 注: 此必须声明为函数, 不可声明为常量. 常量值将只在模块import时被赋值 def ok(data={}): '''data为字典类型数据''' return JResponse(codes.append('ok', data)) if data else resp('ok') def failed(msg=''): return resp('failed', msg) def object_not_found(): return resp('object_not_found') def http404(): return resp('not_found') def resp(crr, msg=''): '''返回常量错误码. msg可格式化具有占位符的字符串 params: @crr 错误码标识 ''' return JResponse(codes.fmat(crr, msg))
def send_request(host, send_url, method='GET', port=80, params={}, timeout=30, headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"}): '''发起http请求. 执行结果返回响应字符串 @param: The sample parameters format like following: params = {'token': 'dF0zeqAPWs'} headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} host = 'fir.im' port = 80 method = 'GET' send_url = '/api/v2/app/version/541a7131f?token=dF0zeqBMXAP' ''' encoded_params = urllib.urlencode(params) conn = httplib.HTTPConnection(host, port=port, timeout=timeout) conn.request(method, send_url, encoded_params, headers) response = conn.getresponse() response_str = response.read() conn.close() return response_str
33
54
#coding=utf-8 # # Created on Apr 23, 2014, by Junn # # import json from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.context import RequestContext from rest_framework.response import Response as RfResponse from core import codes import urllib import httplib import requests from django.core.files.uploadedfile import SimpleUploadedFile def request_file(url): '''从远端下载文件, 并构建request.FILES中的uploaded file对象返回. @param url: 文件url路径, 如http://abc.im/12345.jpg @return: SimpleUploadedFile object, it is containned by the request.FILES(dictionary-like object) ''' if not url: return response = requests.get(url) return SimpleUploadedFile('file', response.content) def send_request(host, send_url, method='GET', port=80, params={}, timeout=30, headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"}): '''发起http请求. 执行结果返回响应字符串 @param: The sample parameters format like following: params = {'token': 'dF0zeqAPWs'} headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} host = 'fir.im' port = 80 method = 'GET' send_url = '/api/v2/app/version/541a7131f?token=dF0zeqBMXAP' ''' encoded_params = urllib.urlencode(params) conn = httplib.HTTPConnection(host, port=port, timeout=timeout) conn.request(method, send_url, encoded_params, headers) response = conn.getresponse() response_str = response.read() conn.close() return response_str class JResponse(HttpResponse): '''for simple dict response, like success and failed, etc''' def __init__(self, result, status=200, *args, **kwargs): if not isinstance(result, list): if 'errors' in result.keys(): dt = result.pop('errors', {}) or {} result['msg'] = ''.join([e[0] for e in dt.values()]) super(JResponse, self).__init__( json.dumps(result), status=status, mimetype='application/json', *args, **kwargs ) def standard_response(template, req, context): '''返回http Web response''' return render_to_response(template, RequestContext(req, context)) class Response(RfResponse): '''for object json response''' def __init__(self, data, *args, **kwargs): if isinstance(data, dict) and 'code' in data.keys(): #data为dict, 且已有code则无需再添加code返回 super(Response, self).__init__(data, *args, **kwargs) else: super(Response, self).__init__(codes.append('ok', {'data': data}), *args, **kwargs) ## 注: 此必须声明为函数, 不可声明为常量. 常量值将只在模块import时被赋值 def ok(data={}): '''data为字典类型数据''' return JResponse(codes.append('ok', data)) if data else resp('ok') def failed(msg=''): return resp('failed', msg) def object_not_found(): return resp('object_not_found') def http404(): return resp('not_found') def resp(crr, msg=''): '''返回常量错误码. msg可格式化具有占位符的字符串 params: @crr 错误码标识 ''' return JResponse(codes.fmat(crr, msg))
send_async_http
发送一个异步请求至某个特定url,实现失败重试 每一次失败后会延时一段时间再去重试,延时时间由 interval和wait_factor决定 :param session:请求的异步session :param method:请求方法 :param url:请求url :param retries:失败重试次数 :param interval:失败后的再次异步请求的延时时长 :param wait_factor:每一次失败后延时乘以这个因子,延长重试等待时间,一般1<wf<2,即延时最多2^retries秒 :param timeout:连接超时时长 :param success_callback:成功回调函数 :param fail_callback:失败回调函数 :param kwargs:其他键值参数 :return:返回字典结果
#coding:utf-8 """ @author : linkin @email : [email protected] @date : 2018-11-07 """ import asyncio import datetime # MASKED: send_async_http function (lines 10-64)
async def send_async_http(session,method,url,*, retries=1, interval=1, wait_factor=2, timeout=30, success_callback=None, fail_callback=None, **kwargs) -> dict: """ 发送一个异步请求至某个特定url,实现失败重试 每一次失败后会延时一段时间再去重试,延时时间由 interval和wait_factor决定 :param session:请求的异步session :param method:请求方法 :param url:请求url :param retries:失败重试次数 :param interval:失败后的再次异步请求的延时时长 :param wait_factor:每一次失败后延时乘以这个因子,延长重试等待时间,一般1<wf<2,即延时最多2^retries秒 :param timeout:连接超时时长 :param success_callback:成功回调函数 :param fail_callback:失败回调函数 :param kwargs:其他键值参数 :return:返回字典结果 """ exception = None ret = {'cost':None,'code':0,'exception':exception,'tries':-1} wait_interval = interval if method.lower() not in ['get', 'head', 'post']: return ret if retries == -1: # -1 表示无限次失败重试 attempt = -1 elif retries == 0: # 0 表示不进行失败重试 attempt = 1 else: attempt = retries + 1 while attempt != 0: try: start = datetime.datetime.now() async with getattr(session,method)(url,timeout=timeout,**kwargs) as response: end = datetime.datetime.now() t = (end - start).total_seconds() code = response.status ret = {'cost': t, 'code': code, 'tries': retries - attempt+1} if success_callback: success_callback(ret) return ret except Exception as e: ret['exception'] = e ret['tries'] += 1 await asyncio.sleep(wait_interval) wait_interval = wait_interval * wait_factor attempt-=1 if fail_callback: fail_callback(ret) return ret
10
64
#coding:utf-8 """ @author : linkin @email : [email protected] @date : 2018-11-07 """ import asyncio import datetime async def send_async_http(session,method,url,*, retries=1, interval=1, wait_factor=2, timeout=30, success_callback=None, fail_callback=None, **kwargs) -> dict: """ 发送一个异步请求至某个特定url,实现失败重试 每一次失败后会延时一段时间再去重试,延时时间由 interval和wait_factor决定 :param session:请求的异步session :param method:请求方法 :param url:请求url :param retries:失败重试次数 :param interval:失败后的再次异步请求的延时时长 :param wait_factor:每一次失败后延时乘以这个因子,延长重试等待时间,一般1<wf<2,即延时最多2^retries秒 :param timeout:连接超时时长 :param success_callback:成功回调函数 :param fail_callback:失败回调函数 :param kwargs:其他键值参数 :return:返回字典结果 """ exception = None ret = {'cost':None,'code':0,'exception':exception,'tries':-1} wait_interval = interval if method.lower() not in ['get', 'head', 'post']: return ret if retries == -1: # -1 表示无限次失败重试 attempt = -1 elif retries == 0: # 0 表示不进行失败重试 attempt = 1 else: attempt = retries + 1 while attempt != 0: try: start = datetime.datetime.now() async with getattr(session,method)(url,timeout=timeout,**kwargs) as response: end = datetime.datetime.now() t = (end - start).total_seconds() code = response.status ret = {'cost': t, 'code': code, 'tries': retries - attempt+1} if success_callback: success_callback(ret) return ret except Exception as e: ret['exception'] = e ret['tries'] += 1 await asyncio.sleep(wait_interval) wait_interval = wait_interval * wait_factor attempt-=1 if fail_callback: fail_callback(ret) return ret
_calc_uia
Calculate the UI(a) by providing the labeling history and the majority vote results. Parameters ---------- oracle_history: dict The labeling history of an oracle. The key is the index of instance, the value is the label given by the oracle. majority_vote_result: dict The results of majority vote of instances. The key is the index of instance, the value is the label given by the oracle. alpha: float, optional (default=0.05) Used for calculating the critical value for the Student’s t-distribution with n−1 degrees of freedom at the alpha/2 confidence level. Returns ------- uia: float The UI(a) value.
""" Pre-defined query strategy for noisy oracles. In reality, the labels given by human is not always correct. For one hand, there are some inevitable noise comes from the instrumentation of experimental setting. On the other hand, people can become distracted or fatigued over time, introducing variability in the quality of their annotations. ALiPy implements several strategies in noisy oracles settings. Some of then mainly evaluate the quality or expertise of each oracle, and the rest tries to obtain the accurate label for each instance whose labels are provided by several noisy oracles. There are 2 categories of methods. 1. Query from a single selected oracle. 1.1 Always query from the best oracle 1.2 Query from the most appropriate oracle according to the selected instance and label. 2. Query from multiple noisy oracles. Labels are obtained from multiple noisy oracles. And the algorithm tries to obtain the accurate label for each instance. Implement method: 1: CEAL (IJCAI'17) 2: IEthresh (KDD'09 Donmez) Baselines: Majority vote Query from all oracles and majority vote Random select an oracle """ # Authors: Ying-Peng Tang # License: BSD 3 clause from __future__ import division import collections from abc import ABCMeta, abstractmethod import copy import numpy as np import scipy.stats from sklearn.linear_model import LogisticRegression from sklearn.neighbors import NearestNeighbors from .base import BaseNoisyOracleQuery from .query_labels import QueryInstanceUncertainty from .query_labels import _get_proba_pred from ..oracle import Oracles, Oracle def majority_vote(labels, weight=None): """Perform majority vote to determine the true label from multiple noisy oracles. Parameters ---------- labels: list A list with length=k, which contains the labels provided by k noisy oracles. weight: list, optional (default=None) The weights of each oracle. It should have the same length with labels. Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. """ oracle_weight = np.ones(len(labels)) if weight is None else weight assert len(labels) == len(oracle_weight) vote_result = collections.Counter(labels) most_votes = vote_result.most_common(n=1) return most_votes[0][1], most_votes[0][0] def get_query_results(selected_instance, oracles, names=None): """Get the query results from oracles of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- query_labels: list The queried labels. query_costs: list The total cost of query. """ costs = [] if isinstance(oracles, list): oracle_type = 'list' for oracle in oracles: assert isinstance(oracle, Oracle) elif isinstance(oracles, Oracles): oracle_type = 'oracles' else: raise TypeError("The type of parameter oracles must be a list or alipy.oracle.Oracles object.") labeling_results = [] if oracle_type == 'list': for i in oracles.names() if oracle_type == 'oracles' else range(len(oracles)): lab, co = oracles[i].query_by_index(selected_instance) labeling_results.append(lab[0]) costs.append(np.sum(co)) else: results = oracles.query_from_s(selected_instance, oracles_name=names) labeling_results = [res[0][0] for res in results] costs = [np.sum(res[1]) for res in results] return labeling_results, costs def get_majority_vote(selected_instance, oracles, names=None): """Get the majority vote results of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. query_costs: int The total cost of query. """ labeling_results, cost = get_query_results(selected_instance, oracles, names) majority_vote_result = majority_vote(labeling_results) return majority_vote_result[0], majority_vote_result[1], np.sum(cost) class QueryNoisyOraclesCEAL(BaseNoisyOracleQuery): """Cost-Effective Active Learning from Diverse Labelers (CEAL) method assumes that different oracles have different expertise. Even the very noisy oracle may perform well on some kind of examples. The cost of a labeler is proportional to its overall labeling quality and it is thus necessary to query from the right oracle according to the selected instance. This method will select an instance-labeler pair (x, a), and queries the label of x from a, where the selection of both the instance and labeler is based on a evaluation function Q(x, a). The selection of instance is depend on its uncertainty. The selection of oracle is depend on the oracle's performance on the nearest neighbors of selected instance. The cost of each oracle is proportional to its overall labeling quality. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. References ---------- [1] Sheng-Jun Huang, Jia-Lve Chen, Xin Mu, Zhi-Hua Zhou. 2017. Cost-Effective Active Learning from Diverse Labelers. In The Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), 1879-1885. """ def __init__(self, X, y, oracles, initial_labeled_indexes): super(QueryNoisyOraclesCEAL, self).__init__(X, y, oracles=oracles) # ytype = type_of_target(self.y) # if 'multilabel' in ytype: # warnings.warn("This query strategy does not support multi-label.", # category=FunctionWarning) assert (isinstance(initial_labeled_indexes, collections.Iterable)) self._ini_ind = np.asarray(initial_labeled_indexes) # construct a nearest neighbor object implemented by scikit-learn self._nntree = NearestNeighbors(metric='euclidean') self._nntree.fit(self.X[self._ini_ind]) def select(self, label_index, unlabel_index, eval_cost=False, model=None, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. model: object, optional (default=None) Current classification model, should have the 'predict_proba' method for probabilistic output. If not provided, LogisticRegression with default parameters implemented by sklearn will be used. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind) - 1) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab, n_neighbors=n_neighbors, eval_cost=eval_cost) def select_by_prediction_mat(self, label_index, unlabel_index, predict, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind)-1) eval_cost = kwargs.pop('n_neighbors', False) Q_table, oracle_ind_name_dict = self._calc_Q_table(label_index, unlabel_index, self._oracles, predict, n_neighbors=n_neighbors, eval_cost=eval_cost) # get the instance-oracle pair selected_pair = np.unravel_index(np.argmax(Q_table, axis=None), Q_table.shape) sel_ora = oracle_ind_name_dict[selected_pair[0]] if not isinstance(sel_ora, list): sel_ora = [sel_ora] return [unlabel_index[selected_pair[1]]], sel_ora def _calc_Q_table(self, label_index, unlabel_index, oracles, pred_unlab, n_neighbors=10, eval_cost=False): """Query from oracles. Return the Q table and the oracle name/index of each row of Q_table. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- Q_table: 2D array The Q table. oracle_ind_name_dict: dict The oracle name/index of each row of Q_table. """ # Check parameter and initialize variables if self.X is None or self.y is None: raise Exception('Data matrix is not provided, use select_by_prediction_mat() instead.') assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) num_of_neighbors = n_neighbors if len(unlabel_index) <= 1: return unlabel_index Q_table = np.zeros((len(oracles), len(unlabel_index))) # row:oracle, col:ins spv = np.shape(pred_unlab) # calc least_confident rx = np.partition(pred_unlab, spv[1] - 1, axis=1) rx = 1 - rx[:, spv[1] - 1] for unlab_ind, unlab_ins_ind in enumerate(unlabel_index): # evaluate oracles for each instance nn_dist, nn_of_selected_ins = self._nntree.kneighbors(X=self.X[unlab_ins_ind].reshape(1, -1), n_neighbors=num_of_neighbors, return_distance=True) nn_dist = nn_dist[0] nn_of_selected_ins = nn_of_selected_ins[0] nn_of_selected_ins = self._ini_ind[nn_of_selected_ins] # map to the original population oracles_score = [] for ora_ind, ora_name in enumerate(self._oracles_iterset): # calc q_i(x), expertise of this instance oracle = oracles[ora_name] labels, cost = oracle.query_by_index(nn_of_selected_ins) oracles_score.append(sum([nn_dist[i] * (labels[i] == self.y[nn_of_selected_ins[i]]) for i in range(num_of_neighbors)]) / num_of_neighbors) # calc c_i, cost of each labeler labels, cost = oracle.query_by_index(label_index) if eval_cost: oracles_cost = sum([labels[i] == self.y[label_index[i]] for i in range(len(label_index))]) / len(label_index) else: oracles_cost = cost[0] Q_table[ora_ind, unlab_ind] = oracles_score[ora_ind] * rx[unlab_ind] / max(oracles_cost, 0.0001) return Q_table, self._oracle_ind_name_dict class QueryNoisyOraclesSelectInstanceUncertainty(BaseNoisyOracleQuery, metaclass=ABCMeta): """This class implement select and select_by_prediction_mat by uncertainty.""" def __init__(self, X=None, y=None, oracles=None): super(QueryNoisyOraclesSelectInstanceUncertainty, self).__init__(X=X, y=y, oracles=oracles) def select(self, label_index, unlabel_index, model=None, **kwargs): """Select an instance and a batch of oracles to label it. The instance is selected by uncertainty, the oracles is selected by the difference between their labeling results and the majority vote results. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab) def select_by_prediction_mat(self, label_index, unlabel_index, predict): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ # Check parameter and initialize variables assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) if len(unlabel_index) <= 1: return unlabel_index # select instance and oracle unc = QueryInstanceUncertainty(measure='least_confident') selected_instance = unc.select_by_prediction_mat(unlabel_index=unlabel_index, predict=predict, batch_size=1)[0] return [selected_instance], self.select_by_given_instance(selected_instance) @abstractmethod def select_by_given_instance(self, selected_instance): pass class QueryNoisyOraclesIEthresh(QueryNoisyOraclesSelectInstanceUncertainty): """IEthresh will select a batch of oracles to label the selected instance. It will score for each oracle according to the difference between their labeling results and the majority vote results. At each iteration, a batch of oracles whose scores are larger than a threshold will be selected. Oracle with a higher score is more likely to be selected. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. epsilon: float, optional (default=0.1) The value to determine how many oracles will be selected. S_t = {a|UI(a) >= epsilon * max UI(a)} References ---------- [1] Donmez P , Carbonell J G , Schneider J . Efficiently learning the accuracy of labeling sources for selective sampling.[C] ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2009. """ def __init__(self, X, y, oracles, initial_labeled_indexes, **kwargs): super(QueryNoisyOraclesIEthresh, self).__init__(X, y, oracles=oracles) self._ini_ind = np.asarray(initial_labeled_indexes) # record the labeling history of each oracle self._oracles_history = dict() for i in range(len(self._oracles_iterset)): self._oracles_history[i] = dict() # record the results of majority vote self._majority_vote_results = dict() # calc initial QI(a) for each oracle a self._UI = np.ones(len(self._oracles_iterset)) self.epsilon = kwargs.pop('epsilon', 0.8) # MASKED: _calc_uia function (lines 498-531) def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- selected_oracles: list The selected oracles for querying. """ selected_oracles = np.nonzero(self._UI >= self.epsilon * np.max(self._UI)) selected_oracles = selected_oracles[0] # update UI(a) for each selected oracle labeling_results = [] for i in selected_oracles: lab, _ = self._oracles[self._oracle_ind_name_dict[i]].query_by_index(selected_instance) labeling_results.append(lab[0]) self._oracles_history[i][selected_instance] = copy.copy(lab[0]) _, majority_vote_result = majority_vote(labeling_results) reward_arr = np.zeros(len(selected_oracles)) same_ind = np.nonzero(labeling_results == majority_vote_result)[0] reward_arr[same_ind] = 1 self._majority_vote_results[selected_instance] = majority_vote_result for i in selected_oracles: self._UI[i] = self._calc_uia(self._oracles_history[i], self._majority_vote_results) # return results return [self._oracle_ind_name_dict[i] for i in selected_oracles] class QueryNoisyOraclesAll(QueryNoisyOraclesSelectInstanceUncertainty): """This strategy will select instance by uncertainty and query from all oracles and return the majority vote result. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. """ def __init__(self, oracles, X=None, y=None): super(QueryNoisyOraclesAll, self).__init__(X=X, y=y, oracles=oracles) def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return self._oracle_ind_name_dict.values() class QueryNoisyOraclesRandom(QueryNoisyOraclesSelectInstanceUncertainty): """Select a random oracle to query.""" def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return [self._oracle_ind_name_dict[np.random.randint(0, len(self._oracles), 1)[0]]]
def _calc_uia(self, oracle_history, majority_vote_result, alpha=0.05): """Calculate the UI(a) by providing the labeling history and the majority vote results. Parameters ---------- oracle_history: dict The labeling history of an oracle. The key is the index of instance, the value is the label given by the oracle. majority_vote_result: dict The results of majority vote of instances. The key is the index of instance, the value is the label given by the oracle. alpha: float, optional (default=0.05) Used for calculating the critical value for the Student’s t-distribution with n−1 degrees of freedom at the alpha/2 confidence level. Returns ------- uia: float The UI(a) value. """ n = len(self._oracles_iterset) t_crit_val = scipy.stats.t.isf([alpha / 2], n - 1)[0] reward_arr = [] for ind in oracle_history.keys(): if oracle_history[ind] == majority_vote_result[ind]: reward_arr.append(1) else: reward_arr.append(0) mean_a = np.mean(reward_arr) std_a = np.std(reward_arr) uia = mean_a + t_crit_val * std_a / np.sqrt(n) return uia
498
531
""" Pre-defined query strategy for noisy oracles. In reality, the labels given by human is not always correct. For one hand, there are some inevitable noise comes from the instrumentation of experimental setting. On the other hand, people can become distracted or fatigued over time, introducing variability in the quality of their annotations. ALiPy implements several strategies in noisy oracles settings. Some of then mainly evaluate the quality or expertise of each oracle, and the rest tries to obtain the accurate label for each instance whose labels are provided by several noisy oracles. There are 2 categories of methods. 1. Query from a single selected oracle. 1.1 Always query from the best oracle 1.2 Query from the most appropriate oracle according to the selected instance and label. 2. Query from multiple noisy oracles. Labels are obtained from multiple noisy oracles. And the algorithm tries to obtain the accurate label for each instance. Implement method: 1: CEAL (IJCAI'17) 2: IEthresh (KDD'09 Donmez) Baselines: Majority vote Query from all oracles and majority vote Random select an oracle """ # Authors: Ying-Peng Tang # License: BSD 3 clause from __future__ import division import collections from abc import ABCMeta, abstractmethod import copy import numpy as np import scipy.stats from sklearn.linear_model import LogisticRegression from sklearn.neighbors import NearestNeighbors from .base import BaseNoisyOracleQuery from .query_labels import QueryInstanceUncertainty from .query_labels import _get_proba_pred from ..oracle import Oracles, Oracle def majority_vote(labels, weight=None): """Perform majority vote to determine the true label from multiple noisy oracles. Parameters ---------- labels: list A list with length=k, which contains the labels provided by k noisy oracles. weight: list, optional (default=None) The weights of each oracle. It should have the same length with labels. Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. """ oracle_weight = np.ones(len(labels)) if weight is None else weight assert len(labels) == len(oracle_weight) vote_result = collections.Counter(labels) most_votes = vote_result.most_common(n=1) return most_votes[0][1], most_votes[0][0] def get_query_results(selected_instance, oracles, names=None): """Get the query results from oracles of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- query_labels: list The queried labels. query_costs: list The total cost of query. """ costs = [] if isinstance(oracles, list): oracle_type = 'list' for oracle in oracles: assert isinstance(oracle, Oracle) elif isinstance(oracles, Oracles): oracle_type = 'oracles' else: raise TypeError("The type of parameter oracles must be a list or alipy.oracle.Oracles object.") labeling_results = [] if oracle_type == 'list': for i in oracles.names() if oracle_type == 'oracles' else range(len(oracles)): lab, co = oracles[i].query_by_index(selected_instance) labeling_results.append(lab[0]) costs.append(np.sum(co)) else: results = oracles.query_from_s(selected_instance, oracles_name=names) labeling_results = [res[0][0] for res in results] costs = [np.sum(res[1]) for res in results] return labeling_results, costs def get_majority_vote(selected_instance, oracles, names=None): """Get the majority vote results of the selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. names: list, optional (default=None) A list of str which contains the names of oracles to query from. If not provided, it will query from all oracles. Each name should in oracles.names(). Returns ------- vote_count: int The number of votes. vote_result: object The label of the selected_instance, produced by majority voting of the selected oracles. query_costs: int The total cost of query. """ labeling_results, cost = get_query_results(selected_instance, oracles, names) majority_vote_result = majority_vote(labeling_results) return majority_vote_result[0], majority_vote_result[1], np.sum(cost) class QueryNoisyOraclesCEAL(BaseNoisyOracleQuery): """Cost-Effective Active Learning from Diverse Labelers (CEAL) method assumes that different oracles have different expertise. Even the very noisy oracle may perform well on some kind of examples. The cost of a labeler is proportional to its overall labeling quality and it is thus necessary to query from the right oracle according to the selected instance. This method will select an instance-labeler pair (x, a), and queries the label of x from a, where the selection of both the instance and labeler is based on a evaluation function Q(x, a). The selection of instance is depend on its uncertainty. The selection of oracle is depend on the oracle's performance on the nearest neighbors of selected instance. The cost of each oracle is proportional to its overall labeling quality. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. References ---------- [1] Sheng-Jun Huang, Jia-Lve Chen, Xin Mu, Zhi-Hua Zhou. 2017. Cost-Effective Active Learning from Diverse Labelers. In The Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), 1879-1885. """ def __init__(self, X, y, oracles, initial_labeled_indexes): super(QueryNoisyOraclesCEAL, self).__init__(X, y, oracles=oracles) # ytype = type_of_target(self.y) # if 'multilabel' in ytype: # warnings.warn("This query strategy does not support multi-label.", # category=FunctionWarning) assert (isinstance(initial_labeled_indexes, collections.Iterable)) self._ini_ind = np.asarray(initial_labeled_indexes) # construct a nearest neighbor object implemented by scikit-learn self._nntree = NearestNeighbors(metric='euclidean') self._nntree.fit(self.X[self._ini_ind]) def select(self, label_index, unlabel_index, eval_cost=False, model=None, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. model: object, optional (default=None) Current classification model, should have the 'predict_proba' method for probabilistic output. If not provided, LogisticRegression with default parameters implemented by sklearn will be used. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind) - 1) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab, n_neighbors=n_neighbors, eval_cost=eval_cost) def select_by_prediction_mat(self, label_index, unlabel_index, predict, **kwargs): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- selected_instance: int The index of selected instance. selected_oracle: int or str The index of selected oracle. If a list is given, the index of oracle will be returned. If a Oracles object is given, the oracle name will be returned. """ n_neighbors = min(kwargs.pop('n_neighbors', 10), len(self._ini_ind)-1) eval_cost = kwargs.pop('n_neighbors', False) Q_table, oracle_ind_name_dict = self._calc_Q_table(label_index, unlabel_index, self._oracles, predict, n_neighbors=n_neighbors, eval_cost=eval_cost) # get the instance-oracle pair selected_pair = np.unravel_index(np.argmax(Q_table, axis=None), Q_table.shape) sel_ora = oracle_ind_name_dict[selected_pair[0]] if not isinstance(sel_ora, list): sel_ora = [sel_ora] return [unlabel_index[selected_pair[1]]], sel_ora def _calc_Q_table(self, label_index, unlabel_index, oracles, pred_unlab, n_neighbors=10, eval_cost=False): """Query from oracles. Return the Q table and the oracle name/index of each row of Q_table. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. n_neighbors: int, optional (default=10) How many neighbors of the selected instance will be used to evaluate the oracles. eval_cost: bool, optional (default=False) To evaluate the cost of oracles or use the cost provided by oracles. Returns ------- Q_table: 2D array The Q table. oracle_ind_name_dict: dict The oracle name/index of each row of Q_table. """ # Check parameter and initialize variables if self.X is None or self.y is None: raise Exception('Data matrix is not provided, use select_by_prediction_mat() instead.') assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) num_of_neighbors = n_neighbors if len(unlabel_index) <= 1: return unlabel_index Q_table = np.zeros((len(oracles), len(unlabel_index))) # row:oracle, col:ins spv = np.shape(pred_unlab) # calc least_confident rx = np.partition(pred_unlab, spv[1] - 1, axis=1) rx = 1 - rx[:, spv[1] - 1] for unlab_ind, unlab_ins_ind in enumerate(unlabel_index): # evaluate oracles for each instance nn_dist, nn_of_selected_ins = self._nntree.kneighbors(X=self.X[unlab_ins_ind].reshape(1, -1), n_neighbors=num_of_neighbors, return_distance=True) nn_dist = nn_dist[0] nn_of_selected_ins = nn_of_selected_ins[0] nn_of_selected_ins = self._ini_ind[nn_of_selected_ins] # map to the original population oracles_score = [] for ora_ind, ora_name in enumerate(self._oracles_iterset): # calc q_i(x), expertise of this instance oracle = oracles[ora_name] labels, cost = oracle.query_by_index(nn_of_selected_ins) oracles_score.append(sum([nn_dist[i] * (labels[i] == self.y[nn_of_selected_ins[i]]) for i in range(num_of_neighbors)]) / num_of_neighbors) # calc c_i, cost of each labeler labels, cost = oracle.query_by_index(label_index) if eval_cost: oracles_cost = sum([labels[i] == self.y[label_index[i]] for i in range(len(label_index))]) / len(label_index) else: oracles_cost = cost[0] Q_table[ora_ind, unlab_ind] = oracles_score[ora_ind] * rx[unlab_ind] / max(oracles_cost, 0.0001) return Q_table, self._oracle_ind_name_dict class QueryNoisyOraclesSelectInstanceUncertainty(BaseNoisyOracleQuery, metaclass=ABCMeta): """This class implement select and select_by_prediction_mat by uncertainty.""" def __init__(self, X=None, y=None, oracles=None): super(QueryNoisyOraclesSelectInstanceUncertainty, self).__init__(X=X, y=y, oracles=oracles) def select(self, label_index, unlabel_index, model=None, **kwargs): """Select an instance and a batch of oracles to label it. The instance is selected by uncertainty, the oracles is selected by the difference between their labeling results and the majority vote results. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ if model is None: model = LogisticRegression(solver='liblinear') model.fit(self.X[label_index], self.y[label_index]) pred_unlab, _ = _get_proba_pred(self.X[unlabel_index], model) return self.select_by_prediction_mat(label_index, unlabel_index, pred_unlab) def select_by_prediction_mat(self, label_index, unlabel_index, predict): """Query from oracles. Return the index of selected instance and oracle. Parameters ---------- label_index: {list, np.ndarray, IndexCollection} The indexes of labeled samples. unlabel_index: {list, np.ndarray, IndexCollection} The indexes of unlabeled samples. predict: : 2d array, shape [n_samples, n_classes] The probabilistic prediction matrix for the unlabeled set. Returns ------- selected_instance: int The index of selected instance. Selected by uncertainty. selected_oracles: list The selected oracles for querying. """ # Check parameter and initialize variables assert (isinstance(unlabel_index, collections.Iterable)) assert (isinstance(label_index, collections.Iterable)) unlabel_index = np.asarray(unlabel_index) label_index = np.asarray(label_index) if len(unlabel_index) <= 1: return unlabel_index # select instance and oracle unc = QueryInstanceUncertainty(measure='least_confident') selected_instance = unc.select_by_prediction_mat(unlabel_index=unlabel_index, predict=predict, batch_size=1)[0] return [selected_instance], self.select_by_given_instance(selected_instance) @abstractmethod def select_by_given_instance(self, selected_instance): pass class QueryNoisyOraclesIEthresh(QueryNoisyOraclesSelectInstanceUncertainty): """IEthresh will select a batch of oracles to label the selected instance. It will score for each oracle according to the difference between their labeling results and the majority vote results. At each iteration, a batch of oracles whose scores are larger than a threshold will be selected. Oracle with a higher score is more likely to be selected. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. initial_labeled_indexes: {list, np.ndarray, IndexCollection} The indexes of initially labeled samples. Used for initializing the scores of each oracle. epsilon: float, optional (default=0.1) The value to determine how many oracles will be selected. S_t = {a|UI(a) >= epsilon * max UI(a)} References ---------- [1] Donmez P , Carbonell J G , Schneider J . Efficiently learning the accuracy of labeling sources for selective sampling.[C] ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2009. """ def __init__(self, X, y, oracles, initial_labeled_indexes, **kwargs): super(QueryNoisyOraclesIEthresh, self).__init__(X, y, oracles=oracles) self._ini_ind = np.asarray(initial_labeled_indexes) # record the labeling history of each oracle self._oracles_history = dict() for i in range(len(self._oracles_iterset)): self._oracles_history[i] = dict() # record the results of majority vote self._majority_vote_results = dict() # calc initial QI(a) for each oracle a self._UI = np.ones(len(self._oracles_iterset)) self.epsilon = kwargs.pop('epsilon', 0.8) def _calc_uia(self, oracle_history, majority_vote_result, alpha=0.05): """Calculate the UI(a) by providing the labeling history and the majority vote results. Parameters ---------- oracle_history: dict The labeling history of an oracle. The key is the index of instance, the value is the label given by the oracle. majority_vote_result: dict The results of majority vote of instances. The key is the index of instance, the value is the label given by the oracle. alpha: float, optional (default=0.05) Used for calculating the critical value for the Student’s t-distribution with n−1 degrees of freedom at the alpha/2 confidence level. Returns ------- uia: float The UI(a) value. """ n = len(self._oracles_iterset) t_crit_val = scipy.stats.t.isf([alpha / 2], n - 1)[0] reward_arr = [] for ind in oracle_history.keys(): if oracle_history[ind] == majority_vote_result[ind]: reward_arr.append(1) else: reward_arr.append(0) mean_a = np.mean(reward_arr) std_a = np.std(reward_arr) uia = mean_a + t_crit_val * std_a / np.sqrt(n) return uia def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- selected_oracles: list The selected oracles for querying. """ selected_oracles = np.nonzero(self._UI >= self.epsilon * np.max(self._UI)) selected_oracles = selected_oracles[0] # update UI(a) for each selected oracle labeling_results = [] for i in selected_oracles: lab, _ = self._oracles[self._oracle_ind_name_dict[i]].query_by_index(selected_instance) labeling_results.append(lab[0]) self._oracles_history[i][selected_instance] = copy.copy(lab[0]) _, majority_vote_result = majority_vote(labeling_results) reward_arr = np.zeros(len(selected_oracles)) same_ind = np.nonzero(labeling_results == majority_vote_result)[0] reward_arr[same_ind] = 1 self._majority_vote_results[selected_instance] = majority_vote_result for i in selected_oracles: self._UI[i] = self._calc_uia(self._oracles_history[i], self._majority_vote_results) # return results return [self._oracle_ind_name_dict[i] for i in selected_oracles] class QueryNoisyOraclesAll(QueryNoisyOraclesSelectInstanceUncertainty): """This strategy will select instance by uncertainty and query from all oracles and return the majority vote result. Parameters ---------- X: 2D array, optional (default=None) Feature matrix of the whole dataset. It is a reference which will not use additional memory. y: array-like, optional (default=None) Label matrix of the whole dataset. It is a reference which will not use additional memory. oracles: {list, alipy.oracle.Oracles} An alipy.oracle.Oracle object that contains all the available oracles or a list of oracles. Each oracle should be a alipy.oracle.Oracle object. """ def __init__(self, oracles, X=None, y=None): super(QueryNoisyOraclesAll, self).__init__(X=X, y=y, oracles=oracles) def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return self._oracle_ind_name_dict.values() class QueryNoisyOraclesRandom(QueryNoisyOraclesSelectInstanceUncertainty): """Select a random oracle to query.""" def select_by_given_instance(self, selected_instance): """Select oracle to query by providing the index of selected instance. Parameters ---------- selected_instance: int The indexes of selected samples. Should be a member of unlabeled set. Returns ------- oracles_ind: list The indexes of selected oracles. """ return [self._oracle_ind_name_dict[np.random.randint(0, len(self._oracles), 1)[0]]]
add_node
add node method. Runs basic validation before adding. :param dict node: dictionary of node's data
""" Copyright 2019 by Adam Lewicki This file is part of the Game Theory library, and is released under the "MIT License Agreement". Please see the LICENSE file that should have been included as part of this package. """ import json # ====================================================================================================================== # game tree object class GameTree: # ---------------------------------- OBJECT PROPERTIES ------------------------------------------------------------- # procedure of printing object properties def __repr__(self): """ return tree as JSON serialized dictionary """ return self.pretty_print(self.__dict__) @staticmethod def pretty_print(dictionary: dict): """ return pretty printed dictionary as JSON serialized object """ return json.dumps(dictionary, indent=4) # initialize object def __init__(self, nodes: dict = None, groups: dict = None, leafs: list = None, players_list: list = None): """ GameTree class used to represent game tree: Attributes ---------- nodes : dict dictionary of nodes; groups : dict dictionary of groups leafs : list list of leafs, calculated on demand players_list: list list of players names, indicating which game income from list is connected to which player """ ''' dictionary of nodes: Attributes ---------- node : dict dictionary representing node; Attributes ---------- value : float value of node (the prize for reaching the node) parents : dict parents of node - can be multiple, represented by dict of ids and connection values children : dict children of node - can be multiple, represented by dict of ids and connection values probability : float probability of node - 1 means there is no random choice branch : dict totals of branch, to avoid tree walking Attributes ---------- value : float total value of branch probability : float probability of reaching this node in game ''' # remember to add new attributes to add_node method default values setting self._nodes = {} # dictionary of knowledge groups self._groups = {} if groups is None else groups # dictionary of leafs self._leafs = [] if leafs is None else leafs self._players_list = [] if players_list is None else players_list # always add root self.add_node({ 'id': 'root', 'player': '1', }) if nodes is None else nodes # ---------------------------------- NODES ------------------------------------------------------------------------- # MASKED: add_node function (lines 84-139) def add_vertex(self, id_: str, player: str, parents: dict): """ add vertex from simplified function: :param str id_: id of the node :param str player: id of player owning the node :param dict parents: dictionary of parents for the node """ self.add_node({ 'id': id_, 'player': player, 'parents': parents }) def add_leaf(self, id_: str, value: list, parents: dict): """ add leaf from simplified function: :param str id_: id of the node :param list value: list of node's values :param dict parents: dictionary of parents for the node """ self.add_node({ 'id': id_, 'value': value, 'parents': parents }) def copy_node(self, from_: str, to_: str): """ create a copy of node's properties in another node :param str from_: origin node of properties :param str to_: destination node for properties """ self._nodes[to_] = dict(self._nodes[from_]) def change_node(self, node: dict): """ change node method. Changes attributes provided in node dictionary :param dict node: dictionary of node's data """ # check if it is not overriding existing node if node.get('id') is not None: if node['id'] not in self._nodes: raise ValueError('tried to change non-existing node %s' % node['id']) else: raise ValueError('no id for node provided') # change attributes id_ = node['id'] del node['id'] for attribute in node: self._nodes[id_][attribute] = node[attribute] # ---------------------------------- OBJECT BASIC METHODS ---------------------------------------------------------- def get_parent(self, id_) -> str: """ get id of the parent node """ return list(self._nodes[id_]['parents'].keys())[0] def get_player_index(self, id_) -> int: """ return player index from players list order """ return self._players_list.index(self._nodes[id_]['player']) def get_path_to_node(self, id_: str, mode: str = 'nodes') -> list: """ get path from root to the node :param str id_: id of the node you want to reach from root :param str mode: mode of return type, 'nodes' - make path with nodes id, 'moves' - make path with player choices """ path_t = [] node = id_ while node is not 'root': if mode == 'nodes': path_t.insert(0, node) elif mode == 'moves': parent_ = self.get_parent(node) path_t.insert(0, self._nodes[parent_]['children'][node]) else: raise ValueError('mode variable is not "nodes" nor "moves"') node = self.get_parent(node) if mode == 'nodes': path_t.insert(0, 'root') return path_t @staticmethod def _get_key(obj: dict, val: str) -> list: """ get list of keys with specified value from obj dictionary :param dict obj: chosen dictionary :param str val: specified value """ sublist = [key for (key, value) in obj.items() if value == val] if sublist: return sublist else: raise ValueError('key with value %s does not exist in %s' % (val, obj)) def get_tree(self) -> dict: """ return copy of tree nodes structure dict""" return dict(self._nodes) # -------------- LEAFS ------------- def calculate_leafs(self): """ calculate inner list of leafs ids """ self._leafs = [node for node in self._nodes if not self._nodes[node]['children']] def get_leafs(self) -> list: """ return list of leafs ids. Will return empty list, if calculate_leafs() has not been called earlier. """ return self._leafs[:] # -------------- GROUPS ------------ def set_group(self, id_: str, player: str, group: list): """ add list of ids to new group :param str id_: id of group :param str player: id of player owning the group :param list group: list of id's you want to create group with """ self._groups[id_] = { 'player': player, 'group': group } def get_groups(self) -> dict: """ return dictionary of groups """ return dict(self._groups) def get_groups_of_player(self, player: str) -> list: """ return list of all groups id's where player is the owner """ return [group for group in self._groups if self._groups[group]['player'] == player] # ==================================================================================================================
def add_node(self, node: dict): """ add node method. Runs basic validation before adding. :param dict node: dictionary of node's data """ # check if it is not overriding existing node if node.get('id') is not None: if node['id'] in self._nodes: raise ValueError('tried to override node %s' % node['id']) else: raise ValueError('no id for node provided') # append node to list id_ = node['id'] del node['id'] # set default values for node # remember to add new attributes here and in __init__ root node node['player'] = '0' if node.get('player') is None else node['player'] node['value'] = [0, 0] if node.get('value') is None else node['value'] node['parents'] = {} if node.get('parents') is None else node['parents'] node['children'] = {} if node.get('children') is None else node['children'] node['probability'] = 1 if node.get('probability') is None else node['probability'] node['branch'] = {} if node.get('branch') is None else node['branch'] node['branch']['probability'] = 1 \ if node['branch'].get('probability') is None else node['branch']['probability'] # add player to the list of players if he is not there already if node['player'] not in self._players_list: self._players_list.append(node['player']) # add parenthood for parent in node['parents']: # noinspection PyTypeChecker self._nodes[parent]['children'][id_] = str(node['parents'][parent]) # set depth to one more than first parent if node['parents']: node['depth'] = self._nodes[str(list(node['parents'].keys())[0])]['depth'] + 1 else: node['depth'] = 0 if node.get('depth') is None else node['depth'] # calculate total probability of node: # total probability equals sum of probabilities of parents multiplied by probability of node branch_probability = 0 for parent in node['parents']: branch_probability += self._nodes[parent]['branch']['probability'] node['branch']['probability'] = branch_probability * node['probability'] # validate against the error of node not being connected to the rest of the tree via parents removal: if id_ is not 'root' and not node['parents']: raise ValueError('node [%s] is not connected to the tree - parents are empty' % id_) # add node self._nodes[id_] = node
84
139
""" Copyright 2019 by Adam Lewicki This file is part of the Game Theory library, and is released under the "MIT License Agreement". Please see the LICENSE file that should have been included as part of this package. """ import json # ====================================================================================================================== # game tree object class GameTree: # ---------------------------------- OBJECT PROPERTIES ------------------------------------------------------------- # procedure of printing object properties def __repr__(self): """ return tree as JSON serialized dictionary """ return self.pretty_print(self.__dict__) @staticmethod def pretty_print(dictionary: dict): """ return pretty printed dictionary as JSON serialized object """ return json.dumps(dictionary, indent=4) # initialize object def __init__(self, nodes: dict = None, groups: dict = None, leafs: list = None, players_list: list = None): """ GameTree class used to represent game tree: Attributes ---------- nodes : dict dictionary of nodes; groups : dict dictionary of groups leafs : list list of leafs, calculated on demand players_list: list list of players names, indicating which game income from list is connected to which player """ ''' dictionary of nodes: Attributes ---------- node : dict dictionary representing node; Attributes ---------- value : float value of node (the prize for reaching the node) parents : dict parents of node - can be multiple, represented by dict of ids and connection values children : dict children of node - can be multiple, represented by dict of ids and connection values probability : float probability of node - 1 means there is no random choice branch : dict totals of branch, to avoid tree walking Attributes ---------- value : float total value of branch probability : float probability of reaching this node in game ''' # remember to add new attributes to add_node method default values setting self._nodes = {} # dictionary of knowledge groups self._groups = {} if groups is None else groups # dictionary of leafs self._leafs = [] if leafs is None else leafs self._players_list = [] if players_list is None else players_list # always add root self.add_node({ 'id': 'root', 'player': '1', }) if nodes is None else nodes # ---------------------------------- NODES ------------------------------------------------------------------------- def add_node(self, node: dict): """ add node method. Runs basic validation before adding. :param dict node: dictionary of node's data """ # check if it is not overriding existing node if node.get('id') is not None: if node['id'] in self._nodes: raise ValueError('tried to override node %s' % node['id']) else: raise ValueError('no id for node provided') # append node to list id_ = node['id'] del node['id'] # set default values for node # remember to add new attributes here and in __init__ root node node['player'] = '0' if node.get('player') is None else node['player'] node['value'] = [0, 0] if node.get('value') is None else node['value'] node['parents'] = {} if node.get('parents') is None else node['parents'] node['children'] = {} if node.get('children') is None else node['children'] node['probability'] = 1 if node.get('probability') is None else node['probability'] node['branch'] = {} if node.get('branch') is None else node['branch'] node['branch']['probability'] = 1 \ if node['branch'].get('probability') is None else node['branch']['probability'] # add player to the list of players if he is not there already if node['player'] not in self._players_list: self._players_list.append(node['player']) # add parenthood for parent in node['parents']: # noinspection PyTypeChecker self._nodes[parent]['children'][id_] = str(node['parents'][parent]) # set depth to one more than first parent if node['parents']: node['depth'] = self._nodes[str(list(node['parents'].keys())[0])]['depth'] + 1 else: node['depth'] = 0 if node.get('depth') is None else node['depth'] # calculate total probability of node: # total probability equals sum of probabilities of parents multiplied by probability of node branch_probability = 0 for parent in node['parents']: branch_probability += self._nodes[parent]['branch']['probability'] node['branch']['probability'] = branch_probability * node['probability'] # validate against the error of node not being connected to the rest of the tree via parents removal: if id_ is not 'root' and not node['parents']: raise ValueError('node [%s] is not connected to the tree - parents are empty' % id_) # add node self._nodes[id_] = node def add_vertex(self, id_: str, player: str, parents: dict): """ add vertex from simplified function: :param str id_: id of the node :param str player: id of player owning the node :param dict parents: dictionary of parents for the node """ self.add_node({ 'id': id_, 'player': player, 'parents': parents }) def add_leaf(self, id_: str, value: list, parents: dict): """ add leaf from simplified function: :param str id_: id of the node :param list value: list of node's values :param dict parents: dictionary of parents for the node """ self.add_node({ 'id': id_, 'value': value, 'parents': parents }) def copy_node(self, from_: str, to_: str): """ create a copy of node's properties in another node :param str from_: origin node of properties :param str to_: destination node for properties """ self._nodes[to_] = dict(self._nodes[from_]) def change_node(self, node: dict): """ change node method. Changes attributes provided in node dictionary :param dict node: dictionary of node's data """ # check if it is not overriding existing node if node.get('id') is not None: if node['id'] not in self._nodes: raise ValueError('tried to change non-existing node %s' % node['id']) else: raise ValueError('no id for node provided') # change attributes id_ = node['id'] del node['id'] for attribute in node: self._nodes[id_][attribute] = node[attribute] # ---------------------------------- OBJECT BASIC METHODS ---------------------------------------------------------- def get_parent(self, id_) -> str: """ get id of the parent node """ return list(self._nodes[id_]['parents'].keys())[0] def get_player_index(self, id_) -> int: """ return player index from players list order """ return self._players_list.index(self._nodes[id_]['player']) def get_path_to_node(self, id_: str, mode: str = 'nodes') -> list: """ get path from root to the node :param str id_: id of the node you want to reach from root :param str mode: mode of return type, 'nodes' - make path with nodes id, 'moves' - make path with player choices """ path_t = [] node = id_ while node is not 'root': if mode == 'nodes': path_t.insert(0, node) elif mode == 'moves': parent_ = self.get_parent(node) path_t.insert(0, self._nodes[parent_]['children'][node]) else: raise ValueError('mode variable is not "nodes" nor "moves"') node = self.get_parent(node) if mode == 'nodes': path_t.insert(0, 'root') return path_t @staticmethod def _get_key(obj: dict, val: str) -> list: """ get list of keys with specified value from obj dictionary :param dict obj: chosen dictionary :param str val: specified value """ sublist = [key for (key, value) in obj.items() if value == val] if sublist: return sublist else: raise ValueError('key with value %s does not exist in %s' % (val, obj)) def get_tree(self) -> dict: """ return copy of tree nodes structure dict""" return dict(self._nodes) # -------------- LEAFS ------------- def calculate_leafs(self): """ calculate inner list of leafs ids """ self._leafs = [node for node in self._nodes if not self._nodes[node]['children']] def get_leafs(self) -> list: """ return list of leafs ids. Will return empty list, if calculate_leafs() has not been called earlier. """ return self._leafs[:] # -------------- GROUPS ------------ def set_group(self, id_: str, player: str, group: list): """ add list of ids to new group :param str id_: id of group :param str player: id of player owning the group :param list group: list of id's you want to create group with """ self._groups[id_] = { 'player': player, 'group': group } def get_groups(self) -> dict: """ return dictionary of groups """ return dict(self._groups) def get_groups_of_player(self, player: str) -> list: """ return list of all groups id's where player is the owner """ return [group for group in self._groups if self._groups[group]['player'] == player] # ==================================================================================================================
get_ann_info
Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index.
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos # MASKED: get_ann_info function (lines 51-62) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info)
51
62
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
get_cat_ids
Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index.
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) # MASKED: get_cat_ids function (lines 64-75) def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info]
64
75
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
results2json
Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and values are corresponding filenames.
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results # MASKED: results2json function (lines 246-281) def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files
246
281
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
format_results
Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified.
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar # MASKED: format_results function (lines 307-331) def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir
307
331
import itertools import logging import os.path as osp import tempfile import mmcv import numpy as np from mmcv.utils import print_log from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from terminaltables import AsciiTable from mmdet.core import eval_recalls from .builder import DATASETS from .custom import CustomDataset try: import pycocotools assert pycocotools.__version__ >= '12.0.2' except AssertionError: raise AssertionError('Incompatible version of pycocotools is installed. ' 'Run pip uninstall pycocotools first. Then run pip ' 'install mmpycocotools to install open-mmlab forked ' 'pycocotools.') @DATASETS.register_module() class CocoDatasetCar(CustomDataset): CLASSES = ('small ship', 'small car', 'bus', 'truck', 'train') def load_annotations(self, ann_file): """Load annotation from COCO style annotation file. Args: ann_file (str): Path of annotation file. Returns: list[dict]: Annotation info from COCO api. """ self.coco = COCO(ann_file) self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES) self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} self.img_ids = self.coco.get_img_ids() data_infos = [] for i in self.img_ids: info = self.coco.load_imgs([i])[0] info['filename'] = info['file_name'] data_infos.append(info) return data_infos def get_ann_info(self, idx): """Get COCO annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return self._parse_ann_info(self.data_infos[idx], ann_info) def get_cat_ids(self, idx): """Get COCO category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ img_id = self.data_infos[idx]['id'] ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) ann_info = self.coco.load_anns(ann_ids) return [ann['category_id'] for ann in ann_info] def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] # obtain images that contain annotation ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.coco.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_img_ids = [] for i, img_info in enumerate(self.data_infos): img_id = self.img_ids[i] if self.filter_empty_gt and img_id not in ids_in_cat: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) valid_img_ids.append(img_id) self.img_ids = valid_img_ids return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore,\ labels, masks, seg_map. "masks" are raw annotations and not \ decoded into binary masks. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_masks_ann = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) if inter_w * inter_h == 0: continue if ann['area'] <= 0 or w < 1 or h < 1: continue if ann['category_id'] not in self.cat_ids: continue bbox = [x1, y1, x1 + w, y1 + h] if ann.get('iscrowd', False): gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks_ann.append(ann.get('segmentation', None)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) seg_map = img_info['filename'].replace('jpg', 'png') ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=gt_masks_ann, seg_map=seg_map) return ann def xyxy2xywh(self, bbox): """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO evaluation. Args: bbox (numpy.ndarray): The bounding boxes, shape (4, ), in ``xyxy`` order. Returns: list[float]: The converted bounding boxes, in ``xywh`` order. """ _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0], _bbox[3] - _bbox[1], ] def _proposal2json(self, results): """Convert proposal results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] bboxes = results[idx] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = 1 json_results.append(data) return json_results def _det2json(self, results): """Convert detection results to COCO json style.""" json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] json_results.append(data) return json_results def _segm2json(self, results): """Convert instance segmentation results to COCO json style.""" bbox_json_results = [] segm_json_results = [] for idx in range(len(self)): img_id = self.img_ids[idx] det, seg = results[idx] for label in range(len(det)): # bbox results bboxes = det[label] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(bboxes[i][4]) data['category_id'] = self.cat_ids[label] bbox_json_results.append(data) # segm results # some detectors use different scores for bbox and mask if isinstance(seg, tuple): segms = seg[0][label] mask_score = seg[1][label] else: segms = seg[label] mask_score = [bbox[4] for bbox in bboxes] for i in range(bboxes.shape[0]): data = dict() data['image_id'] = img_id data['bbox'] = self.xyxy2xywh(bboxes[i]) data['score'] = float(mask_score[i]) data['category_id'] = self.cat_ids[label] if isinstance(segms[i]['counts'], bytes): segms[i]['counts'] = segms[i]['counts'].decode() data['segmentation'] = segms[i] segm_json_results.append(data) return bbox_json_results, segm_json_results def results2json(self, results, outfile_prefix): """Dump the detection results to a COCO style json file. There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files. Args: results (list[list | tuple | ndarray]): Testing results of the dataset. outfile_prefix (str): The filename prefix of the json files. If the prefix is "somepath/xxx", the json files will be named "somepath/xxx.bbox.json", "somepath/xxx.segm.json", "somepath/xxx.proposal.json". Returns: dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \ values are corresponding filenames. """ result_files = dict() if isinstance(results[0], list): json_results = self._det2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' mmcv.dump(json_results, result_files['bbox']) elif isinstance(results[0], tuple): json_results = self._segm2json(results) result_files['bbox'] = f'{outfile_prefix}.bbox.json' result_files['proposal'] = f'{outfile_prefix}.bbox.json' result_files['segm'] = f'{outfile_prefix}.segm.json' mmcv.dump(json_results[0], result_files['bbox']) mmcv.dump(json_results[1], result_files['segm']) elif isinstance(results[0], np.ndarray): json_results = self._proposal2json(results) result_files['proposal'] = f'{outfile_prefix}.proposal.json' mmcv.dump(json_results, result_files['proposal']) else: raise TypeError('invalid type of results') return result_files def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None): gt_bboxes = [] for i in range(len(self.img_ids)): ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i]) ann_info = self.coco.load_anns(ann_ids) if len(ann_info) == 0: gt_bboxes.append(np.zeros((0, 4))) continue bboxes = [] for ann in ann_info: if ann.get('ignore', False) or ann['iscrowd']: continue x1, y1, w, h = ann['bbox'] bboxes.append([x1, y1, x1 + w, y1 + h]) bboxes = np.array(bboxes, dtype=np.float32) if bboxes.shape[0] == 0: bboxes = np.zeros((0, 4)) gt_bboxes.append(bboxes) recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thrs, logger=logger) ar = recalls.mean(axis=1) return ar def format_results(self, results, jsonfile_prefix=None, **kwargs): """Format the results to json (standard format for COCO evaluation). Args: results (list[tuple | numpy.ndarray]): Testing results of the dataset. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing \ the json filepaths, tmp_dir is the temporal directory created \ for saving json files when jsonfile_prefix is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None result_files = self.results2json(results, jsonfile_prefix) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=False, proposal_nums=(100, 300, 1000), iou_thrs=None, metric_items=None): """Evaluation in COCO protocol. Args: results (list[list | tuple]): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. Options are 'bbox', 'segm', 'proposal', 'proposal_fast'. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float], optional): IoU threshold used for evaluating recalls/mAPs. If set to a list, the average of all IoUs will also be computed. If not specified, [0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used. Default: None. metric_items (list[str] | str, optional): Metric items that will be returned. If not specified, ``['AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when ``metric=='bbox' or metric=='segm'``. Returns: dict[str, float]: COCO style evaluation metric. """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') if iou_thrs is None: iou_thrs = np.linspace( .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) if metric_items is not None: if not isinstance(metric_items, list): metric_items = [metric_items] result_files, tmp_dir = self.format_results(results, jsonfile_prefix) eval_results = {} cocoGt = self.coco for metric in metrics: msg = f'Evaluating {metric}...' if logger is None: msg = '\n' + msg print_log(msg, logger=logger) if metric == 'proposal_fast': ar = self.fast_eval_recall( results, proposal_nums, iou_thrs, logger='silent') log_msg = [] for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}') log_msg = ''.join(log_msg) print_log(log_msg, logger=logger) continue if metric not in result_files: raise KeyError(f'{metric} is not in results') try: cocoDt = cocoGt.loadRes(result_files[metric]) except IndexError: print_log( 'The testing results of the whole dataset is empty.', logger=logger, level=logging.ERROR) break iou_type = 'bbox' if metric == 'proposal' else metric cocoEval = COCOeval(cocoGt, cocoDt, iou_type) cocoEval.params.catIds = self.cat_ids cocoEval.params.imgIds = self.img_ids cocoEval.params.maxDets = list(proposal_nums) cocoEval.params.iouThrs = iou_thrs # mapping of cocoEval.stats coco_metric_names = { 'mAP': 0, 'mAP_50': 1, 'mAP_75': 2, 'mAP_s': 3, 'mAP_m': 4, 'mAP_l': 5, 'AR@100': 6, 'AR@300': 7, 'AR@1000': 8, 'AR_s@1000': 9, 'AR_m@1000': 10, 'AR_l@1000': 11 } if metric_items is not None: for metric_item in metric_items: if metric_item not in coco_metric_names: raise KeyError( f'metric item {metric_item} is not supported') if metric == 'proposal': cocoEval.params.useCats = 0 cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if metric_items is None: metric_items = [ 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ] for item in metric_items: val = float( f'{cocoEval.stats[coco_metric_names[item]]:.3f}') eval_results[item] = val else: cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if classwise: # Compute per-category AP # Compute per-category AP # from https://github.com/facebookresearch/detectron2/ precisions = cocoEval.eval['precision'] # precision: (iou, recall, cls, area range, max dets) assert len(self.cat_ids) == precisions.shape[2] results_per_category = [] for idx, catId in enumerate(self.cat_ids): # area range index 0: all area ranges # max dets index -1: typically 100 per image nm = self.coco.loadCats(catId)[0] precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] if precision.size: ap = np.mean(precision) else: ap = float('nan') results_per_category.append( (f'{nm["name"]}', f'{float(ap):0.3f}')) num_columns = min(6, len(results_per_category) * 2) results_flatten = list( itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(*[ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) print_log('\n' + table.table, logger=logger) if metric_items is None: metric_items = [ 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l' ] for metric_item in metric_items: key = f'{metric}_{metric_item}' val = float( f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}' ) eval_results[key] = val ap = cocoEval.stats[:6] eval_results[f'{metric}_mAP_copypaste'] = ( f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} ' f'{ap[4]:.3f} {ap[5]:.3f}') if tmp_dir is not None: tmp_dir.cleanup() return eval_results
startup
Start up Django and Lino. Optional `settings_module` is the name of a Django settings module. If this is specified, set the :envvar:`DJANGO_SETTINGS_MODULE` environment variable. This is called automatically when a process is invoked by an *admin command*. In a document to be tested using :cmd:`doctest` you need to call it manually using e.g.: >>> import lino >>> lino.startup('my.project.settings') Above two lines are recommended over the old-style method (the only one only until Django 1.6):: >>> import os >>> os.environ['DJANGO_SETTINGS_MODULE'] = 'my.project.settings'
# -*- coding: UTF-8 -*- # Copyright 2002-2019 Rumma & Ko Ltd # License: BSD (see file COPYING for details) """ See :ref:`lino` for non-technical documentation. The :mod:`lino` package itself is the first plugin for all Lino applications, added automatically to your :setting:`INSTALLED_APPS`. It defines no models, but some template files, django admin commands, translation messages and the core :xfile:`help_texts.py` file. The :mod:`lino` package is the root for the subpackages that define core functionalites: .. autosummary:: :toctree: core hello api utils mixins projects modlib sphinxcontrib management.commands """ # from __future__ import unicode_literals # from __future__ import absolute_import # from builtins import str import sys import os from os.path import join, dirname from .setup_info import SETUP_INFO __version__ = SETUP_INFO['version'] intersphinx_urls = dict(docs="http://core.lino-framework.org") srcref_url = 'https://github.com/lino-framework/lino/blob/master/%s' # srcref_url = 'https://github.com/lino-framework/lino/tree/master/%s' doc_trees = ['docs'] if sys.version_info[0] > 2: PYAFTER26 = True elif sys.version_info[0] == 2 and sys.version_info[1] > 6: PYAFTER26 = True else: PYAFTER26 = False import warnings warnings.filterwarnings( "error", "DateTimeField .* received a naive datetime (.*) while time zone support is active.", RuntimeWarning, "django.db.models.fields") from django.conf import settings from django.apps import AppConfig # def setup_project(settings_module): # os.environ['DJANGO_SETTINGS_MODULE'] = settings_module # from lino.api.shell import settings DJANGO_DEFAULT_LANGUAGE = 'en-us' def assert_django_code(django_code): if '_' in django_code: raise Exception("Invalid language code %r. " "Use values like 'en' or 'en-us'." % django_code) from django import VERSION AFTER17 = True AFTER18 = True DJANGO2 = True if VERSION[0] == 1: DJANGO2 = False if VERSION[1] < 10: raise Exception("Unsupported Django version %s" % VERSION) # if VERSION[1] > 6: # AFTER17 = True # if VERSION[1] > 8: # AFTER18 = True elif VERSION[0] == 2: AFTER17 = True AFTER18 = True else: raise Exception("Unsupported Django version %s" % VERSION) # MASKED: startup function (lines 98-125) class AppConfig(AppConfig): """This is the only :class:`django.apps.AppConfig` object used by Lino. Lino applications use the :class:`lino.core.plugins.Plugin` because it has some additional functionality. """ name = 'lino' def ready(self): if False: settings.SITE.startup() else: try: settings.SITE.startup() except ImportError as e: import traceback # traceback.print_exc(e) # sys.exit(-1) raise Exception("ImportError during startup:\n" + traceback.format_exc(e)) except Exception as e: print(e) raise default_app_config = 'lino.AppConfig' # deprecated use, only for backwards compat: from django.utils.translation import ugettext_lazy as _
def startup(settings_module=None): """ Start up Django and Lino. Optional `settings_module` is the name of a Django settings module. If this is specified, set the :envvar:`DJANGO_SETTINGS_MODULE` environment variable. This is called automatically when a process is invoked by an *admin command*. In a document to be tested using :cmd:`doctest` you need to call it manually using e.g.: >>> import lino >>> lino.startup('my.project.settings') Above two lines are recommended over the old-style method (the only one only until Django 1.6):: >>> import os >>> os.environ['DJANGO_SETTINGS_MODULE'] = 'my.project.settings' """ if settings_module: os.environ['DJANGO_SETTINGS_MODULE'] = settings_module import django django.setup()
98
125
# -*- coding: UTF-8 -*- # Copyright 2002-2019 Rumma & Ko Ltd # License: BSD (see file COPYING for details) """ See :ref:`lino` for non-technical documentation. The :mod:`lino` package itself is the first plugin for all Lino applications, added automatically to your :setting:`INSTALLED_APPS`. It defines no models, but some template files, django admin commands, translation messages and the core :xfile:`help_texts.py` file. The :mod:`lino` package is the root for the subpackages that define core functionalites: .. autosummary:: :toctree: core hello api utils mixins projects modlib sphinxcontrib management.commands """ # from __future__ import unicode_literals # from __future__ import absolute_import # from builtins import str import sys import os from os.path import join, dirname from .setup_info import SETUP_INFO __version__ = SETUP_INFO['version'] intersphinx_urls = dict(docs="http://core.lino-framework.org") srcref_url = 'https://github.com/lino-framework/lino/blob/master/%s' # srcref_url = 'https://github.com/lino-framework/lino/tree/master/%s' doc_trees = ['docs'] if sys.version_info[0] > 2: PYAFTER26 = True elif sys.version_info[0] == 2 and sys.version_info[1] > 6: PYAFTER26 = True else: PYAFTER26 = False import warnings warnings.filterwarnings( "error", "DateTimeField .* received a naive datetime (.*) while time zone support is active.", RuntimeWarning, "django.db.models.fields") from django.conf import settings from django.apps import AppConfig # def setup_project(settings_module): # os.environ['DJANGO_SETTINGS_MODULE'] = settings_module # from lino.api.shell import settings DJANGO_DEFAULT_LANGUAGE = 'en-us' def assert_django_code(django_code): if '_' in django_code: raise Exception("Invalid language code %r. " "Use values like 'en' or 'en-us'." % django_code) from django import VERSION AFTER17 = True AFTER18 = True DJANGO2 = True if VERSION[0] == 1: DJANGO2 = False if VERSION[1] < 10: raise Exception("Unsupported Django version %s" % VERSION) # if VERSION[1] > 6: # AFTER17 = True # if VERSION[1] > 8: # AFTER18 = True elif VERSION[0] == 2: AFTER17 = True AFTER18 = True else: raise Exception("Unsupported Django version %s" % VERSION) def startup(settings_module=None): """ Start up Django and Lino. Optional `settings_module` is the name of a Django settings module. If this is specified, set the :envvar:`DJANGO_SETTINGS_MODULE` environment variable. This is called automatically when a process is invoked by an *admin command*. In a document to be tested using :cmd:`doctest` you need to call it manually using e.g.: >>> import lino >>> lino.startup('my.project.settings') Above two lines are recommended over the old-style method (the only one only until Django 1.6):: >>> import os >>> os.environ['DJANGO_SETTINGS_MODULE'] = 'my.project.settings' """ if settings_module: os.environ['DJANGO_SETTINGS_MODULE'] = settings_module import django django.setup() class AppConfig(AppConfig): """This is the only :class:`django.apps.AppConfig` object used by Lino. Lino applications use the :class:`lino.core.plugins.Plugin` because it has some additional functionality. """ name = 'lino' def ready(self): if False: settings.SITE.startup() else: try: settings.SITE.startup() except ImportError as e: import traceback # traceback.print_exc(e) # sys.exit(-1) raise Exception("ImportError during startup:\n" + traceback.format_exc(e)) except Exception as e: print(e) raise default_app_config = 'lino.AppConfig' # deprecated use, only for backwards compat: from django.utils.translation import ugettext_lazy as _
last_executed_query
Returns a string of the query last executed by the given cursor, with placeholders replaced with actual values. `sql` is the raw query containing placeholders, and `params` is the sequence of parameters. These are used by default, but this method exists for database backends to provide a better implementation according to their own quoting schemes.
import decimal from threading import local from django.db import DEFAULT_DB_ALIAS from django.db.backends import util from django.utils import datetime_safe from django.utils.importlib import import_module class BaseDatabaseWrapper(local): """ Represents a database connection. """ ops = None def __init__(self, settings_dict, alias=DEFAULT_DB_ALIAS): # `settings_dict` should be a dictionary containing keys such as # NAME, USER, etc. It's called `settings_dict` instead of `settings` # to disambiguate it from Django settings modules. self.connection = None self.queries = [] self.settings_dict = settings_dict self.alias = alias def __eq__(self, other): return self.settings_dict == other.settings_dict def __ne__(self, other): return not self == other def _commit(self): if self.connection is not None: return self.connection.commit() def _rollback(self): if self.connection is not None: return self.connection.rollback() def _enter_transaction_management(self, managed): """ A hook for backend-specific changes required when entering manual transaction handling. """ pass def _leave_transaction_management(self, managed): """ A hook for backend-specific changes required when leaving manual transaction handling. Will usually be implemented only when _enter_transaction_management() is also required. """ pass def _savepoint(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_create_sql(sid)) def _savepoint_rollback(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_rollback_sql(sid)) def _savepoint_commit(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_commit_sql(sid)) def close(self): if self.connection is not None: self.connection.close() self.connection = None def cursor(self): from django.conf import settings cursor = self._cursor() if settings.DEBUG: return self.make_debug_cursor(cursor) return cursor def make_debug_cursor(self, cursor): return util.CursorDebugWrapper(cursor, self) class BaseDatabaseFeatures(object): allows_group_by_pk = False # True if django.db.backend.utils.typecast_timestamp is used on values # returned from dates() calls. needs_datetime_string_cast = True empty_fetchmany_value = [] update_can_self_select = True interprets_empty_strings_as_nulls = False can_use_chunked_reads = True can_return_id_from_insert = False uses_autocommit = False uses_savepoints = False # If True, don't use integer foreign keys referring to, e.g., positive # integer primary keys. related_fields_match_type = False class BaseDatabaseOperations(object): """ This class encapsulates all backend-specific differences, such as the way a backend performs ordering or calculates the ID of a recently-inserted row. """ compiler_module = "django.db.models.sql.compiler" def __init__(self): self._cache = {} def autoinc_sql(self, table, column): """ Returns any SQL needed to support auto-incrementing primary keys, or None if no SQL is necessary. This SQL is executed when a table is created. """ return None def date_extract_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that extracts a value from the given date field field_name. """ raise NotImplementedError() def date_trunc_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that truncates the given date field field_name to a DATE object with only the given specificity. """ raise NotImplementedError() def datetime_cast_sql(self): """ Returns the SQL necessary to cast a datetime value so that it will be retrieved as a Python datetime object instead of a string. This SQL should include a '%s' in place of the field's name. """ return "%s" def deferrable_sql(self): """ Returns the SQL necessary to make a constraint "initially deferred" during a CREATE TABLE statement. """ return '' def drop_foreignkey_sql(self): """ Returns the SQL command that drops a foreign key. """ return "DROP CONSTRAINT" def drop_sequence_sql(self, table): """ Returns any SQL necessary to drop the sequence for the given table. Returns None if no SQL is necessary. """ return None def fetch_returned_insert_id(self, cursor): """ Given a cursor object that has just performed an INSERT...RETURNING statement into a table that has an auto-incrementing ID, returns the newly created ID. """ return cursor.fetchone()[0] def field_cast_sql(self, db_type): """ Given a column type (e.g. 'BLOB', 'VARCHAR'), returns the SQL necessary to cast it before using it in a WHERE statement. Note that the resulting string should contain a '%s' placeholder for the column being searched against. """ return '%s' def force_no_ordering(self): """ Returns a list used in the "ORDER BY" clause to force no ordering at all. Returning an empty list means that nothing will be included in the ordering. """ return [] def fulltext_search_sql(self, field_name): """ Returns the SQL WHERE clause to use in order to perform a full-text search of the given field_name. Note that the resulting string should contain a '%s' placeholder for the value being searched against. """ raise NotImplementedError('Full-text search is not implemented for this database backend') # MASKED: last_executed_query function (lines 196-215) def last_insert_id(self, cursor, table_name, pk_name): """ Given a cursor object that has just performed an INSERT statement into a table that has an auto-incrementing ID, returns the newly created ID. This method also receives the table name and the name of the primary-key column. """ return cursor.lastrowid def lookup_cast(self, lookup_type): """ Returns the string to use in a query when performing lookups ("contains", "like", etc). The resulting string should contain a '%s' placeholder for the column being searched against. """ return "%s" def max_name_length(self): """ Returns the maximum length of table and column names, or None if there is no limit. """ return None def no_limit_value(self): """ Returns the value to use for the LIMIT when we are wanting "LIMIT infinity". Returns None if the limit clause can be omitted in this case. """ raise NotImplementedError def pk_default_value(self): """ Returns the value to use during an INSERT statement to specify that the field should use its default value. """ return 'DEFAULT' def process_clob(self, value): """ Returns the value of a CLOB column, for backends that return a locator object that requires additional processing. """ return value def return_insert_id(self): """ For backends that support returning the last insert ID as part of an insert query, this method returns the SQL and params to append to the INSERT query. The returned fragment should contain a format string to hold the appropriate column. """ pass def compiler(self, compiler_name): """ Returns the SQLCompiler class corresponding to the given name, in the namespace corresponding to the `compiler_module` attribute on this backend. """ if compiler_name not in self._cache: self._cache[compiler_name] = getattr( import_module(self.compiler_module), compiler_name ) return self._cache[compiler_name] def quote_name(self, name): """ Returns a quoted version of the given table, index or column name. Does not quote the given name if it's already been quoted. """ raise NotImplementedError() def random_function_sql(self): """ Returns a SQL expression that returns a random value. """ return 'RANDOM()' def regex_lookup(self, lookup_type): """ Returns the string to use in a query when performing regular expression lookups (using "regex" or "iregex"). The resulting string should contain a '%s' placeholder for the column being searched against. If the feature is not supported (or part of it is not supported), a NotImplementedError exception can be raised. """ raise NotImplementedError def savepoint_create_sql(self, sid): """ Returns the SQL for starting a new savepoint. Only required if the "uses_savepoints" feature is True. The "sid" parameter is a string for the savepoint id. """ raise NotImplementedError def savepoint_commit_sql(self, sid): """ Returns the SQL for committing the given savepoint. """ raise NotImplementedError def savepoint_rollback_sql(self, sid): """ Returns the SQL for rolling back the given savepoint. """ raise NotImplementedError def sql_flush(self, style, tables, sequences): """ Returns a list of SQL statements required to remove all data from the given database tables (without actually removing the tables themselves). The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ raise NotImplementedError() def sequence_reset_sql(self, style, model_list): """ Returns a list of the SQL statements required to reset sequences for the given models. The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ return [] # No sequence reset required by default. def start_transaction_sql(self): """ Returns the SQL statement required to start a transaction. """ return "BEGIN;" def tablespace_sql(self, tablespace, inline=False): """ Returns the SQL that will be appended to tables or rows to define a tablespace. Returns '' if the backend doesn't use tablespaces. """ return '' def prep_for_like_query(self, x): """Prepares a value for use in a LIKE query.""" from django.utils.encoding import smart_unicode return smart_unicode(x).replace("\\", "\\\\").replace("%", "\%").replace("_", "\_") # Same as prep_for_like_query(), but called for "iexact" matches, which # need not necessarily be implemented using "LIKE" in the backend. prep_for_iexact_query = prep_for_like_query def value_to_db_date(self, value): """ Transform a date value to an object compatible with what is expected by the backend driver for date columns. """ if value is None: return None return datetime_safe.new_date(value).strftime('%Y-%m-%d') def value_to_db_datetime(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. """ if value is None: return None return unicode(value) def value_to_db_time(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for time columns. """ if value is None: return None return unicode(value) def value_to_db_decimal(self, value, max_digits, decimal_places): """ Transform a decimal.Decimal value to an object compatible with what is expected by the backend driver for decimal (numeric) columns. """ if value is None: return None return util.format_number(value, max_digits, decimal_places) def year_lookup_bounds(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a field value using a year lookup `value` is an int, containing the looked-up year. """ first = '%s-01-01 00:00:00' second = '%s-12-31 23:59:59.999999' return [first % value, second % value] def year_lookup_bounds_for_date_field(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a DateField value using a year lookup `value` is an int, containing the looked-up year. By default, it just calls `self.year_lookup_bounds`. Some backends need this hook because on their DB date fields can't be compared to values which include a time part. """ return self.year_lookup_bounds(value) def convert_values(self, value, field): """Coerce the value returned by the database backend into a consistent type that is compatible with the field type. """ internal_type = field.get_internal_type() if internal_type == 'DecimalField': return value elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField': return int(value) elif internal_type in ('DateField', 'DateTimeField', 'TimeField'): return value # No field, or the field isn't known to be a decimal or integer # Default to a float return float(value) def check_aggregate_support(self, aggregate_func): """Check that the backend supports the provided aggregate This is used on specific backends to rule out known aggregates that are known to have faulty implementations. If the named aggregate function has a known problem, the backend should raise NotImplemented. """ pass def combine_expression(self, connector, sub_expressions): """Combine a list of subexpressions into a single expression, using the provided connecting operator. This is required because operators can vary between backends (e.g., Oracle with %% and &) and between subexpression types (e.g., date expressions) """ conn = ' %s ' % connector return conn.join(sub_expressions) class BaseDatabaseIntrospection(object): """ This class encapsulates all backend-specific introspection utilities """ data_types_reverse = {} def __init__(self, connection): self.connection = connection def get_field_type(self, data_type, description): """Hook for a database backend to use the cursor description to match a Django field type to a database column. For Oracle, the column data_type on its own is insufficient to distinguish between a FloatField and IntegerField, for example.""" return self.data_types_reverse[data_type] def table_name_converter(self, name): """Apply a conversion to the name for the purposes of comparison. The default table name converter is for case sensitive comparison. """ return name def table_names(self): "Returns a list of names of all tables that exist in the database." cursor = self.connection.cursor() return self.get_table_list(cursor) def django_table_names(self, only_existing=False): """ Returns a list of all table names that have associated Django models and are in INSTALLED_APPS. If only_existing is True, the resulting list will only include the tables that actually exist in the database. """ from django.db import models, router tables = set() for app in models.get_apps(): for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue tables.add(model._meta.db_table) tables.update([f.m2m_db_table() for f in model._meta.local_many_to_many]) if only_existing: tables = [t for t in tables if self.table_name_converter(t) in self.table_names()] return tables def installed_models(self, tables): "Returns a set of all models represented by the provided list of table names." from django.db import models, router all_models = [] for app in models.get_apps(): for model in models.get_models(app): if router.allow_syncdb(self.connection.alias, model): all_models.append(model) return set([m for m in all_models if self.table_name_converter(m._meta.db_table) in map(self.table_name_converter, tables) ]) def sequence_list(self): "Returns a list of information about all DB sequences for all models in all apps." from django.db import models, router apps = models.get_apps() sequence_list = [] for app in apps: for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue for f in model._meta.local_fields: if isinstance(f, models.AutoField): sequence_list.append({'table': model._meta.db_table, 'column': f.column}) break # Only one AutoField is allowed per model, so don't bother continuing. for f in model._meta.local_many_to_many: # If this is an m2m using an intermediate table, # we don't need to reset the sequence. if f.rel.through is None: sequence_list.append({'table': f.m2m_db_table(), 'column': None}) return sequence_list class BaseDatabaseClient(object): """ This class encapsulates all backend-specific methods for opening a client shell. """ # This should be a string representing the name of the executable # (e.g., "psql"). Subclasses must override this. executable_name = None def __init__(self, connection): # connection is an instance of BaseDatabaseWrapper. self.connection = connection def runshell(self): raise NotImplementedError() class BaseDatabaseValidation(object): """ This class encapsualtes all backend-specific model validation. """ def __init__(self, connection): self.connection = connection def validate_field(self, errors, opts, f): "By default, there is no backend-specific validation" pass
def last_executed_query(self, cursor, sql, params): """ Returns a string of the query last executed by the given cursor, with placeholders replaced with actual values. `sql` is the raw query containing placeholders, and `params` is the sequence of parameters. These are used by default, but this method exists for database backends to provide a better implementation according to their own quoting schemes. """ from django.utils.encoding import smart_unicode, force_unicode # Convert params to contain Unicode values. to_unicode = lambda s: force_unicode(s, strings_only=True, errors='replace') if isinstance(params, (list, tuple)): u_params = tuple([to_unicode(val) for val in params]) else: u_params = dict([(to_unicode(k), to_unicode(v)) for k, v in params.items()]) return smart_unicode(sql) % u_params
196
215
import decimal from threading import local from django.db import DEFAULT_DB_ALIAS from django.db.backends import util from django.utils import datetime_safe from django.utils.importlib import import_module class BaseDatabaseWrapper(local): """ Represents a database connection. """ ops = None def __init__(self, settings_dict, alias=DEFAULT_DB_ALIAS): # `settings_dict` should be a dictionary containing keys such as # NAME, USER, etc. It's called `settings_dict` instead of `settings` # to disambiguate it from Django settings modules. self.connection = None self.queries = [] self.settings_dict = settings_dict self.alias = alias def __eq__(self, other): return self.settings_dict == other.settings_dict def __ne__(self, other): return not self == other def _commit(self): if self.connection is not None: return self.connection.commit() def _rollback(self): if self.connection is not None: return self.connection.rollback() def _enter_transaction_management(self, managed): """ A hook for backend-specific changes required when entering manual transaction handling. """ pass def _leave_transaction_management(self, managed): """ A hook for backend-specific changes required when leaving manual transaction handling. Will usually be implemented only when _enter_transaction_management() is also required. """ pass def _savepoint(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_create_sql(sid)) def _savepoint_rollback(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_rollback_sql(sid)) def _savepoint_commit(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_commit_sql(sid)) def close(self): if self.connection is not None: self.connection.close() self.connection = None def cursor(self): from django.conf import settings cursor = self._cursor() if settings.DEBUG: return self.make_debug_cursor(cursor) return cursor def make_debug_cursor(self, cursor): return util.CursorDebugWrapper(cursor, self) class BaseDatabaseFeatures(object): allows_group_by_pk = False # True if django.db.backend.utils.typecast_timestamp is used on values # returned from dates() calls. needs_datetime_string_cast = True empty_fetchmany_value = [] update_can_self_select = True interprets_empty_strings_as_nulls = False can_use_chunked_reads = True can_return_id_from_insert = False uses_autocommit = False uses_savepoints = False # If True, don't use integer foreign keys referring to, e.g., positive # integer primary keys. related_fields_match_type = False class BaseDatabaseOperations(object): """ This class encapsulates all backend-specific differences, such as the way a backend performs ordering or calculates the ID of a recently-inserted row. """ compiler_module = "django.db.models.sql.compiler" def __init__(self): self._cache = {} def autoinc_sql(self, table, column): """ Returns any SQL needed to support auto-incrementing primary keys, or None if no SQL is necessary. This SQL is executed when a table is created. """ return None def date_extract_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that extracts a value from the given date field field_name. """ raise NotImplementedError() def date_trunc_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that truncates the given date field field_name to a DATE object with only the given specificity. """ raise NotImplementedError() def datetime_cast_sql(self): """ Returns the SQL necessary to cast a datetime value so that it will be retrieved as a Python datetime object instead of a string. This SQL should include a '%s' in place of the field's name. """ return "%s" def deferrable_sql(self): """ Returns the SQL necessary to make a constraint "initially deferred" during a CREATE TABLE statement. """ return '' def drop_foreignkey_sql(self): """ Returns the SQL command that drops a foreign key. """ return "DROP CONSTRAINT" def drop_sequence_sql(self, table): """ Returns any SQL necessary to drop the sequence for the given table. Returns None if no SQL is necessary. """ return None def fetch_returned_insert_id(self, cursor): """ Given a cursor object that has just performed an INSERT...RETURNING statement into a table that has an auto-incrementing ID, returns the newly created ID. """ return cursor.fetchone()[0] def field_cast_sql(self, db_type): """ Given a column type (e.g. 'BLOB', 'VARCHAR'), returns the SQL necessary to cast it before using it in a WHERE statement. Note that the resulting string should contain a '%s' placeholder for the column being searched against. """ return '%s' def force_no_ordering(self): """ Returns a list used in the "ORDER BY" clause to force no ordering at all. Returning an empty list means that nothing will be included in the ordering. """ return [] def fulltext_search_sql(self, field_name): """ Returns the SQL WHERE clause to use in order to perform a full-text search of the given field_name. Note that the resulting string should contain a '%s' placeholder for the value being searched against. """ raise NotImplementedError('Full-text search is not implemented for this database backend') def last_executed_query(self, cursor, sql, params): """ Returns a string of the query last executed by the given cursor, with placeholders replaced with actual values. `sql` is the raw query containing placeholders, and `params` is the sequence of parameters. These are used by default, but this method exists for database backends to provide a better implementation according to their own quoting schemes. """ from django.utils.encoding import smart_unicode, force_unicode # Convert params to contain Unicode values. to_unicode = lambda s: force_unicode(s, strings_only=True, errors='replace') if isinstance(params, (list, tuple)): u_params = tuple([to_unicode(val) for val in params]) else: u_params = dict([(to_unicode(k), to_unicode(v)) for k, v in params.items()]) return smart_unicode(sql) % u_params def last_insert_id(self, cursor, table_name, pk_name): """ Given a cursor object that has just performed an INSERT statement into a table that has an auto-incrementing ID, returns the newly created ID. This method also receives the table name and the name of the primary-key column. """ return cursor.lastrowid def lookup_cast(self, lookup_type): """ Returns the string to use in a query when performing lookups ("contains", "like", etc). The resulting string should contain a '%s' placeholder for the column being searched against. """ return "%s" def max_name_length(self): """ Returns the maximum length of table and column names, or None if there is no limit. """ return None def no_limit_value(self): """ Returns the value to use for the LIMIT when we are wanting "LIMIT infinity". Returns None if the limit clause can be omitted in this case. """ raise NotImplementedError def pk_default_value(self): """ Returns the value to use during an INSERT statement to specify that the field should use its default value. """ return 'DEFAULT' def process_clob(self, value): """ Returns the value of a CLOB column, for backends that return a locator object that requires additional processing. """ return value def return_insert_id(self): """ For backends that support returning the last insert ID as part of an insert query, this method returns the SQL and params to append to the INSERT query. The returned fragment should contain a format string to hold the appropriate column. """ pass def compiler(self, compiler_name): """ Returns the SQLCompiler class corresponding to the given name, in the namespace corresponding to the `compiler_module` attribute on this backend. """ if compiler_name not in self._cache: self._cache[compiler_name] = getattr( import_module(self.compiler_module), compiler_name ) return self._cache[compiler_name] def quote_name(self, name): """ Returns a quoted version of the given table, index or column name. Does not quote the given name if it's already been quoted. """ raise NotImplementedError() def random_function_sql(self): """ Returns a SQL expression that returns a random value. """ return 'RANDOM()' def regex_lookup(self, lookup_type): """ Returns the string to use in a query when performing regular expression lookups (using "regex" or "iregex"). The resulting string should contain a '%s' placeholder for the column being searched against. If the feature is not supported (or part of it is not supported), a NotImplementedError exception can be raised. """ raise NotImplementedError def savepoint_create_sql(self, sid): """ Returns the SQL for starting a new savepoint. Only required if the "uses_savepoints" feature is True. The "sid" parameter is a string for the savepoint id. """ raise NotImplementedError def savepoint_commit_sql(self, sid): """ Returns the SQL for committing the given savepoint. """ raise NotImplementedError def savepoint_rollback_sql(self, sid): """ Returns the SQL for rolling back the given savepoint. """ raise NotImplementedError def sql_flush(self, style, tables, sequences): """ Returns a list of SQL statements required to remove all data from the given database tables (without actually removing the tables themselves). The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ raise NotImplementedError() def sequence_reset_sql(self, style, model_list): """ Returns a list of the SQL statements required to reset sequences for the given models. The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ return [] # No sequence reset required by default. def start_transaction_sql(self): """ Returns the SQL statement required to start a transaction. """ return "BEGIN;" def tablespace_sql(self, tablespace, inline=False): """ Returns the SQL that will be appended to tables or rows to define a tablespace. Returns '' if the backend doesn't use tablespaces. """ return '' def prep_for_like_query(self, x): """Prepares a value for use in a LIKE query.""" from django.utils.encoding import smart_unicode return smart_unicode(x).replace("\\", "\\\\").replace("%", "\%").replace("_", "\_") # Same as prep_for_like_query(), but called for "iexact" matches, which # need not necessarily be implemented using "LIKE" in the backend. prep_for_iexact_query = prep_for_like_query def value_to_db_date(self, value): """ Transform a date value to an object compatible with what is expected by the backend driver for date columns. """ if value is None: return None return datetime_safe.new_date(value).strftime('%Y-%m-%d') def value_to_db_datetime(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. """ if value is None: return None return unicode(value) def value_to_db_time(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for time columns. """ if value is None: return None return unicode(value) def value_to_db_decimal(self, value, max_digits, decimal_places): """ Transform a decimal.Decimal value to an object compatible with what is expected by the backend driver for decimal (numeric) columns. """ if value is None: return None return util.format_number(value, max_digits, decimal_places) def year_lookup_bounds(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a field value using a year lookup `value` is an int, containing the looked-up year. """ first = '%s-01-01 00:00:00' second = '%s-12-31 23:59:59.999999' return [first % value, second % value] def year_lookup_bounds_for_date_field(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a DateField value using a year lookup `value` is an int, containing the looked-up year. By default, it just calls `self.year_lookup_bounds`. Some backends need this hook because on their DB date fields can't be compared to values which include a time part. """ return self.year_lookup_bounds(value) def convert_values(self, value, field): """Coerce the value returned by the database backend into a consistent type that is compatible with the field type. """ internal_type = field.get_internal_type() if internal_type == 'DecimalField': return value elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField': return int(value) elif internal_type in ('DateField', 'DateTimeField', 'TimeField'): return value # No field, or the field isn't known to be a decimal or integer # Default to a float return float(value) def check_aggregate_support(self, aggregate_func): """Check that the backend supports the provided aggregate This is used on specific backends to rule out known aggregates that are known to have faulty implementations. If the named aggregate function has a known problem, the backend should raise NotImplemented. """ pass def combine_expression(self, connector, sub_expressions): """Combine a list of subexpressions into a single expression, using the provided connecting operator. This is required because operators can vary between backends (e.g., Oracle with %% and &) and between subexpression types (e.g., date expressions) """ conn = ' %s ' % connector return conn.join(sub_expressions) class BaseDatabaseIntrospection(object): """ This class encapsulates all backend-specific introspection utilities """ data_types_reverse = {} def __init__(self, connection): self.connection = connection def get_field_type(self, data_type, description): """Hook for a database backend to use the cursor description to match a Django field type to a database column. For Oracle, the column data_type on its own is insufficient to distinguish between a FloatField and IntegerField, for example.""" return self.data_types_reverse[data_type] def table_name_converter(self, name): """Apply a conversion to the name for the purposes of comparison. The default table name converter is for case sensitive comparison. """ return name def table_names(self): "Returns a list of names of all tables that exist in the database." cursor = self.connection.cursor() return self.get_table_list(cursor) def django_table_names(self, only_existing=False): """ Returns a list of all table names that have associated Django models and are in INSTALLED_APPS. If only_existing is True, the resulting list will only include the tables that actually exist in the database. """ from django.db import models, router tables = set() for app in models.get_apps(): for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue tables.add(model._meta.db_table) tables.update([f.m2m_db_table() for f in model._meta.local_many_to_many]) if only_existing: tables = [t for t in tables if self.table_name_converter(t) in self.table_names()] return tables def installed_models(self, tables): "Returns a set of all models represented by the provided list of table names." from django.db import models, router all_models = [] for app in models.get_apps(): for model in models.get_models(app): if router.allow_syncdb(self.connection.alias, model): all_models.append(model) return set([m for m in all_models if self.table_name_converter(m._meta.db_table) in map(self.table_name_converter, tables) ]) def sequence_list(self): "Returns a list of information about all DB sequences for all models in all apps." from django.db import models, router apps = models.get_apps() sequence_list = [] for app in apps: for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue for f in model._meta.local_fields: if isinstance(f, models.AutoField): sequence_list.append({'table': model._meta.db_table, 'column': f.column}) break # Only one AutoField is allowed per model, so don't bother continuing. for f in model._meta.local_many_to_many: # If this is an m2m using an intermediate table, # we don't need to reset the sequence. if f.rel.through is None: sequence_list.append({'table': f.m2m_db_table(), 'column': None}) return sequence_list class BaseDatabaseClient(object): """ This class encapsulates all backend-specific methods for opening a client shell. """ # This should be a string representing the name of the executable # (e.g., "psql"). Subclasses must override this. executable_name = None def __init__(self, connection): # connection is an instance of BaseDatabaseWrapper. self.connection = connection def runshell(self): raise NotImplementedError() class BaseDatabaseValidation(object): """ This class encapsualtes all backend-specific model validation. """ def __init__(self, connection): self.connection = connection def validate_field(self, errors, opts, f): "By default, there is no backend-specific validation" pass
extract_each_layer
This image processing funtion is designed for the OCT image post processing. It can remove the small regions and find the OCT layer boundary under the specified threshold. :param image: :param threshold: :return:
import os import scipy.misc as misc import shutil import cv2 import Constants import numpy as np from skimage import morphology # MASKED: extract_each_layer function (lines 11-45) if __name__ == '__main__': image_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-images/' \ 'oct202.png' gt_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-gt/' \ 'oct202.png' image = cv2.imread(image_path) gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) cv2.imwrite('gt.png', gt) print(np.max(image), np.shape(image)) print(np.max(gt), np.shape(gt))
def extract_each_layer(image, threshold): """ This image processing funtion is designed for the OCT image post processing. It can remove the small regions and find the OCT layer boundary under the specified threshold. :param image: :param threshold: :return: """ # convert the output to the binary image ret, binary = cv2.threshold(image, threshold, 1, cv2.THRESH_BINARY) bool_binary = np.array(binary, bool) # remove the small object remove_binary = morphology.remove_small_objects(bool_binary, min_size=25000, connectivity=2, in_place=False) c = np.multiply(bool_binary, remove_binary) final_binary = np.zeros(shape=np.shape(binary)) final_binary[c == True] = 1 binary_image = cv2.filter2D(final_binary, -1, np.array([[-1], [1]])) layer_one = np.zeros(shape=[1, np.shape(binary_image)[1]]) for i in range(np.shape(binary_image)[1]): location_point = np.where(binary_image[:, i] > 0)[0] # print(location_point) if len(location_point) == 1: layer_one[0, i] = location_point elif len(location_point) == 0: layer_one[0, i] = layer_one[0, i-1] else: layer_one[0, i] = location_point[0] return layer_one
11
45
import os import scipy.misc as misc import shutil import cv2 import Constants import numpy as np from skimage import morphology def extract_each_layer(image, threshold): """ This image processing funtion is designed for the OCT image post processing. It can remove the small regions and find the OCT layer boundary under the specified threshold. :param image: :param threshold: :return: """ # convert the output to the binary image ret, binary = cv2.threshold(image, threshold, 1, cv2.THRESH_BINARY) bool_binary = np.array(binary, bool) # remove the small object remove_binary = morphology.remove_small_objects(bool_binary, min_size=25000, connectivity=2, in_place=False) c = np.multiply(bool_binary, remove_binary) final_binary = np.zeros(shape=np.shape(binary)) final_binary[c == True] = 1 binary_image = cv2.filter2D(final_binary, -1, np.array([[-1], [1]])) layer_one = np.zeros(shape=[1, np.shape(binary_image)[1]]) for i in range(np.shape(binary_image)[1]): location_point = np.where(binary_image[:, i] > 0)[0] # print(location_point) if len(location_point) == 1: layer_one[0, i] = location_point elif len(location_point) == 0: layer_one[0, i] = layer_one[0, i-1] else: layer_one[0, i] = location_point[0] return layer_one if __name__ == '__main__': image_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-images/' \ 'oct202.png' gt_path = '/home/jimmyliu/Zaiwang/crop-OCT/train/562.fds/crop-gt/' \ 'oct202.png' image = cv2.imread(image_path) gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) cv2.imwrite('gt.png', gt) print(np.max(image), np.shape(image)) print(np.max(gt), np.shape(gt))
classification_report
Create a report on classification statistics. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. Returns ------- report : dict Dictionary containing classification statistics in the following structure: - 'label': { 'precision':0.5, 'recall':1.0, 'f-score':0.67, 'support':1 }, ... - 'beta': 1, - 'support': 5, - 'accuracy': 0.8, - 'macro avg': { 'precision':0.6, 'recall':0.9, 'f-score':0.67, }, - 'weighted avg': { 'precision':0.67, 'recall':0.9, 'f-score':0.67, }
"""Classification Report""" # Authors: Jeffrey Wang # License: BSD 3 clause import numpy as np from sleepens.analysis import multiconfusion_matrix def calculate_statistics(Y_hat, Y, beta=1, average=None): """ Calculate the precisions, recalls, F-beta scores, and supports for each class in `targets`. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. average : {'micro', 'macro', 'weighted', None}, default=None The type of averaging to perform on statistics. Must be one of: - None : Do not perform averaging, statistics for each class are returned. - 'micro' : Calculate globally, counting total true positives, false negatives, and false positives. - 'macro' : Calculate per class an unweighted mean. - 'weighted' : Calculate per class the mean weighted by support. Returns ------- precisions : float or dict Dictionary of precisions for each class if `average` is None. Averaged precision based on averaging method if provided. recalls : float or dict Dictionary of recalls for each class if `average` is None. Averaged recall based on averaging method if provided. fscores : float or dict Dictionary of fscores for each class if `average` is None. Averaged fscore based on averaging method if provided. supports : float or dict Dictionary of supports for each class if `average` is None. Total support (number of classes) if averaging method is provided. """ if beta < 0: raise ValueError("Beta must be non-negative") matrix = multiconfusion_matrix(Y_hat, Y) matrix_labels = list(matrix.keys()) matrix = np.array([matrix[l] for l in matrix_labels]) tp_sum = matrix[:,1,1] label_sum = tp_sum + matrix[:,0,1] target_sum = tp_sum + matrix[:,1,0] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) label_sum = np.array([label_sum.sum()]) target_sum = np.array([target_sum.sum()]) with np.errstate(divide='ignore', invalid='ignore'): precisions = np.divide(tp_sum, label_sum, out=np.zeros(tp_sum.shape, dtype=float), where=label_sum!=0) recalls = np.divide(tp_sum, target_sum, out=np.zeros(tp_sum.shape, dtype=float), where=target_sum!=0) if np.isposinf(beta): fscores = recalls else: beta2 = beta ** 2 denom = beta2 * precisions + recalls valid = np.where(denom != 0)[0] fscores = np.zeros_like(denom) fscores[valid] = (1 + beta2) * precisions[valid] * recalls[valid] / denom[valid] if average == 'weighted': weights = target_sum if target_sum.sum() == 0: return 0, 0, 0, target_sum.sum() else: weights = None if average is not None: precisions = np.average(precisions, weights=weights) recalls = np.average(recalls, weights=weights) fscores = np.average(fscores, weights=weights) supports = target_sum.sum() else: precisions = {matrix_labels[k]: precisions[k] for k in range(len(matrix_labels))} recalls = {matrix_labels[k]: recalls[k] for k in range(len(matrix_labels))} fscores = {matrix_labels[k]: fscores[k] for k in range(len(matrix_labels))} supports = {matrix_labels[k]: target_sum[k] for k in range(len(matrix_labels))} return precisions, recalls, fscores, supports # MASKED: classification_report function (lines 98-154)
def classification_report(Y_hat, Y, beta=1): """ Create a report on classification statistics. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. Returns ------- report : dict Dictionary containing classification statistics in the following structure: - 'label': { 'precision':0.5, 'recall':1.0, 'f-score':0.67, 'support':1 }, ... - 'beta': 1, - 'support': 5, - 'accuracy': 0.8, - 'macro avg': { 'precision':0.6, 'recall':0.9, 'f-score':0.67, }, - 'weighted avg': { 'precision':0.67, 'recall':0.9, 'f-score':0.67, } """ stats = calculate_statistics(Y_hat, Y, beta=beta) _, _, accuracy, total = calculate_statistics(Y_hat, Y, beta=beta, average='micro') macro = calculate_statistics(Y_hat, Y, beta=beta, average='macro') weighted = calculate_statistics(Y_hat, Y, beta=beta, average='weighted') h = ['precision', 'recall', 'f-score', 'support'] report = { 'beta': beta, 'support': total, 'accuracy': accuracy, 'macro avg': {h[i]: macro[i] for i in range(len(h))}, 'weighted avg': {h[i]: weighted[i] for i in range(len(h))} } classes = set(stats[0].keys()) for c in classes: report[c] = {h[i]: stats[i][c] for i in range(len(h))} return report
98
154
"""Classification Report""" # Authors: Jeffrey Wang # License: BSD 3 clause import numpy as np from sleepens.analysis import multiconfusion_matrix def calculate_statistics(Y_hat, Y, beta=1, average=None): """ Calculate the precisions, recalls, F-beta scores, and supports for each class in `targets`. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. average : {'micro', 'macro', 'weighted', None}, default=None The type of averaging to perform on statistics. Must be one of: - None : Do not perform averaging, statistics for each class are returned. - 'micro' : Calculate globally, counting total true positives, false negatives, and false positives. - 'macro' : Calculate per class an unweighted mean. - 'weighted' : Calculate per class the mean weighted by support. Returns ------- precisions : float or dict Dictionary of precisions for each class if `average` is None. Averaged precision based on averaging method if provided. recalls : float or dict Dictionary of recalls for each class if `average` is None. Averaged recall based on averaging method if provided. fscores : float or dict Dictionary of fscores for each class if `average` is None. Averaged fscore based on averaging method if provided. supports : float or dict Dictionary of supports for each class if `average` is None. Total support (number of classes) if averaging method is provided. """ if beta < 0: raise ValueError("Beta must be non-negative") matrix = multiconfusion_matrix(Y_hat, Y) matrix_labels = list(matrix.keys()) matrix = np.array([matrix[l] for l in matrix_labels]) tp_sum = matrix[:,1,1] label_sum = tp_sum + matrix[:,0,1] target_sum = tp_sum + matrix[:,1,0] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) label_sum = np.array([label_sum.sum()]) target_sum = np.array([target_sum.sum()]) with np.errstate(divide='ignore', invalid='ignore'): precisions = np.divide(tp_sum, label_sum, out=np.zeros(tp_sum.shape, dtype=float), where=label_sum!=0) recalls = np.divide(tp_sum, target_sum, out=np.zeros(tp_sum.shape, dtype=float), where=target_sum!=0) if np.isposinf(beta): fscores = recalls else: beta2 = beta ** 2 denom = beta2 * precisions + recalls valid = np.where(denom != 0)[0] fscores = np.zeros_like(denom) fscores[valid] = (1 + beta2) * precisions[valid] * recalls[valid] / denom[valid] if average == 'weighted': weights = target_sum if target_sum.sum() == 0: return 0, 0, 0, target_sum.sum() else: weights = None if average is not None: precisions = np.average(precisions, weights=weights) recalls = np.average(recalls, weights=weights) fscores = np.average(fscores, weights=weights) supports = target_sum.sum() else: precisions = {matrix_labels[k]: precisions[k] for k in range(len(matrix_labels))} recalls = {matrix_labels[k]: recalls[k] for k in range(len(matrix_labels))} fscores = {matrix_labels[k]: fscores[k] for k in range(len(matrix_labels))} supports = {matrix_labels[k]: target_sum[k] for k in range(len(matrix_labels))} return precisions, recalls, fscores, supports def classification_report(Y_hat, Y, beta=1): """ Create a report on classification statistics. Parameters ---------- Y_hat : array-like, shape=(n_samples,) List of data labels. Y : array-like, shape=(n_samples,) List of target truth labels. beta : float, default=1 Strength of recall relative to precision in the F-score. Returns ------- report : dict Dictionary containing classification statistics in the following structure: - 'label': { 'precision':0.5, 'recall':1.0, 'f-score':0.67, 'support':1 }, ... - 'beta': 1, - 'support': 5, - 'accuracy': 0.8, - 'macro avg': { 'precision':0.6, 'recall':0.9, 'f-score':0.67, }, - 'weighted avg': { 'precision':0.67, 'recall':0.9, 'f-score':0.67, } """ stats = calculate_statistics(Y_hat, Y, beta=beta) _, _, accuracy, total = calculate_statistics(Y_hat, Y, beta=beta, average='micro') macro = calculate_statistics(Y_hat, Y, beta=beta, average='macro') weighted = calculate_statistics(Y_hat, Y, beta=beta, average='weighted') h = ['precision', 'recall', 'f-score', 'support'] report = { 'beta': beta, 'support': total, 'accuracy': accuracy, 'macro avg': {h[i]: macro[i] for i in range(len(h))}, 'weighted avg': {h[i]: weighted[i] for i in range(len(h))} } classes = set(stats[0].keys()) for c in classes: report[c] = {h[i]: stats[i][c] for i in range(len(h))} return report
max_pool_forward_fast
A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method.
import numpy as np try: from cs231n.im2col_cython import col2im_cython, im2col_cython from cs231n.im2col_cython import col2im_6d_cython except ImportError: print ('run the following from the cs231n directory and try again:') print ('python setup.py build_ext --inplace') print ('You may also need to restart your iPython kernel') from cs231n.im2col import * def conv_forward_im2col(x, w, b, conv_param): """ A fast implementation of the forward pass for a convolutional layer based on im2col and col2im. """ N, C, H, W = x.shape num_filters, _, filter_height, filter_width = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - filter_width) % stride == 0, 'width does not work' assert (H + 2 * pad - filter_height) % stride == 0, 'height does not work' # Create output out_height = (H + 2 * pad - filter_height) / stride + 1 out_width = (W + 2 * pad - filter_width) / stride + 1 out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) # x_cols = im2col_indices(x, w.shape[2], w.shape[3], pad, stride) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = w.reshape((w.shape[0], -1)).dot(x_cols) + b.reshape(-1, 1) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_forward_strides(x, w, b, conv_param): N, C, H, W = x.shape F, _, HH, WW = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - WW) % stride == 0, 'width does not work' assert (H + 2 * pad - HH) % stride == 0, 'height does not work' # Pad the input p = pad x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') # Figure out output dimensions H += 2 * pad W += 2 * pad out_h = (H - HH) / stride + 1 out_w = (W - WW) / stride + 1 # Perform an im2col operation by picking clever strides shape = (C, HH, WW, N, out_h, out_w) strides = (H * W, W, 1, C * H * W, stride * W, stride) strides = x.itemsize * np.array(strides) x_stride = np.lib.stride_tricks.as_strided(x_padded, shape=shape, strides=strides) x_cols = np.ascontiguousarray(x_stride) x_cols.shape = (C * HH * WW, N * out_h * out_w) # Now all our convolutions are a big matrix multiply res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1) # Reshape the output res.shape = (F, N, out_h, out_w) out = res.transpose(1, 0, 2, 3) # Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np.ascontiguousarray(out) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_backward_strides(dout, cache): x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, out_h, out_w = dout.shape db = np.sum(dout, axis=(0, 2, 3)) dout_reshaped = dout.transpose(1, 0, 2, 3).reshape(F, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(F, -1).T.dot(dout_reshaped) dx_cols.shape = (C, HH, WW, N, out_h, out_w) dx = col2im_6d_cython(dx_cols, N, C, H, W, HH, WW, pad, stride) return dx, dw, db def conv_backward_im2col(dout, cache): """ A fast implementation of the backward pass for a convolutional layer based on im2col and col2im. """ x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] db = np.sum(dout, axis=(0, 2, 3)) num_filters, _, filter_height, filter_width = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, -1).T.dot(dout_reshaped) # dx = col2im_indices(dx_cols, x.shape, filter_height, filter_width, pad, stride) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return dx, dw, db conv_forward_fast = conv_forward_strides conv_backward_fast = conv_backward_strides # MASKED: max_pool_forward_fast function (lines 132-153) def max_pool_backward_fast(dout, cache): """ A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache. """ method, real_cache = cache if method == 'reshape': return max_pool_backward_reshape(dout, real_cache) elif method == 'im2col': return max_pool_backward_im2col(dout, real_cache) else: raise ValueError('Unrecognized method "%s"' % method) def max_pool_forward_reshape(x, pool_param): """ A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert pool_height == pool_width == stride, 'Invalid pool params' assert H % pool_height == 0 assert W % pool_height == 0 x_reshaped = x.reshape(N, C, H / pool_height, pool_height, W / pool_width, pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return out, cache def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx def max_pool_forward_im2col(x, pool_param): """ An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert (H - pool_height) % stride == 0, 'Invalid height' assert (W - pool_width) % stride == 0, 'Invalid width' out_height = (H - pool_height) / stride + 1 out_width = (W - pool_width) / stride + 1 x_split = x.reshape(N * C, 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[x_cols_argmax, np.arange(x_cols.shape[1])] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return out, cache def max_pool_backward_im2col(dout, cache): """ An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ x, x_cols, x_cols_argmax, pool_param = cache N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped dx = col2im_indices(dx_cols, (N * C, 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
def max_pool_forward_fast(x, pool_param): """ A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] same_size = pool_height == pool_width == stride tiles = H % pool_height == 0 and W % pool_width == 0 if same_size and tiles: out, reshape_cache = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: out, im2col_cache = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return out, cache
132
153
import numpy as np try: from cs231n.im2col_cython import col2im_cython, im2col_cython from cs231n.im2col_cython import col2im_6d_cython except ImportError: print ('run the following from the cs231n directory and try again:') print ('python setup.py build_ext --inplace') print ('You may also need to restart your iPython kernel') from cs231n.im2col import * def conv_forward_im2col(x, w, b, conv_param): """ A fast implementation of the forward pass for a convolutional layer based on im2col and col2im. """ N, C, H, W = x.shape num_filters, _, filter_height, filter_width = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - filter_width) % stride == 0, 'width does not work' assert (H + 2 * pad - filter_height) % stride == 0, 'height does not work' # Create output out_height = (H + 2 * pad - filter_height) / stride + 1 out_width = (W + 2 * pad - filter_width) / stride + 1 out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) # x_cols = im2col_indices(x, w.shape[2], w.shape[3], pad, stride) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = w.reshape((w.shape[0], -1)).dot(x_cols) + b.reshape(-1, 1) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_forward_strides(x, w, b, conv_param): N, C, H, W = x.shape F, _, HH, WW = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - WW) % stride == 0, 'width does not work' assert (H + 2 * pad - HH) % stride == 0, 'height does not work' # Pad the input p = pad x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') # Figure out output dimensions H += 2 * pad W += 2 * pad out_h = (H - HH) / stride + 1 out_w = (W - WW) / stride + 1 # Perform an im2col operation by picking clever strides shape = (C, HH, WW, N, out_h, out_w) strides = (H * W, W, 1, C * H * W, stride * W, stride) strides = x.itemsize * np.array(strides) x_stride = np.lib.stride_tricks.as_strided(x_padded, shape=shape, strides=strides) x_cols = np.ascontiguousarray(x_stride) x_cols.shape = (C * HH * WW, N * out_h * out_w) # Now all our convolutions are a big matrix multiply res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1) # Reshape the output res.shape = (F, N, out_h, out_w) out = res.transpose(1, 0, 2, 3) # Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np.ascontiguousarray(out) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_backward_strides(dout, cache): x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, out_h, out_w = dout.shape db = np.sum(dout, axis=(0, 2, 3)) dout_reshaped = dout.transpose(1, 0, 2, 3).reshape(F, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(F, -1).T.dot(dout_reshaped) dx_cols.shape = (C, HH, WW, N, out_h, out_w) dx = col2im_6d_cython(dx_cols, N, C, H, W, HH, WW, pad, stride) return dx, dw, db def conv_backward_im2col(dout, cache): """ A fast implementation of the backward pass for a convolutional layer based on im2col and col2im. """ x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] db = np.sum(dout, axis=(0, 2, 3)) num_filters, _, filter_height, filter_width = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, -1).T.dot(dout_reshaped) # dx = col2im_indices(dx_cols, x.shape, filter_height, filter_width, pad, stride) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return dx, dw, db conv_forward_fast = conv_forward_strides conv_backward_fast = conv_backward_strides def max_pool_forward_fast(x, pool_param): """ A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] same_size = pool_height == pool_width == stride tiles = H % pool_height == 0 and W % pool_width == 0 if same_size and tiles: out, reshape_cache = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: out, im2col_cache = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return out, cache def max_pool_backward_fast(dout, cache): """ A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache. """ method, real_cache = cache if method == 'reshape': return max_pool_backward_reshape(dout, real_cache) elif method == 'im2col': return max_pool_backward_im2col(dout, real_cache) else: raise ValueError('Unrecognized method "%s"' % method) def max_pool_forward_reshape(x, pool_param): """ A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert pool_height == pool_width == stride, 'Invalid pool params' assert H % pool_height == 0 assert W % pool_height == 0 x_reshaped = x.reshape(N, C, H / pool_height, pool_height, W / pool_width, pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return out, cache def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx def max_pool_forward_im2col(x, pool_param): """ An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert (H - pool_height) % stride == 0, 'Invalid height' assert (W - pool_width) % stride == 0, 'Invalid width' out_height = (H - pool_height) / stride + 1 out_width = (W - pool_width) / stride + 1 x_split = x.reshape(N * C, 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[x_cols_argmax, np.arange(x_cols.shape[1])] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return out, cache def max_pool_backward_im2col(dout, cache): """ An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ x, x_cols, x_cols_argmax, pool_param = cache N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped dx = col2im_indices(dx_cols, (N * C, 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
max_pool_backward_reshape
A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it.
import numpy as np try: from cs231n.im2col_cython import col2im_cython, im2col_cython from cs231n.im2col_cython import col2im_6d_cython except ImportError: print ('run the following from the cs231n directory and try again:') print ('python setup.py build_ext --inplace') print ('You may also need to restart your iPython kernel') from cs231n.im2col import * def conv_forward_im2col(x, w, b, conv_param): """ A fast implementation of the forward pass for a convolutional layer based on im2col and col2im. """ N, C, H, W = x.shape num_filters, _, filter_height, filter_width = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - filter_width) % stride == 0, 'width does not work' assert (H + 2 * pad - filter_height) % stride == 0, 'height does not work' # Create output out_height = (H + 2 * pad - filter_height) / stride + 1 out_width = (W + 2 * pad - filter_width) / stride + 1 out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) # x_cols = im2col_indices(x, w.shape[2], w.shape[3], pad, stride) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = w.reshape((w.shape[0], -1)).dot(x_cols) + b.reshape(-1, 1) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_forward_strides(x, w, b, conv_param): N, C, H, W = x.shape F, _, HH, WW = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - WW) % stride == 0, 'width does not work' assert (H + 2 * pad - HH) % stride == 0, 'height does not work' # Pad the input p = pad x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') # Figure out output dimensions H += 2 * pad W += 2 * pad out_h = (H - HH) / stride + 1 out_w = (W - WW) / stride + 1 # Perform an im2col operation by picking clever strides shape = (C, HH, WW, N, out_h, out_w) strides = (H * W, W, 1, C * H * W, stride * W, stride) strides = x.itemsize * np.array(strides) x_stride = np.lib.stride_tricks.as_strided(x_padded, shape=shape, strides=strides) x_cols = np.ascontiguousarray(x_stride) x_cols.shape = (C * HH * WW, N * out_h * out_w) # Now all our convolutions are a big matrix multiply res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1) # Reshape the output res.shape = (F, N, out_h, out_w) out = res.transpose(1, 0, 2, 3) # Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np.ascontiguousarray(out) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_backward_strides(dout, cache): x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, out_h, out_w = dout.shape db = np.sum(dout, axis=(0, 2, 3)) dout_reshaped = dout.transpose(1, 0, 2, 3).reshape(F, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(F, -1).T.dot(dout_reshaped) dx_cols.shape = (C, HH, WW, N, out_h, out_w) dx = col2im_6d_cython(dx_cols, N, C, H, W, HH, WW, pad, stride) return dx, dw, db def conv_backward_im2col(dout, cache): """ A fast implementation of the backward pass for a convolutional layer based on im2col and col2im. """ x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] db = np.sum(dout, axis=(0, 2, 3)) num_filters, _, filter_height, filter_width = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, -1).T.dot(dout_reshaped) # dx = col2im_indices(dx_cols, x.shape, filter_height, filter_width, pad, stride) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return dx, dw, db conv_forward_fast = conv_forward_strides conv_backward_fast = conv_backward_strides def max_pool_forward_fast(x, pool_param): """ A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] same_size = pool_height == pool_width == stride tiles = H % pool_height == 0 and W % pool_width == 0 if same_size and tiles: out, reshape_cache = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: out, im2col_cache = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return out, cache def max_pool_backward_fast(dout, cache): """ A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache. """ method, real_cache = cache if method == 'reshape': return max_pool_backward_reshape(dout, real_cache) elif method == 'im2col': return max_pool_backward_im2col(dout, real_cache) else: raise ValueError('Unrecognized method "%s"' % method) def max_pool_forward_reshape(x, pool_param): """ A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert pool_height == pool_width == stride, 'Invalid pool params' assert H % pool_height == 0 assert W % pool_height == 0 x_reshaped = x.reshape(N, C, H / pool_height, pool_height, W / pool_width, pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return out, cache # MASKED: max_pool_backward_reshape function (lines 193-221) def max_pool_forward_im2col(x, pool_param): """ An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert (H - pool_height) % stride == 0, 'Invalid height' assert (W - pool_width) % stride == 0, 'Invalid width' out_height = (H - pool_height) / stride + 1 out_width = (W - pool_width) / stride + 1 x_split = x.reshape(N * C, 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[x_cols_argmax, np.arange(x_cols.shape[1])] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return out, cache def max_pool_backward_im2col(dout, cache): """ An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ x, x_cols, x_cols_argmax, pool_param = cache N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped dx = col2im_indices(dx_cols, (N * C, 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx
193
221
import numpy as np try: from cs231n.im2col_cython import col2im_cython, im2col_cython from cs231n.im2col_cython import col2im_6d_cython except ImportError: print ('run the following from the cs231n directory and try again:') print ('python setup.py build_ext --inplace') print ('You may also need to restart your iPython kernel') from cs231n.im2col import * def conv_forward_im2col(x, w, b, conv_param): """ A fast implementation of the forward pass for a convolutional layer based on im2col and col2im. """ N, C, H, W = x.shape num_filters, _, filter_height, filter_width = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - filter_width) % stride == 0, 'width does not work' assert (H + 2 * pad - filter_height) % stride == 0, 'height does not work' # Create output out_height = (H + 2 * pad - filter_height) / stride + 1 out_width = (W + 2 * pad - filter_width) / stride + 1 out = np.zeros((N, num_filters, out_height, out_width), dtype=x.dtype) # x_cols = im2col_indices(x, w.shape[2], w.shape[3], pad, stride) x_cols = im2col_cython(x, w.shape[2], w.shape[3], pad, stride) res = w.reshape((w.shape[0], -1)).dot(x_cols) + b.reshape(-1, 1) out = res.reshape(w.shape[0], out.shape[2], out.shape[3], x.shape[0]) out = out.transpose(3, 0, 1, 2) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_forward_strides(x, w, b, conv_param): N, C, H, W = x.shape F, _, HH, WW = w.shape stride, pad = conv_param['stride'], conv_param['pad'] # Check dimensions assert (W + 2 * pad - WW) % stride == 0, 'width does not work' assert (H + 2 * pad - HH) % stride == 0, 'height does not work' # Pad the input p = pad x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') # Figure out output dimensions H += 2 * pad W += 2 * pad out_h = (H - HH) / stride + 1 out_w = (W - WW) / stride + 1 # Perform an im2col operation by picking clever strides shape = (C, HH, WW, N, out_h, out_w) strides = (H * W, W, 1, C * H * W, stride * W, stride) strides = x.itemsize * np.array(strides) x_stride = np.lib.stride_tricks.as_strided(x_padded, shape=shape, strides=strides) x_cols = np.ascontiguousarray(x_stride) x_cols.shape = (C * HH * WW, N * out_h * out_w) # Now all our convolutions are a big matrix multiply res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1) # Reshape the output res.shape = (F, N, out_h, out_w) out = res.transpose(1, 0, 2, 3) # Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np.ascontiguousarray(out) cache = (x, w, b, conv_param, x_cols) return out, cache def conv_backward_strides(dout, cache): x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, out_h, out_w = dout.shape db = np.sum(dout, axis=(0, 2, 3)) dout_reshaped = dout.transpose(1, 0, 2, 3).reshape(F, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(F, -1).T.dot(dout_reshaped) dx_cols.shape = (C, HH, WW, N, out_h, out_w) dx = col2im_6d_cython(dx_cols, N, C, H, W, HH, WW, pad, stride) return dx, dw, db def conv_backward_im2col(dout, cache): """ A fast implementation of the backward pass for a convolutional layer based on im2col and col2im. """ x, w, b, conv_param, x_cols = cache stride, pad = conv_param['stride'], conv_param['pad'] db = np.sum(dout, axis=(0, 2, 3)) num_filters, _, filter_height, filter_width = w.shape dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1) dw = dout_reshaped.dot(x_cols.T).reshape(w.shape) dx_cols = w.reshape(num_filters, -1).T.dot(dout_reshaped) # dx = col2im_indices(dx_cols, x.shape, filter_height, filter_width, pad, stride) dx = col2im_cython(dx_cols, x.shape[0], x.shape[1], x.shape[2], x.shape[3], filter_height, filter_width, pad, stride) return dx, dw, db conv_forward_fast = conv_forward_strides conv_backward_fast = conv_backward_strides def max_pool_forward_fast(x, pool_param): """ A fast implementation of the forward pass for a max pooling layer. This chooses between the reshape method and the im2col method. If the pooling regions are square and tile the input image, then we can use the reshape method which is very fast. Otherwise we fall back on the im2col method, which is not much faster than the naive method. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] same_size = pool_height == pool_width == stride tiles = H % pool_height == 0 and W % pool_width == 0 if same_size and tiles: out, reshape_cache = max_pool_forward_reshape(x, pool_param) cache = ('reshape', reshape_cache) else: out, im2col_cache = max_pool_forward_im2col(x, pool_param) cache = ('im2col', im2col_cache) return out, cache def max_pool_backward_fast(dout, cache): """ A fast implementation of the backward pass for a max pooling layer. This switches between the reshape method an the im2col method depending on which method was used to generate the cache. """ method, real_cache = cache if method == 'reshape': return max_pool_backward_reshape(dout, real_cache) elif method == 'im2col': return max_pool_backward_im2col(dout, real_cache) else: raise ValueError('Unrecognized method "%s"' % method) def max_pool_forward_reshape(x, pool_param): """ A fast implementation of the forward pass for the max pooling layer that uses some clever reshaping. This can only be used for square pooling regions that tile the input. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert pool_height == pool_width == stride, 'Invalid pool params' assert H % pool_height == 0 assert W % pool_height == 0 x_reshaped = x.reshape(N, C, H / pool_height, pool_height, W / pool_width, pool_width) out = x_reshaped.max(axis=3).max(axis=4) cache = (x, x_reshaped, out) return out, cache def max_pool_backward_reshape(dout, cache): """ A fast implementation of the backward pass for the max pooling layer that uses some clever broadcasting and reshaping. This can only be used if the forward pass was computed using max_pool_forward_reshape. NOTE: If there are multiple argmaxes, this method will assign gradient to ALL argmax elements of the input rather than picking one. In this case the gradient will actually be incorrect. However this is unlikely to occur in practice, so it shouldn't matter much. One possible solution is to split the upstream gradient equally among all argmax elements; this should result in a valid subgradient. You can make this happen by uncommenting the line below; however this results in a significant performance penalty (about 40% slower) and is unlikely to matter in practice so we don't do it. """ x, x_reshaped, out = cache dx_reshaped = np.zeros_like(x_reshaped) out_newaxis = out[:, :, :, np.newaxis, :, np.newaxis] mask = (x_reshaped == out_newaxis) dout_newaxis = dout[:, :, :, np.newaxis, :, np.newaxis] dout_broadcast, _ = np.broadcast_arrays(dout_newaxis, dx_reshaped) dx_reshaped[mask] = dout_broadcast[mask] dx_reshaped /= np.sum(mask, axis=(3, 5), keepdims=True) dx = dx_reshaped.reshape(x.shape) return dx def max_pool_forward_im2col(x, pool_param): """ An implementation of the forward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] assert (H - pool_height) % stride == 0, 'Invalid height' assert (W - pool_width) % stride == 0, 'Invalid width' out_height = (H - pool_height) / stride + 1 out_width = (W - pool_width) / stride + 1 x_split = x.reshape(N * C, 1, H, W) x_cols = im2col(x_split, pool_height, pool_width, padding=0, stride=stride) x_cols_argmax = np.argmax(x_cols, axis=0) x_cols_max = x_cols[x_cols_argmax, np.arange(x_cols.shape[1])] out = x_cols_max.reshape(out_height, out_width, N, C).transpose(2, 3, 0, 1) cache = (x, x_cols, x_cols_argmax, pool_param) return out, cache def max_pool_backward_im2col(dout, cache): """ An implementation of the backward pass for max pooling based on im2col. This isn't much faster than the naive version, so it should be avoided if possible. """ x, x_cols, x_cols_argmax, pool_param = cache N, C, H, W = x.shape pool_height, pool_width = pool_param['pool_height'], pool_param['pool_width'] stride = pool_param['stride'] dout_reshaped = dout.transpose(2, 3, 0, 1).flatten() dx_cols = np.zeros_like(x_cols) dx_cols[x_cols_argmax, np.arange(dx_cols.shape[1])] = dout_reshaped dx = col2im_indices(dx_cols, (N * C, 1, H, W), pool_height, pool_width, padding=0, stride=stride) dx = dx.reshape(x.shape) return dx
parse
Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import fire import json import jsonpickle import random import ast from typing import Any, Union from magma.common.redis.client import get_default_client from magma.common.redis.serializers import get_json_deserializer, \ get_proto_deserializer from magma.mobilityd.serialize_utils import deserialize_ip_block, \ deserialize_ip_desc from lte.protos.keyval_pb2 import IPDesc from lte.protos.policydb_pb2 import PolicyRule, InstalledPolicies from lte.protos.oai.mme_nas_state_pb2 import MmeNasState, UeContext from lte.protos.oai.spgw_state_pb2 import SpgwState, S11BearerContext from lte.protos.oai.s1ap_state_pb2 import S1apState, UeDescription def _deserialize_session_json(serialized_json_str: bytes) -> str: """ Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str """ res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped def _deserialize_generic_json( element: Union[str, dict, list])-> Union[str, dict, list]: """ Helper function to deserialize dictionaries or list with nested json strings :param element """ if isinstance(element, str): # try to deserialize as json string try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: # in case it is neither of the know elements, just return as is return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element class StateCLI(object): """ CLI for debugging current Magma services state and displaying it in readable manner. """ STATE_DESERIALIZERS = { 'assigned_ip_blocks': deserialize_ip_block, 'ip_states': deserialize_ip_desc, 'sessions': _deserialize_session_json, 'rule_names': get_json_deserializer(), 'rule_ids': get_json_deserializer(), 'rule_versions': get_json_deserializer(), } STATE_PROTOS = { 'mme_nas_state': MmeNasState, 'spgw_state': SpgwState, 's1ap_state': S1apState, 'mme': UeContext, 'spgw': S11BearerContext, 's1ap': UeDescription, 'mobilityd_ipdesc_record': IPDesc, 'rules': PolicyRule, 'installed': InstalledPolicies, } def __init__(self): self.client = get_default_client() def keys(self, redis_key: str): """ Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys """ for k in self.client.keys(pattern="{}*".format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key) # MASKED: parse function (lines 117-146) def corrupt(self, key): """ Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis """ rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print('Corrupted %s in redis' % key) def _parse_state_json(self, value): if value: deserializer = get_json_deserializer() value = json.loads(jsonpickle.encode(deserializer(value))) print(json.dumps(value, indent=2, sort_keys=True)) else: raise AttributeError('Key not found on redis') def _parse_state_proto(self, key_type, value): proto = self.STATE_PROTOS.get(key_type.lower()) if proto: deserializer = get_proto_deserializer(proto) print(deserializer(value)) else: raise AttributeError('Key not found on redis') def _parse_set_type(self, deserializer, key): set_values = self.client.smembers(key) for value in set_values: print(deserializer(value)) def _parse_hash_type(self, deserializer, key): value = self.client.hgetall(key) for key, val in value.items(): print(key.decode('utf-8')) print(deserializer(val)) if __name__ == "__main__": state_cli = StateCLI() try: fire.Fire(state_cli) except Exception as e: print('Error: {}'.format(e))
def parse(self, key: str): """ Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis """ redis_type = self.client.type(key).decode('utf-8') key_type = key if ":" in key: key_type = key.split(":")[1] if redis_type == 'hash': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif redis_type == 'set': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) # Try parsing as json first, if there's decoding error, parse proto try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value)
117
146
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import fire import json import jsonpickle import random import ast from typing import Any, Union from magma.common.redis.client import get_default_client from magma.common.redis.serializers import get_json_deserializer, \ get_proto_deserializer from magma.mobilityd.serialize_utils import deserialize_ip_block, \ deserialize_ip_desc from lte.protos.keyval_pb2 import IPDesc from lte.protos.policydb_pb2 import PolicyRule, InstalledPolicies from lte.protos.oai.mme_nas_state_pb2 import MmeNasState, UeContext from lte.protos.oai.spgw_state_pb2 import SpgwState, S11BearerContext from lte.protos.oai.s1ap_state_pb2 import S1apState, UeDescription def _deserialize_session_json(serialized_json_str: bytes) -> str: """ Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str """ res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped def _deserialize_generic_json( element: Union[str, dict, list])-> Union[str, dict, list]: """ Helper function to deserialize dictionaries or list with nested json strings :param element """ if isinstance(element, str): # try to deserialize as json string try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: # in case it is neither of the know elements, just return as is return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element class StateCLI(object): """ CLI for debugging current Magma services state and displaying it in readable manner. """ STATE_DESERIALIZERS = { 'assigned_ip_blocks': deserialize_ip_block, 'ip_states': deserialize_ip_desc, 'sessions': _deserialize_session_json, 'rule_names': get_json_deserializer(), 'rule_ids': get_json_deserializer(), 'rule_versions': get_json_deserializer(), } STATE_PROTOS = { 'mme_nas_state': MmeNasState, 'spgw_state': SpgwState, 's1ap_state': S1apState, 'mme': UeContext, 'spgw': S11BearerContext, 's1ap': UeDescription, 'mobilityd_ipdesc_record': IPDesc, 'rules': PolicyRule, 'installed': InstalledPolicies, } def __init__(self): self.client = get_default_client() def keys(self, redis_key: str): """ Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys """ for k in self.client.keys(pattern="{}*".format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key) def parse(self, key: str): """ Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis """ redis_type = self.client.type(key).decode('utf-8') key_type = key if ":" in key: key_type = key.split(":")[1] if redis_type == 'hash': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif redis_type == 'set': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) # Try parsing as json first, if there's decoding error, parse proto try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value) def corrupt(self, key): """ Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis """ rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print('Corrupted %s in redis' % key) def _parse_state_json(self, value): if value: deserializer = get_json_deserializer() value = json.loads(jsonpickle.encode(deserializer(value))) print(json.dumps(value, indent=2, sort_keys=True)) else: raise AttributeError('Key not found on redis') def _parse_state_proto(self, key_type, value): proto = self.STATE_PROTOS.get(key_type.lower()) if proto: deserializer = get_proto_deserializer(proto) print(deserializer(value)) else: raise AttributeError('Key not found on redis') def _parse_set_type(self, deserializer, key): set_values = self.client.smembers(key) for value in set_values: print(deserializer(value)) def _parse_hash_type(self, deserializer, key): value = self.client.hgetall(key) for key, val in value.items(): print(key.decode('utf-8')) print(deserializer(val)) if __name__ == "__main__": state_cli = StateCLI() try: fire.Fire(state_cli) except Exception as e: print('Error: {}'.format(e))
corrupt
Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import fire import json import jsonpickle import random import ast from typing import Any, Union from magma.common.redis.client import get_default_client from magma.common.redis.serializers import get_json_deserializer, \ get_proto_deserializer from magma.mobilityd.serialize_utils import deserialize_ip_block, \ deserialize_ip_desc from lte.protos.keyval_pb2 import IPDesc from lte.protos.policydb_pb2 import PolicyRule, InstalledPolicies from lte.protos.oai.mme_nas_state_pb2 import MmeNasState, UeContext from lte.protos.oai.spgw_state_pb2 import SpgwState, S11BearerContext from lte.protos.oai.s1ap_state_pb2 import S1apState, UeDescription def _deserialize_session_json(serialized_json_str: bytes) -> str: """ Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str """ res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped def _deserialize_generic_json( element: Union[str, dict, list])-> Union[str, dict, list]: """ Helper function to deserialize dictionaries or list with nested json strings :param element """ if isinstance(element, str): # try to deserialize as json string try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: # in case it is neither of the know elements, just return as is return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element class StateCLI(object): """ CLI for debugging current Magma services state and displaying it in readable manner. """ STATE_DESERIALIZERS = { 'assigned_ip_blocks': deserialize_ip_block, 'ip_states': deserialize_ip_desc, 'sessions': _deserialize_session_json, 'rule_names': get_json_deserializer(), 'rule_ids': get_json_deserializer(), 'rule_versions': get_json_deserializer(), } STATE_PROTOS = { 'mme_nas_state': MmeNasState, 'spgw_state': SpgwState, 's1ap_state': S1apState, 'mme': UeContext, 'spgw': S11BearerContext, 's1ap': UeDescription, 'mobilityd_ipdesc_record': IPDesc, 'rules': PolicyRule, 'installed': InstalledPolicies, } def __init__(self): self.client = get_default_client() def keys(self, redis_key: str): """ Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys """ for k in self.client.keys(pattern="{}*".format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key) def parse(self, key: str): """ Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis """ redis_type = self.client.type(key).decode('utf-8') key_type = key if ":" in key: key_type = key.split(":")[1] if redis_type == 'hash': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif redis_type == 'set': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) # Try parsing as json first, if there's decoding error, parse proto try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value) # MASKED: corrupt function (lines 148-160) def _parse_state_json(self, value): if value: deserializer = get_json_deserializer() value = json.loads(jsonpickle.encode(deserializer(value))) print(json.dumps(value, indent=2, sort_keys=True)) else: raise AttributeError('Key not found on redis') def _parse_state_proto(self, key_type, value): proto = self.STATE_PROTOS.get(key_type.lower()) if proto: deserializer = get_proto_deserializer(proto) print(deserializer(value)) else: raise AttributeError('Key not found on redis') def _parse_set_type(self, deserializer, key): set_values = self.client.smembers(key) for value in set_values: print(deserializer(value)) def _parse_hash_type(self, deserializer, key): value = self.client.hgetall(key) for key, val in value.items(): print(key.decode('utf-8')) print(deserializer(val)) if __name__ == "__main__": state_cli = StateCLI() try: fire.Fire(state_cli) except Exception as e: print('Error: {}'.format(e))
def corrupt(self, key): """ Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis """ rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print('Corrupted %s in redis' % key)
148
160
#!/usr/bin/env python3 """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import fire import json import jsonpickle import random import ast from typing import Any, Union from magma.common.redis.client import get_default_client from magma.common.redis.serializers import get_json_deserializer, \ get_proto_deserializer from magma.mobilityd.serialize_utils import deserialize_ip_block, \ deserialize_ip_desc from lte.protos.keyval_pb2 import IPDesc from lte.protos.policydb_pb2 import PolicyRule, InstalledPolicies from lte.protos.oai.mme_nas_state_pb2 import MmeNasState, UeContext from lte.protos.oai.spgw_state_pb2 import SpgwState, S11BearerContext from lte.protos.oai.s1ap_state_pb2 import S1apState, UeDescription def _deserialize_session_json(serialized_json_str: bytes) -> str: """ Helper function to deserialize sessiond:sessions hash list values :param serialized_json_str """ res = _deserialize_generic_json(str(serialized_json_str, 'utf-8', 'ignore')) dumped = json.dumps(res, indent=2, sort_keys=True) return dumped def _deserialize_generic_json( element: Union[str, dict, list])-> Union[str, dict, list]: """ Helper function to deserialize dictionaries or list with nested json strings :param element """ if isinstance(element, str): # try to deserialize as json string try: element = ast.literal_eval(element) except: try: element = jsonpickle.decode(element) except: return element if isinstance(element, dict): keys = element.keys() elif isinstance(element, list): keys = range(len(element)) else: # in case it is neither of the know elements, just return as is return element for k in keys: element[k] = _deserialize_generic_json(element[k]) return element class StateCLI(object): """ CLI for debugging current Magma services state and displaying it in readable manner. """ STATE_DESERIALIZERS = { 'assigned_ip_blocks': deserialize_ip_block, 'ip_states': deserialize_ip_desc, 'sessions': _deserialize_session_json, 'rule_names': get_json_deserializer(), 'rule_ids': get_json_deserializer(), 'rule_versions': get_json_deserializer(), } STATE_PROTOS = { 'mme_nas_state': MmeNasState, 'spgw_state': SpgwState, 's1ap_state': S1apState, 'mme': UeContext, 'spgw': S11BearerContext, 's1ap': UeDescription, 'mobilityd_ipdesc_record': IPDesc, 'rules': PolicyRule, 'installed': InstalledPolicies, } def __init__(self): self.client = get_default_client() def keys(self, redis_key: str): """ Get current keys on redis db that match the pattern Args: redis_key:pattern to match the redis keys """ for k in self.client.keys(pattern="{}*".format(redis_key)): deserialized_key = k.decode('utf-8') print(deserialized_key) def parse(self, key: str): """ Parse value of redis key on redis for encoded HASH, SET types, or JSON / Protobuf encoded state-wrapped types and prints it Args: key: key on redis """ redis_type = self.client.type(key).decode('utf-8') key_type = key if ":" in key: key_type = key.split(":")[1] if redis_type == 'hash': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_hash_type(deserializer, key) elif redis_type == 'set': deserializer = self.STATE_DESERIALIZERS.get(key_type) if not deserializer: raise AttributeError('Key not found on redis') self._parse_set_type(deserializer, key) else: value = self.client.get(key) # Try parsing as json first, if there's decoding error, parse proto try: self._parse_state_json(value) except UnicodeDecodeError: self._parse_state_proto(key_type, value) def corrupt(self, key): """ Mostly used for debugging, purposely corrupts state encoded protobuf in redis, and writes it back to datastore Args: key: key on redis """ rand_bytes = random.getrandbits(8) byte_str = bytes([rand_bytes]) self.client[key] = byte_str print('Corrupted %s in redis' % key) def _parse_state_json(self, value): if value: deserializer = get_json_deserializer() value = json.loads(jsonpickle.encode(deserializer(value))) print(json.dumps(value, indent=2, sort_keys=True)) else: raise AttributeError('Key not found on redis') def _parse_state_proto(self, key_type, value): proto = self.STATE_PROTOS.get(key_type.lower()) if proto: deserializer = get_proto_deserializer(proto) print(deserializer(value)) else: raise AttributeError('Key not found on redis') def _parse_set_type(self, deserializer, key): set_values = self.client.smembers(key) for value in set_values: print(deserializer(value)) def _parse_hash_type(self, deserializer, key): value = self.client.hgetall(key) for key, val in value.items(): print(key.decode('utf-8')) print(deserializer(val)) if __name__ == "__main__": state_cli = StateCLI() try: fire.Fire(state_cli) except Exception as e: print('Error: {}'.format(e))
is_since
tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) # MASKED: is_since function (lines 122-150) def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date
122
150
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
is_before
tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date # MASKED: is_before function (lines 153-185) def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date
153
185
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
is_between
tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date)
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date # MASKED: is_between function (lines 188-228) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd )
188
228
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
has_started
true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) # MASKED: has_started function (lines 231-256) def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time()
231
256
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
has_finished
true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() # MASKED: has_finished function (lines 259-284) def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time()
259
284
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
group
Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]}
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status # MASKED: group function (lines 801-836) def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped
801
836
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
group_member_ids
Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") # MASKED: group_member_ids function (lines 862-895)
def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
862
895
"""Misc. regolith tools. """ import email.utils import os import platform import re import sys import time from copy import deepcopy from calendar import monthrange from datetime import datetime, date, timedelta from regolith.dates import month_to_int, date_to_float, get_dates from regolith.sorters import doc_date_key, id_key, ene_date_key from regolith.chained_db import ChainDB try: from bibtexparser.bwriter import BibTexWriter from bibtexparser.bibdatabase import BibDatabase HAVE_BIBTEX_PARSER = True except ImportError: HAVE_BIBTEX_PARSER = False LATEX_OPTS = ["-halt-on-error", "-file-line-error"] if sys.version_info[0] >= 3: string_types = (str, bytes) unicode_type = str else: pass # string_types = (str, unicode) # unicode_type = unicode DEFAULT_ENCODING = sys.getdefaultencoding() ON_WINDOWS = platform.system() == "Windows" ON_MAC = platform.system() == "Darwin" ON_LINUX = platform.system() == "Linux" ON_POSIX = os.name == "posix" def dbdirname(db, rc): """Gets the database dir name.""" if db.get("local", False) is False: dbsdir = os.path.join(rc.builddir, "_dbs") dbdir = os.path.join(dbsdir, db["name"]) else: dbdir = db["url"] return dbdir def dbpathname(db, rc): """Gets the database path name.""" dbdir = dbdirname(db, rc) dbpath = os.path.join(dbdir, db["path"]) return dbpath def fallback(cond, backup): """Decorator for returning the object if cond is true and a backup if cond is false. """ def dec(obj): return obj if cond else backup return dec def all_docs_from_collection(client, collname, copy=True): """Yield all entries in for all collections of a given name in a given database. """ yield from client.all_documents(collname, copy=copy) SHORT_MONTH_NAMES = ( None, "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec", ) def date_to_rfc822(y, m, d=1): """Converts a date to an RFC 822 formatted string.""" d = datetime(int(y), month_to_int(m), int(d)) return email.utils.format_datetime(d) def rfc822now(): """Creates a string of the current time according to RFC 822.""" now = datetime.utcnow() return email.utils.format_datetime(now) def gets(seq, key, default=None): """Gets a key from every element of a sequence if possible.""" for x in seq: yield x.get(key, default) def month_and_year(m=None, y=None): """Creates a string from month and year data, if available.""" if y is None: return "present" if m is None: return str(y) m = month_to_int(m) return "{0} {1}".format(SHORT_MONTH_NAMES[m], y) def is_since(y, sy, m=1, d=1, sm=1, sd=1): """ tests whether a date is on or since another date Parameters ---------- y : int the year to be tested sy : int the since year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan sd: int the since day. Optional, defaults to 1 Returns ------- True if the target date is the same as, or more recent than, the since date """ s = "{}/{}/{}".format(sd, month_to_int(sm), sy) d = "{}/{}/{}".format(d, month_to_int(m), y) since = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return since <= date def is_before(y, by, m=12, d=None, bm=12, bd=None): """ tests whether a date is on or before another date Parameters ---------- y : int the year to be tested by : int the before year m : int or str the month to be tested. Optional, defaults to Dec d : int the day to be tested. Defaults to last day of the month bm : int or str the before month. Optional, defaults to Dec bd: int the before day. Optional, defaults to last day of the month Returns ------- True if the target date is the same as, or earlier than, the before date """ if not d: d = monthrange(y, month_to_int(m))[1] if not bd: bd = monthrange(by, month_to_int(bm))[1] b = "{}/{}/{}".format(bd, month_to_int(bm), by) d = "{}/{}/{}".format(d, month_to_int(m), y) before = time.mktime(datetime.strptime(b, "%d/%m/%Y").timetuple()) date = time.mktime(datetime.strptime(d, "%d/%m/%Y").timetuple()) return before >= date def is_between(y, sy, by, m=1, d=1, sm=1, sd=1, bm=12, bd=None): """ tests whether a date is on or between two other dates returns true if the target date is between the since date and the before date, inclusive. Parameters ---------- y : int the year to be tested sy : int the since year by : int the before year m : int or str the month to be tested. Optional, defaults to Jan d : int the day to be tested. Defaults to 1 sm : int or str the since month. Optional, defaults to Jan bm : int or str the before month. Optional, defaults to Dec sd: int the since day. Optional, defaults to 1 bd: int the before day. Optional, defaults to 28 Returns ------- True if the target date is between the since date and the before date, inclusive (i.e., returns true if the target date is the same as either the since date or the before date) """ if not bd: bd = monthrange(by, month_to_int(bm))[1] return is_since(y, sy, m=m, d=d, sm=sm, sd=sd) and is_before( y, by, m=m, d=d, bm=bm, bd=bd ) def has_started(sy, sm=None, sd=None): """ true if today is after the dates given, inclusive Parameters ---------- sy : int the year to check today against sm : int or str. the month to check today against. Should be integer or in regolith MONTHS. default is 1 sd : int. the day to check today against. Default is 1 Returns ------- bool true if today is after dates given """ if not sm: sm = 1 if not sd: sd = 1 s = "{}/{}/{}".format(sd, month_to_int(sm), sy) start = time.mktime(datetime.strptime(s, "%d/%m/%Y").timetuple()) return start <= time.time() def has_finished(ey, em=None, ed=None): """ true if today is before the dates given, inclusive Parameters ---------- ey : int end year, the year to check today against em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. default is 1 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ if not em: em = 12 if not ed: ed = monthrange(ey, month_to_int(em))[1] e = "{}/{}/{}".format(ed, month_to_int(em), ey) end = time.mktime(datetime.strptime(e, "%d/%m/%Y").timetuple()) return end <= time.time() def is_current(sy, ey, sm=None, sd=None, em=None, ed=None): """ true if today is between the dates given, inclusive Parameters ---------- sy : int start year, the year to check today is after ey : int end year, the year to check today is before sm : int or str start month, the month to check today is after. Should be integer or in regolith MONTHS. Default is 1 sd : int start day, the day to check today after. Default is 1 em : int or str. end month, the month to check today against. Should be integer or in regolith MONTHS. Default is 12 ed : int. end-day, the day to check today against. Default is last day of the month Returns ------- bool true if today is before dates given """ return has_started(sy, sm, sd) and not has_finished(ey, em, ed) def filter_publications(citations, authors, reverse=False, bold=True): """Filter publications by the author(s)/editor(s) Parameters ---------- citations : list of dict The publication citations authors : set of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False bold : bool, optional If True put latex bold around the author(s) in question """ pubs = [] for pub in citations: if ( len((set(pub.get("author", [])) | set( pub.get("editor", []))) & authors) == 0 ): continue pub = deepcopy(pub) if bold: bold_self = [] for a in pub["author"]: if a in authors: bold_self.append("\\textbf{" + a + "}") else: bold_self.append(a) pub["author"] = bold_self else: pub = deepcopy(pub) pubs.append(pub) pubs.sort(key=doc_date_key, reverse=reverse) return pubs def filter_projects(projects, authors, reverse=False): """Filter projects by the author(s) Parameters ---------- projects : list of dict The publication citations authors : set of list of str The authors to be filtered against reverse : bool, optional If True reverse the order, defaults to False """ projs = [] for proj in projects: team_names = set(gets(proj["team"], "name")) if len(team_names & authors) == 0: continue # FIXME delete these lines if not required. I think they are wrong (SJLB) # proj = dict(proj) # proj["team"] = [x for x in proj["team"] if x["name"] in authors] projs.append(proj) projs.sort(key=id_key, reverse=reverse) return projs def filter_grants(input_grants, names, pi=True, reverse=True, multi_pi=False): """Filter grants by those involved Parameters ---------- input_grants : list of dict The grants to filter names : set of str The authors to be filtered against pi : bool, optional If True add the grant amount to that person's total amount reverse : bool, optional If True reverse the order, defaults to False multi_pi : bool, optional If True compute sub-awards for multi PI grants, defaults to False """ grants = [] total_amount = 0.0 subaward_amount = 0.0 for grant in input_grants: team_names = set(gets(grant["team"], "name")) if len(team_names & names) == 0: continue grant = deepcopy(grant) person = [x for x in grant["team"] if x["name"] in names][0] if pi: if person["position"].lower() == "pi": total_amount += grant["amount"] else: continue elif multi_pi: grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["multi_pi"] = any(gets(grant["team"], "subaward_amount")) else: if person["position"].lower() == "pi": continue else: total_amount += grant["amount"] subaward_amount += person.get("subaward_amount", 0.0) grant["subaward_amount"] = person.get("subaward_amount", 0.0) grant["pi"] = [ x for x in grant["team"] if x["position"].lower() == "pi" ][0] grant["me"] = person grants.append(grant) grants.sort(key=ene_date_key, reverse=reverse) return grants, total_amount, subaward_amount def awards_grants_honors(p): """Make sorted awards grants and honors list. Parameters ---------- p : dict The person entry """ aghs = [] for x in p.get("funding", ()): d = { "description": "{0} ({1}{2:,})".format( latex_safe(x["name"]), x.get("currency", "$").replace("$", "\$"), x["value"], ), "year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0)), } aghs.append(d) for x in p.get("service", []) + p.get("honors", []): d = {"description": latex_safe(x["name"])} if "year" in x: d.update( {"year": x["year"], "_key": date_to_float(x["year"], x.get("month", 0))} ) elif "begin_year" in x and "end_year" in x: d.update( { "year": "{}-{}".format(x["begin_year"], x["end_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) elif "begin_year" in x: d.update( { "year": "{}".format(x["begin_year"]), "_key": date_to_float(x["begin_year"], x.get("month", 0)), } ) aghs.append(d) aghs.sort(key=(lambda x: x.get("_key", 0.0)), reverse=True) return aghs HTTP_RE = re.compile( r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" ) def latex_safe_url(s): """Makes a string that is a URL latex safe.""" return s.replace("#", r"\#") def latex_safe(s, url_check=True, wrapper="url"): """Make string latex safe Parameters ---------- s : str url_check : bool, optional If True check for URLs and wrap them, if False check for URL but don't wrap, defaults to True wrapper : str, optional The wrapper for wrapping urls defaults to url """ if not s: return s if url_check: # If it looks like a URL make it a latex URL url_search = HTTP_RE.search(s) if url_search: url = r"{start}\{wrapper}{{{s}}}{end}".format( start=(latex_safe(s[: url_search.start()])), end=(latex_safe(s[url_search.end():])), wrapper=wrapper, s=latex_safe_url(s[url_search.start(): url_search.end()]), ) return url return ( s.replace("&", r"\&") .replace("$", r"\$") .replace("#", r"\#") .replace("_", r"\_") ) def make_bibtex_file(pubs, pid, person_dir="."): """Make a bibtex file given the publications Parameters ---------- pubs : list of dict The publications pid : str The person id person_dir : str, optional The person's directory """ if not HAVE_BIBTEX_PARSER: return None skip_keys = {"ID", "ENTRYTYPE", "author"} bibdb = BibDatabase() bibwriter = BibTexWriter() bibdb.entries = ents = [] for pub in pubs: ent = dict(pub) ent["ID"] = ent.pop("_id") ent["ENTRYTYPE"] = ent.pop("entrytype") for n in ["author", "editor"]: if n in ent: ent[n] = " and ".join(ent[n]) for key in ent.keys(): if key in skip_keys: continue ent[key] = latex_safe(str(ent[key])) ents.append(ent) fname = os.path.join(person_dir, pid) + ".bib" with open(fname, "w", encoding="utf-8") as f: f.write(bibwriter.write(bibdb)) return fname def document_by_value(documents, address, value): """Get a specific document by one of its values Parameters ---------- documents: generator Generator which yields the documents address: str or tuple The address of the data in the document value: any The expected value for the document Returns ------- dict: The first document which matches the request """ if isinstance(address, str): address = (address,) for g_doc in documents: doc = deepcopy(g_doc) for add in address: doc = doc[add] if doc == value: return g_doc def fuzzy_retrieval(documents, sources, value, case_sensitive=True): """Retrieve a document from the documents where value is compared against multiple potential sources Parameters ---------- documents: generator The documents sources: iterable The potential data sources value: The value to compare against to find the document of interest case_sensitive: Bool When true will match case (Default = True) Returns ------- dict: The document Examples -------- >>> fuzzy_retrieval(people, ['aka', 'name'], 'pi_name', case_sensitive = False) This would get the person entry for which either the alias or the name was ``pi_name``. """ for doc in documents: returns = [] for k in sources: ret = doc.get(k, []) if not isinstance(ret, list): ret = [ret] returns.extend(ret) if not case_sensitive: returns = [reti.lower() for reti in returns if isinstance(reti, str)] if isinstance(value, str): if value.lower() in frozenset(returns): return doc else: if value in frozenset(returns): return doc def number_suffix(number): """returns the suffix that adjectivises a number (st, nd, rd, th) Paramters --------- number: integer The number. If number is not an integer, returns an empty string Returns ------- suffix: string The suffix (st, nd, rd, th) """ if not isinstance(number, (int, float)): return "" if 10 < number < 20: suffix = "th" else: suffix = {1: "st", 2: "nd", 3: "rd"}.get(number % 10, "th") return suffix def dereference_institution(input_record, institutions): """Tool for replacing placeholders for institutions with the actual institution data. Note that the replacement is done inplace Parameters ---------- input_record : dict The record to dereference institutions : iterable of dicts The institutions """ inst = input_record.get("institution") or input_record.get("organization") if not inst: error = input_record.get("position") or input_record.get("degree") print("WARNING: no institution or organization but found {}".format( error)) db_inst = fuzzy_retrieval(institutions, ["name", "_id", "aka"], inst) if db_inst: input_record["institution"] = db_inst["name"] input_record["organization"] = db_inst["name"] if db_inst.get("country") == "USA": state_country = db_inst.get("state") else: state_country = db_inst.get("country") input_record["location"] = "{}, {}".format(db_inst["city"], state_country) if not db_inst.get("departments"): print("WARNING: no departments in {}. {} sought".format( db_inst.get("_id"), inst)) if "department" in input_record and db_inst.get("departments"): input_record["department"] = fuzzy_retrieval( [db_inst["departments"]], ["name", "aka"], input_record["department"] ) else: input_record["department"] = inst def merge_collections(a, b, target_id): """ merge two collections into a single merged collection for keys that are in both collections, the value in b will be kept Parameters ---------- a the inferior collection (will lose values of shared keys) b the superior collection (will keep values of shared keys) target_id str the name of the key used in b to dereference ids in a Returns ------- the combined collection. Note that it returns a collection only containing merged items from a and b that are dereferenced in b, i.e., the merged intercept. If you want the union you can update the returned collection with a. Examples -------- >>> grants = merge_collections(self.gtx["proposals"], self.gtx["grants"], "proposal_id") This would merge all entries in the proposals collection with entries in the grants collection for which "_id" in proposals has the value of "proposal_id" in grants. """ adict = {} for k in a: adict[k.get("_id")] = k bdict = {} for k in b: bdict[k.get("_id")] = k b_for_a = {} for k in adict: for kk, v in bdict.items(): if v.get(target_id, "") == k: b_for_a[k] = kk chained = {} for k, v in b_for_a.items(): chained[k] = ChainDB(adict[k], bdict[v]) return list(chained.values()) def update_schemas(default_schema, user_schema): """ Merging the user schema into the default schema recursively and return the merged schema. The default schema and user schema will not be modified during the merging. Parameters ---------- default_schema : dict The default schema. user_schema : dict The user defined schema. Returns ------- updated_schema : dict The merged schema. """ updated_schema = deepcopy(default_schema) for key in user_schema.keys(): if (key in updated_schema) and isinstance(updated_schema[key], dict) and isinstance( user_schema[key], dict): updated_schema[key] = update_schemas(updated_schema[key], user_schema[key]) else: updated_schema[key] = user_schema[key] return updated_schema def is_fully_loaded(appts): status = True earliest, latest = date.today(), date.today() for appt in appts: dates = get_dates(appt) begin_date = dates['begin_date'] end_date = dates['end_date'] if latest == date.today(): latest = end_date appt['begin_date'] = begin_date appt['end_date'] = end_date if begin_date < earliest: earliest = begin_date if end_date > latest: latest = end_date datearray = [] timespan = latest - earliest for x in range(0, timespan.days): datearray.append(earliest + timedelta(days=x)) loading = [0] * len(datearray) for day in datearray: for appt in appts: if appt['begin_date'] <= day <= appt["end_date"]: loading[datearray.index(day)] = loading[datearray.index(day)] + \ appt.get("loading") if max(loading) > 1.0: status = False print("max {} at {}".format(max(loading), datearray[ list(loading).index(max(loading))])) elif min(loading) < 1.0: status = False print("min {} at {}".format(min(loading), datearray[list(loading).index(min(loading))] )) return status def group(db, by): """ Group the document in the database according to the value of the doc[by] in db. Parameters ---------- db : iterable The database of documents. by : basestring The key to group the documents. Returns ------- grouped: dict A dictionary mapping the feature value of group to the list of docs. All docs in the same generator have the same value of doc[by]. Examples -------- Here, we use a tuple of dict as an example of the database. >>> db = ({"k": "v0"}, {"k": "v1"}, {"k": "v0"}) >>> group(db) This will return >>> {"v0": [{"k": "v0"}, {"k": "v0"}], "v1": [{"k": "v1"}]} """ grouped = {} doc: dict for doc in db: key = doc.get(by) if not key: print("There is no field {} in {}".format(by, id_key(doc))) elif key not in grouped: grouped[key] = [doc] else: grouped[key].append(doc) return grouped def get_pi_id(rc): """ Gets the database id of the group PI Parameters ---------- rc: runcontrol object The runcontrol object. It must contain the 'groups' and 'people' collections in the needed databases Returns ------- The database '_id' of the group PI """ groupiter = list(all_docs_from_collection(rc.client, "groups")) peoplecoll = all_docs_from_collection(rc.client, "people") pi_ref = [i.get("pi_name") for i in groupiter if i.get("name").casefold() == rc.groupname.casefold()] pi = fuzzy_retrieval(peoplecoll, ["_id", "aka", "name"], pi_ref[0]) return pi.get("_id") def group_member_ids(ppl_coll, grpname): """Get a list of all group member ids Parameters ---------- ppl_coll: collection (list of dicts) The people collection that should contain the group members grp: string The id of the group in groups.yml Returns ------- set: The set of ids of the people in the group Notes ----- - Groups that are being tracked are listed in the groups.yml collection with a name and an id. - People are in a group during an educational or employment period. - To assign a person to a tracked group during one such period, add a "group" key to that education/employment item with a value that is the group id. - This function takes the group id that is passed and searches the people collection for all people that have been assigned to that group in some period of time and returns a list of """ grpmembers = set() for person in ppl_coll: for k in ["education", "employment"]: for position in person.get(k, {}): if position.get("group", None) == grpname: grpmembers.add(person["_id"]) return grpmembers
__init__
Monitor qcodes parameters. Args: *parameters: Parameters to monitor. interval: How often one wants to refresh the values.
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 unga <[email protected]> # # Distributed under terms of the MIT license. """ Monitor a set of parameters in a background thread stream output over websocket To start monitor, run this file, or if qcodes is installed as a module: ``% python -m qcodes.monitor.monitor`` Add parameters to monitor in your measurement by creating a new monitor with a list of parameters to monitor: ``monitor = qcodes.Monitor(param1, param2, param3, ...)`` """ import sys import logging import os import time import json from contextlib import suppress from typing import Dict, Union, Any, Optional, Sequence, Callable, Awaitable from collections import defaultdict import asyncio from asyncio import CancelledError from threading import Thread, Event import socketserver import webbrowser import websockets from qcodes.instrument.parameter import Parameter if sys.version_info < (3, 7): all_tasks = asyncio.Task.all_tasks else: all_tasks = asyncio.all_tasks WEBSOCKET_PORT = 5678 SERVER_PORT = 3000 log = logging.getLogger(__name__) def _get_metadata(*parameters: Parameter) -> Dict[str, Any]: """ Return a dictionary that contains the parameter metadata grouped by the instrument it belongs to. """ metadata_timestamp = time.time() # group metadata by instrument metas: dict = defaultdict(list) for parameter in parameters: # Get the latest value from the parameter, # respecting the max_val_age parameter meta: Dict[str, Optional[Union[float, str]]] = {} meta["value"] = str(parameter.get_latest()) timestamp = parameter.get_latest.get_timestamp() if timestamp is not None: meta["ts"] = timestamp.timestamp() else: meta["ts"] = None meta["name"] = parameter.label or parameter.name meta["unit"] = parameter.unit # find the base instrument that this parameter belongs to baseinst = parameter.root_instrument if baseinst is None: metas["Unbound Parameter"].append(meta) else: metas[str(baseinst)].append(meta) # Create list of parameters, grouped by instrument parameters_out = [] for instrument in metas: temp = {"instrument": instrument, "parameters": metas[instrument]} parameters_out.append(temp) state = {"ts": metadata_timestamp, "parameters": parameters_out} return state def _handler(parameters: Sequence[Parameter], interval: float) \ -> Callable[[websockets.WebSocketServerProtocol, str], Awaitable[None]]: """ Return the websockets server handler. """ async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: """ Create a websockets handler that sends parameter values to a listener every "interval" seconds. """ while True: try: # Update the parameter values try: meta = _get_metadata(*parameters) except ValueError: log.exception("Error getting parameters") break log.debug("sending.. to %r", websocket) await websocket.send(json.dumps(meta)) # Wait for interval seconds and then send again await asyncio.sleep(interval) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug("Got CancelledError or ConnectionClosed", exc_info=True) break log.debug("Closing websockets connection") return server_func class Monitor(Thread): """ QCodes Monitor - WebSockets server to monitor qcodes parameters. """ running = None # MASKED: __init__ function (lines 128-162) def run(self) -> None: """ Start the event loop and run forever. """ log.debug("Running Websocket server") self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) try: server_start = websockets.serve(self.handler, '127.0.0.1', WEBSOCKET_PORT, close_timeout=1) self.server = self.loop.run_until_complete(server_start) self.server_is_started.set() self.loop.run_forever() except OSError: # The code above may throw an OSError # if the socket cannot be bound log.exception("Server could not be started") finally: log.debug("loop stopped") log.debug("Pending tasks at close: %r", all_tasks(self.loop)) self.loop.close() log.debug("loop closed") self.loop_is_closed.set() def update_all(self) -> None: """ Update all parameters in the monitor. """ for parameter in self._parameters: # call get if it can be called without arguments with suppress(TypeError): parameter.get() def stop(self) -> None: """ Shutdown the server, close the event loop and join the thread. Setting active Monitor to ``None``. """ self.join() Monitor.running = None async def __stop_server(self) -> None: log.debug("asking server %r to close", self.server) if self.server is not None: self.server.close() log.debug("waiting for server to close") if self.loop is not None and self.server is not None: await self.loop.create_task(self.server.wait_closed()) log.debug("stopping loop") if self.loop is not None: log.debug("Pending tasks at stop: %r", all_tasks(self.loop)) self.loop.stop() def join(self, timeout: Optional[float] = None) -> None: """ Overwrite ``Thread.join`` to make sure server is stopped before joining avoiding a potential deadlock. """ log.debug("Shutting down server") if not self.is_alive(): # we run this check before trying to run to prevent a cryptic # error message log.debug("monitor is dead") return try: if self.loop is not None: asyncio.run_coroutine_threadsafe(self.__stop_server(), self.loop) except RuntimeError: # the above may throw a runtime error if the loop is already # stopped in which case there is nothing more to do log.exception("Could not close loop") self.loop_is_closed.wait(timeout=5) if not self.loop_is_closed.is_set(): raise RuntimeError("Failed to join loop") log.debug("Loop reported closed") super().join(timeout=timeout) log.debug("Monitor Thread has joined") @staticmethod def show() -> None: """ Overwrite this method to show/raise your monitor GUI F.ex. :: import webbrowser url = "localhost:3000" # Open URL in new window, raising the window if possible. webbrowser.open_new(url) """ webbrowser.open("http://localhost:{}".format(SERVER_PORT)) if __name__ == "__main__": import http.server # If this file is run, create a simple webserver that serves a simple # website that can be used to view monitored parameters. STATIC_DIR = os.path.join(os.path.dirname(__file__), 'dist') os.chdir(STATIC_DIR) try: log.info("Starting HTTP Server at http://localhost:%i", SERVER_PORT) with socketserver.TCPServer(("", SERVER_PORT), http.server.SimpleHTTPRequestHandler) as httpd: log.debug("serving directory %s", STATIC_DIR) webbrowser.open("http://localhost:{}".format(SERVER_PORT)) httpd.serve_forever() except KeyboardInterrupt: log.info("Shutting Down HTTP Server")
def __init__(self, *parameters: Parameter, interval: float = 1): """ Monitor qcodes parameters. Args: *parameters: Parameters to monitor. interval: How often one wants to refresh the values. """ super().__init__() # Check that all values are valid parameters for parameter in parameters: if not isinstance(parameter, Parameter): raise TypeError(f"We can only monitor QCodes " f"Parameters, not {type(parameter)}") self.loop: Optional[asyncio.AbstractEventLoop] = None self.server: Optional[websockets.WebSocketServer] = None self._parameters = parameters self.loop_is_closed = Event() self.server_is_started = Event() self.handler = _handler(parameters, interval=interval) log.debug("Start monitoring thread") if Monitor.running: # stop the old server log.debug("Stopping and restarting server") Monitor.running.stop() self.start() # Wait until the loop is running self.server_is_started.wait(timeout=5) if not self.server_is_started.is_set(): raise RuntimeError("Failed to start server") Monitor.running = self
128
162
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 unga <[email protected]> # # Distributed under terms of the MIT license. """ Monitor a set of parameters in a background thread stream output over websocket To start monitor, run this file, or if qcodes is installed as a module: ``% python -m qcodes.monitor.monitor`` Add parameters to monitor in your measurement by creating a new monitor with a list of parameters to monitor: ``monitor = qcodes.Monitor(param1, param2, param3, ...)`` """ import sys import logging import os import time import json from contextlib import suppress from typing import Dict, Union, Any, Optional, Sequence, Callable, Awaitable from collections import defaultdict import asyncio from asyncio import CancelledError from threading import Thread, Event import socketserver import webbrowser import websockets from qcodes.instrument.parameter import Parameter if sys.version_info < (3, 7): all_tasks = asyncio.Task.all_tasks else: all_tasks = asyncio.all_tasks WEBSOCKET_PORT = 5678 SERVER_PORT = 3000 log = logging.getLogger(__name__) def _get_metadata(*parameters: Parameter) -> Dict[str, Any]: """ Return a dictionary that contains the parameter metadata grouped by the instrument it belongs to. """ metadata_timestamp = time.time() # group metadata by instrument metas: dict = defaultdict(list) for parameter in parameters: # Get the latest value from the parameter, # respecting the max_val_age parameter meta: Dict[str, Optional[Union[float, str]]] = {} meta["value"] = str(parameter.get_latest()) timestamp = parameter.get_latest.get_timestamp() if timestamp is not None: meta["ts"] = timestamp.timestamp() else: meta["ts"] = None meta["name"] = parameter.label or parameter.name meta["unit"] = parameter.unit # find the base instrument that this parameter belongs to baseinst = parameter.root_instrument if baseinst is None: metas["Unbound Parameter"].append(meta) else: metas[str(baseinst)].append(meta) # Create list of parameters, grouped by instrument parameters_out = [] for instrument in metas: temp = {"instrument": instrument, "parameters": metas[instrument]} parameters_out.append(temp) state = {"ts": metadata_timestamp, "parameters": parameters_out} return state def _handler(parameters: Sequence[Parameter], interval: float) \ -> Callable[[websockets.WebSocketServerProtocol, str], Awaitable[None]]: """ Return the websockets server handler. """ async def server_func(websocket: websockets.WebSocketServerProtocol, _: str) -> None: """ Create a websockets handler that sends parameter values to a listener every "interval" seconds. """ while True: try: # Update the parameter values try: meta = _get_metadata(*parameters) except ValueError: log.exception("Error getting parameters") break log.debug("sending.. to %r", websocket) await websocket.send(json.dumps(meta)) # Wait for interval seconds and then send again await asyncio.sleep(interval) except (CancelledError, websockets.exceptions.ConnectionClosed): log.debug("Got CancelledError or ConnectionClosed", exc_info=True) break log.debug("Closing websockets connection") return server_func class Monitor(Thread): """ QCodes Monitor - WebSockets server to monitor qcodes parameters. """ running = None def __init__(self, *parameters: Parameter, interval: float = 1): """ Monitor qcodes parameters. Args: *parameters: Parameters to monitor. interval: How often one wants to refresh the values. """ super().__init__() # Check that all values are valid parameters for parameter in parameters: if not isinstance(parameter, Parameter): raise TypeError(f"We can only monitor QCodes " f"Parameters, not {type(parameter)}") self.loop: Optional[asyncio.AbstractEventLoop] = None self.server: Optional[websockets.WebSocketServer] = None self._parameters = parameters self.loop_is_closed = Event() self.server_is_started = Event() self.handler = _handler(parameters, interval=interval) log.debug("Start monitoring thread") if Monitor.running: # stop the old server log.debug("Stopping and restarting server") Monitor.running.stop() self.start() # Wait until the loop is running self.server_is_started.wait(timeout=5) if not self.server_is_started.is_set(): raise RuntimeError("Failed to start server") Monitor.running = self def run(self) -> None: """ Start the event loop and run forever. """ log.debug("Running Websocket server") self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) try: server_start = websockets.serve(self.handler, '127.0.0.1', WEBSOCKET_PORT, close_timeout=1) self.server = self.loop.run_until_complete(server_start) self.server_is_started.set() self.loop.run_forever() except OSError: # The code above may throw an OSError # if the socket cannot be bound log.exception("Server could not be started") finally: log.debug("loop stopped") log.debug("Pending tasks at close: %r", all_tasks(self.loop)) self.loop.close() log.debug("loop closed") self.loop_is_closed.set() def update_all(self) -> None: """ Update all parameters in the monitor. """ for parameter in self._parameters: # call get if it can be called without arguments with suppress(TypeError): parameter.get() def stop(self) -> None: """ Shutdown the server, close the event loop and join the thread. Setting active Monitor to ``None``. """ self.join() Monitor.running = None async def __stop_server(self) -> None: log.debug("asking server %r to close", self.server) if self.server is not None: self.server.close() log.debug("waiting for server to close") if self.loop is not None and self.server is not None: await self.loop.create_task(self.server.wait_closed()) log.debug("stopping loop") if self.loop is not None: log.debug("Pending tasks at stop: %r", all_tasks(self.loop)) self.loop.stop() def join(self, timeout: Optional[float] = None) -> None: """ Overwrite ``Thread.join`` to make sure server is stopped before joining avoiding a potential deadlock. """ log.debug("Shutting down server") if not self.is_alive(): # we run this check before trying to run to prevent a cryptic # error message log.debug("monitor is dead") return try: if self.loop is not None: asyncio.run_coroutine_threadsafe(self.__stop_server(), self.loop) except RuntimeError: # the above may throw a runtime error if the loop is already # stopped in which case there is nothing more to do log.exception("Could not close loop") self.loop_is_closed.wait(timeout=5) if not self.loop_is_closed.is_set(): raise RuntimeError("Failed to join loop") log.debug("Loop reported closed") super().join(timeout=timeout) log.debug("Monitor Thread has joined") @staticmethod def show() -> None: """ Overwrite this method to show/raise your monitor GUI F.ex. :: import webbrowser url = "localhost:3000" # Open URL in new window, raising the window if possible. webbrowser.open_new(url) """ webbrowser.open("http://localhost:{}".format(SERVER_PORT)) if __name__ == "__main__": import http.server # If this file is run, create a simple webserver that serves a simple # website that can be used to view monitored parameters. STATIC_DIR = os.path.join(os.path.dirname(__file__), 'dist') os.chdir(STATIC_DIR) try: log.info("Starting HTTP Server at http://localhost:%i", SERVER_PORT) with socketserver.TCPServer(("", SERVER_PORT), http.server.SimpleHTTPRequestHandler) as httpd: log.debug("serving directory %s", STATIC_DIR) webbrowser.open("http://localhost:{}".format(SERVER_PORT)) httpd.serve_forever() except KeyboardInterrupt: log.info("Shutting Down HTTP Server")
assertDetailedTraceback
Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool}
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) # MASKED: assertDetailedTraceback function (lines 180-255) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb)
180
255
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
assertBriefTraceback
Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool}
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) # MASKED: assertBriefTraceback function (lines 258-300) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb))
258
300
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
assertDefaultTraceback
Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool}
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) # MASKED: assertDefaultTraceback function (lines 303-349) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb))
303
349
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test cases for the L{twisted.python.failure} module. """ from __future__ import division, absolute_import import re import sys import traceback import pdb import linecache from twisted.python.compat import _PY3, NativeStringIO from twisted.python import reflect from twisted.python import failure from twisted.trial.unittest import SkipTest, SynchronousTestCase try: from twisted.test import raiser except ImportError: raiser = None def getDivisionFailure(*args, **kwargs): """ Make a C{Failure} of a divide-by-zero error. @param args: Any C{*args} are passed to Failure's constructor. @param kwargs: Any C{**kwargs} are passed to Failure's constructor. """ try: 1/0 except: f = failure.Failure(*args, **kwargs) return f class FailureTests(SynchronousTestCase): """ Tests for L{failure.Failure}. """ def test_failAndTrap(self): """ Trapping a L{Failure}. """ try: raise NotImplementedError('test') except: f = failure.Failure() error = f.trap(SystemExit, RuntimeError) self.assertEqual(error, RuntimeError) self.assertEqual(f.type, NotImplementedError) def test_trapRaisesWrappedException(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises the wrapped C{Exception}. """ if not _PY3: raise SkipTest( """ Only expected behaviour on Python 3. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(ValueError, f.trap, OverflowError) self.assertIs(exception, untrapped) def test_trapRaisesSelf(self): """ If the wrapped C{Exception} is not a subclass of one of the expected types, L{failure.Failure.trap} raises itself. """ if _PY3: raise SkipTest( """ Only expected behaviour on Python 2. @see U{http://twisted.readthedocs.io/en/latest/core/howto/python3.html#twisted-python-failure} """ ) exception = ValueError() try: raise exception except: f = failure.Failure() untrapped = self.assertRaises(failure.Failure, f.trap, OverflowError) self.assertIs(f, untrapped) def test_failureValueFromFailure(self): """ A L{failure.Failure} constructed from another L{failure.Failure} instance, has its C{value} property set to the value of that L{failure.Failure} instance. """ exception = ValueError() f1 = failure.Failure(exception) f2 = failure.Failure(f1) self.assertIs(f2.value, exception) def test_failureValueFromFoundFailure(self): """ A L{failure.Failure} constructed without a C{exc_value} argument, will search for an "original" C{Failure}, and if found, its value will be used as the value for the new C{Failure}. """ exception = ValueError() f1 = failure.Failure(exception) try: f1.trap(OverflowError) except: f2 = failure.Failure() self.assertIs(f2.value, exception) def assertStartsWith(self, s, prefix): """ Assert that C{s} starts with a particular C{prefix}. @param s: The input string. @type s: C{str} @param prefix: The string that C{s} should start with. @type prefix: C{str} """ self.assertTrue(s.startswith(prefix), '%r is not the start of %r' % (prefix, s)) def assertEndsWith(self, s, suffix): """ Assert that C{s} end with a particular C{suffix}. @param s: The input string. @type s: C{str} @param suffix: The string that C{s} should end with. @type suffix: C{str} """ self.assertTrue(s.endswith(suffix), '%r is not the end of %r' % (suffix, s)) def assertTracebackFormat(self, tb, prefix, suffix): """ Assert that the C{tb} traceback contains a particular C{prefix} and C{suffix}. @param tb: The traceback string. @type tb: C{str} @param prefix: The string that C{tb} should start with. @type prefix: C{str} @param suffix: The string that C{tb} should end with. @type suffix: C{str} """ self.assertStartsWith(tb, prefix) self.assertEndsWith(tb, suffix) def assertDetailedTraceback(self, captureVars=False, cleanFailure=False): """ Assert that L{printDetailedTraceback} produces and prints a detailed traceback. The detailed traceback consists of a header:: *--- Failure #20 --- The body contains the stacktrace:: /twisted/trial/_synctest.py:1180: _run(...) /twisted/python/util.py:1076: runWithWarningsSuppressed(...) --- <exception caught here> --- /twisted/test/test_failure.py:39: getDivisionFailure(...) If C{captureVars} is enabled the body also includes a list of globals and locals:: [ Locals ] exampleLocalVar : 'xyz' ... ( Globals ) ... Or when C{captureVars} is disabled:: [Capture of Locals and Globals disabled (use captureVars=True)] When C{cleanFailure} is enabled references to other objects are removed and replaced with strings. And finally the footer with the L{Failure}'s value:: exceptions.ZeroDivisionError: float division *--- End of Failure #20 --- @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} @param cleanFailure: Enables L{Failure.cleanFailure}. @type cleanFailure: C{bool} """ if captureVars: exampleLocalVar = 'xyz' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() if cleanFailure: f.cleanFailure() f.printDetailedTraceback(out) tb = out.getvalue() start = "*--- Failure #%d%s---\n" % (f.count, (f.pickled and ' (pickled) ') or ' ') end = "%s: %s\n*--- End of Failure #%s ---\n" % (reflect.qual(f.type), reflect.safe_str(f.value), f.count) self.assertTracebackFormat(tb, start, end) # Variables are printed on lines with 2 leading spaces. linesWithVars = [line for line in tb.splitlines() if line.startswith(' ')] if captureVars: self.assertNotEqual([], linesWithVars) if cleanFailure: line = ' exampleLocalVar : "\'xyz\'"' else: line = " exampleLocalVar : 'xyz'" self.assertIn(line, linesWithVars) else: self.assertEqual([], linesWithVars) self.assertIn(' [Capture of Locals and Globals disabled (use ' 'captureVars=True)]\n', tb) def assertBriefTraceback(self, captureVars=False): """ Assert that L{printBriefTraceback} produces and prints a brief traceback. The brief traceback consists of a header:: Traceback: <type 'exceptions.ZeroDivisionError'>: float division The body with the stacktrace:: /twisted/trial/_synctest.py:1180:_run /twisted/python/util.py:1076:runWithWarningsSuppressed And the footer:: --- <exception caught here> --- /twisted/test/test_failure.py:39:getDivisionFailure @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'abcde' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure() out = NativeStringIO() f.printBriefTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += '%s:%s:%s\n' % (filename, lineno, method) zde = repr(ZeroDivisionError) self.assertTracebackFormat(tb, "Traceback: %s: " % (zde,), "%s\n%s" % (failure.EXCEPTION_CAUGHT_HERE, stack)) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*abcde', tb)) def assertDefaultTraceback(self, captureVars=False): """ Assert that L{printTraceback} produces and prints a default traceback. The default traceback consists of a header:: Traceback (most recent call last): The body with traceback:: File "/twisted/trial/_synctest.py", line 1180, in _run runWithWarningsSuppressed(suppress, method) And the footer:: --- <exception caught here> --- File "twisted/test/test_failure.py", line 39, in getDivisionFailure 1/0 exceptions.ZeroDivisionError: float division @param captureVars: Enables L{Failure.captureVars}. @type captureVars: C{bool} """ if captureVars: exampleLocalVar = 'xyzzy' # Silence the linter as this variable is checked via # the traceback. exampleLocalVar f = getDivisionFailure(captureVars=captureVars) out = NativeStringIO() f.printTraceback(out) tb = out.getvalue() stack = '' for method, filename, lineno, localVars, globalVars in f.frames: stack += ' File "%s", line %s, in %s\n' % (filename, lineno, method) stack += ' %s\n' % (linecache.getline( filename, lineno).strip(),) self.assertTracebackFormat(tb, "Traceback (most recent call last):", "%s\n%s%s: %s\n" % (failure.EXCEPTION_CAUGHT_HERE, stack, reflect.qual(f.type), reflect.safe_str(f.value))) if captureVars: self.assertIsNone(re.search('exampleLocalVar.*xyzzy', tb)) def test_printDetailedTraceback(self): """ L{printDetailedTraceback} returns a detailed traceback including the L{Failure}'s count. """ self.assertDetailedTraceback() def test_printBriefTraceback(self): """ L{printBriefTraceback} returns a brief traceback. """ self.assertBriefTraceback() def test_printTraceback(self): """ L{printTraceback} returns a traceback. """ self.assertDefaultTraceback() def test_printDetailedTracebackCapturedVars(self): """ L{printDetailedTraceback} captures the locals and globals for its stack frames and adds them to the traceback, when called on a L{Failure} constructed with C{captureVars=True}. """ self.assertDetailedTraceback(captureVars=True) def test_printBriefTracebackCapturedVars(self): """ L{printBriefTraceback} returns a brief traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertBriefTraceback(captureVars=True) def test_printTracebackCapturedVars(self): """ L{printTraceback} returns a traceback when called on a L{Failure} constructed with C{captureVars=True}. Local variables on the stack can not be seen in the resulting traceback. """ self.assertDefaultTraceback(captureVars=True) def test_printDetailedTracebackCapturedVarsCleaned(self): """ C{printDetailedTraceback} includes information about local variables on the stack after C{cleanFailure} has been called. """ self.assertDetailedTraceback(captureVars=True, cleanFailure=True) def test_invalidFormatFramesDetail(self): """ L{failure.format_frames} raises a L{ValueError} if the supplied C{detail} level is unknown. """ self.assertRaises(ValueError, failure.format_frames, None, None, detail='noisia') def test_ExplictPass(self): e = RuntimeError() f = failure.Failure(e) f.trap(RuntimeError) self.assertEqual(f.value, e) def _getInnermostFrameLine(self, f): try: f.raiseException() except ZeroDivisionError: tb = traceback.extract_tb(sys.exc_info()[2]) return tb[-1][-1] else: raise Exception( "f.raiseException() didn't raise ZeroDivisionError!?") def test_RaiseExceptionWithTB(self): f = getDivisionFailure() innerline = self._getInnermostFrameLine(f) self.assertEqual(innerline, '1/0') def test_stringExceptionConstruction(self): """ Constructing a C{Failure} with a string as its exception value raises a C{TypeError}, as this is no longer supported as of Python 2.6. """ exc = self.assertRaises(TypeError, failure.Failure, "ono!") self.assertIn("Strings are not supported by Failure", str(exc)) def test_ConstructionFails(self): """ Creating a Failure with no arguments causes it to try to discover the current interpreter exception state. If no such state exists, creating the Failure should raise a synchronous exception. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertRaises(failure.NoCurrentExceptionError, failure.Failure) def test_getTracebackObject(self): """ If the C{Failure} has not been cleaned, then C{getTracebackObject} returns the traceback object that captured in its constructor. """ f = getDivisionFailure() self.assertEqual(f.getTracebackObject(), f.tb) def test_getTracebackObjectFromCaptureVars(self): """ C{captureVars=True} has no effect on the result of C{getTracebackObject}. """ try: 1/0 except ZeroDivisionError: noVarsFailure = failure.Failure() varsFailure = failure.Failure(captureVars=True) self.assertEqual(noVarsFailure.getTracebackObject(), varsFailure.tb) def test_getTracebackObjectFromClean(self): """ If the Failure has been cleaned, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure() expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertIsNotNone(expected) self.assertEqual(expected, observed) def test_getTracebackObjectFromCaptureVarsAndClean(self): """ If the Failure was created with captureVars, then C{getTracebackObject} returns an object that looks the same to L{traceback.extract_tb}. """ f = getDivisionFailure(captureVars=True) expected = traceback.extract_tb(f.getTracebackObject()) f.cleanFailure() observed = traceback.extract_tb(f.getTracebackObject()) self.assertEqual(expected, observed) def test_getTracebackObjectWithoutTraceback(self): """ L{failure.Failure}s need not be constructed with traceback objects. If a C{Failure} has no traceback information at all, C{getTracebackObject} just returns None. None is a good value, because traceback.extract_tb(None) -> []. """ f = failure.Failure(Exception("some error")) self.assertIsNone(f.getTracebackObject()) def test_tracebackFromExceptionInPython3(self): """ If a L{failure.Failure} is constructed with an exception but no traceback in Python 3, the traceback will be extracted from the exception's C{__traceback__} attribute. """ try: 1/0 except: klass, exception, tb = sys.exc_info() f = failure.Failure(exception) self.assertIs(f.tb, tb) def test_cleanFailureRemovesTracebackInPython3(self): """ L{failure.Failure.cleanFailure} sets the C{__traceback__} attribute of the exception to L{None} in Python 3. """ f = getDivisionFailure() self.assertIsNotNone(f.tb) self.assertIs(f.value.__traceback__, f.tb) f.cleanFailure() self.assertIsNone(f.value.__traceback__) if getattr(BaseException, "__traceback__", None) is None: test_tracebackFromExceptionInPython3.skip = "Python 3 only." test_cleanFailureRemovesTracebackInPython3.skip = "Python 3 only." def test_repr(self): """ The C{repr} of a L{failure.Failure} shows the type and string representation of the underlying exception. """ f = getDivisionFailure() typeName = reflect.fullyQualifiedName(ZeroDivisionError) self.assertEqual( repr(f), '<twisted.python.failure.Failure ' '%s: division by zero>' % (typeName,)) class BrokenStr(Exception): """ An exception class the instances of which cannot be presented as strings via C{str}. """ def __str__(self): # Could raise something else, but there's no point as yet. raise self class BrokenExceptionMetaclass(type): """ A metaclass for an exception type which cannot be presented as a string via C{str}. """ def __str__(self): raise ValueError("You cannot make a string out of me.") class BrokenExceptionType(Exception, object): """ The aforementioned exception type which cnanot be presented as a string via C{str}. """ __metaclass__ = BrokenExceptionMetaclass class GetTracebackTests(SynchronousTestCase): """ Tests for L{Failure.getTraceback}. """ def _brokenValueTest(self, detail): """ Construct a L{Failure} with an exception that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ x = BrokenStr() f = failure.Failure(x) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenValueBriefDetail(self): """ A L{Failure} might wrap an exception with a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenValueTest("brief") def test_brokenValueDefaultDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("default") def test_brokenValueVerboseDetail(self): """ Like test_brokenValueBriefDetail, but for the C{"default"} detail case. """ self._brokenValueTest("verbose") def _brokenTypeTest(self, detail): """ Construct a L{Failure} with an exception type that raises an exception from its C{__str__} method and then call C{getTraceback} with the specified detail and verify that it returns a string. """ f = failure.Failure(BrokenExceptionType()) traceback = f.getTraceback(detail=detail) self.assertIsInstance(traceback, str) def test_brokenTypeBriefDetail(self): """ A L{Failure} might wrap an exception the type object of which has a C{__str__} method which raises an exception. In this case, calling C{getTraceback} on the failure with the C{"brief"} detail does not raise an exception. """ self._brokenTypeTest("brief") def test_brokenTypeDefaultDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"default"} detail case. """ self._brokenTypeTest("default") def test_brokenTypeVerboseDetail(self): """ Like test_brokenTypeBriefDetail, but for the C{"verbose"} detail case. """ self._brokenTypeTest("verbose") class FindFailureTests(SynchronousTestCase): """ Tests for functionality related to L{Failure._findFailure}. """ def test_findNoFailureInExceptionHandler(self): """ Within an exception handler, _findFailure should return L{None} in case no Failure is associated with the current exception. """ try: 1/0 except: self.assertIsNone(failure.Failure._findFailure()) else: self.fail("No exception raised from 1/0!?") def test_findNoFailure(self): """ Outside of an exception handler, _findFailure should return None. """ if sys.version_info < (3, 0): sys.exc_clear() self.assertIsNone(sys.exc_info()[-1]) #environment sanity check self.assertIsNone(failure.Failure._findFailure()) def test_findFailure(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by raiseException). """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: self.assertEqual(failure.Failure._findFailure(), f) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by raiseException, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() try: f.raiseException() except: newF = failure.Failure() self.assertEqual(f.getTraceback(), newF.getTraceback()) else: self.fail("No exception raised from raiseException!?") def test_failureConstructionWithMungedStackSucceeds(self): """ Pyrex and Cython are known to insert fake stack frames so as to give more Python-like tracebacks. These stack frames with empty code objects should not break extraction of the exception. """ try: raiser.raiseException() except raiser.RaiserException: f = failure.Failure() self.assertTrue(f.check(raiser.RaiserException)) else: self.fail("No exception raised from extension?!") if raiser is None: skipMsg = "raiser extension not available" test_failureConstructionWithMungedStackSucceeds.skip = skipMsg # On Python 3.5, extract_tb returns "FrameSummary" objects, which are almost # like the old tuples. This being different does not affect the actual tests # as we are testing that the input works, and that extract_tb returns something # reasonable. if sys.version_info < (3, 5): _tb = lambda fn, lineno, name, text: (fn, lineno, name, text) else: from traceback import FrameSummary _tb = lambda fn, lineno, name, text: FrameSummary(fn, lineno, name) class FormattableTracebackTests(SynchronousTestCase): """ Whitebox tests that show that L{failure._Traceback} constructs objects that can be used by L{traceback.extract_tb}. If the objects can be used by L{traceback.extract_tb}, then they can be formatted using L{traceback.format_tb} and friends. """ def test_singleFrame(self): """ A C{_Traceback} object constructed with a single frame should be able to be passed to L{traceback.extract_tb}, and we should get a singleton list containing a (filename, lineno, methodname, line) tuple. """ tb = failure._Traceback([['method', 'filename.py', 123, {}, {}]]) # Note that we don't need to test that extract_tb correctly extracts # the line's contents. In this case, since filename.py doesn't exist, # it will just use None. self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method', None)]) def test_manyFrames(self): """ A C{_Traceback} object constructed with multiple frames should be able to be passed to L{traceback.extract_tb}, and we should get a list containing a tuple for each frame. """ tb = failure._Traceback([ ['method1', 'filename.py', 123, {}, {}], ['method2', 'filename.py', 235, {}, {}]]) self.assertEqual(traceback.extract_tb(tb), [_tb('filename.py', 123, 'method1', None), _tb('filename.py', 235, 'method2', None)]) class FrameAttributesTests(SynchronousTestCase): """ _Frame objects should possess some basic attributes that qualify them as fake python Frame objects. """ def test_fakeFrameAttributes(self): """ L{_Frame} instances have the C{f_globals} and C{f_locals} attributes bound to C{dict} instance. They also have the C{f_code} attribute bound to something like a code object. """ frame = failure._Frame("dummyname", "dummyfilename") self.assertIsInstance(frame.f_globals, dict) self.assertIsInstance(frame.f_locals, dict) self.assertIsInstance(frame.f_code, failure._Code) class DebugModeTests(SynchronousTestCase): """ Failure's debug mode should allow jumping into the debugger. """ def setUp(self): """ Override pdb.post_mortem so we can make sure it's called. """ # Make sure any changes we make are reversed: post_mortem = pdb.post_mortem origInit = failure.Failure.__init__ def restore(): pdb.post_mortem = post_mortem failure.Failure.__init__ = origInit self.addCleanup(restore) self.result = [] pdb.post_mortem = self.result.append failure.startDebugMode() def test_regularFailure(self): """ If startDebugMode() is called, calling Failure() will first call pdb.post_mortem with the traceback. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure() self.assertEqual(self.result, [tb]) self.assertFalse(f.captureVars) def test_captureVars(self): """ If startDebugMode() is called, passing captureVars to Failure() will not blow up. """ try: 1/0 except: typ, exc, tb = sys.exc_info() f = failure.Failure(captureVars=True) self.assertEqual(self.result, [tb]) self.assertTrue(f.captureVars) class ExtendedGeneratorTests(SynchronousTestCase): """ Tests C{failure.Failure} support for generator features added in Python 2.5 """ def _throwIntoGenerator(self, f, g): try: f.throwExceptionIntoGenerator(g) except StopIteration: pass else: self.fail("throwExceptionIntoGenerator should have raised " "StopIteration") def test_throwExceptionIntoGenerator(self): """ It should be possible to throw the exception that a Failure represents into a generator. """ stuff = [] def generator(): try: yield except: stuff.append(sys.exc_info()) else: self.fail("Yield should have yielded exception.") g = generator() f = getDivisionFailure() next(g) self._throwIntoGenerator(f, g) self.assertEqual(stuff[0][0], ZeroDivisionError) self.assertIsInstance(stuff[0][1], ZeroDivisionError) self.assertEqual(traceback.extract_tb(stuff[0][2])[-1][-1], "1/0") def test_findFailureInGenerator(self): """ Within an exception handler, it should be possible to find the original Failure that caused the current exception (if it was caused by throwExceptionIntoGenerator). """ f = getDivisionFailure() f.cleanFailure() foundFailures = [] def generator(): try: yield except: foundFailures.append(failure.Failure._findFailure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(foundFailures, [f]) def test_failureConstructionFindsOriginalFailure(self): """ When a Failure is constructed in the context of an exception handler that is handling an exception raised by throwExceptionIntoGenerator, the new Failure should be chained to that original Failure. """ f = getDivisionFailure() f.cleanFailure() newFailures = [] def generator(): try: yield except: newFailures.append(failure.Failure()) else: self.fail("No exception sent to generator") g = generator() next(g) self._throwIntoGenerator(f, g) self.assertEqual(len(newFailures), 1) self.assertEqual(newFailures[0].getTraceback(), f.getTraceback()) def test_ambiguousFailureInGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} inside the generator should find the reraised exception rather than original one. """ def generator(): try: try: yield except: [][1] except: self.assertIsInstance(failure.Failure().value, IndexError) g = generator() next(g) f = getDivisionFailure() self._throwIntoGenerator(f, g) def test_ambiguousFailureFromGenerator(self): """ When a generator reraises a different exception, L{Failure._findFailure} above the generator should find the reraised exception rather than original one. """ def generator(): try: yield except: [][1] g = generator() next(g) f = getDivisionFailure() try: self._throwIntoGenerator(f, g) except: self.assertIsInstance(failure.Failure().value, IndexError)
add_event_callback
Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle.
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # # MASKED: add_event_callback function (lines 28-95) async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None
28
95
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
fire_event
Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None.
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) # MASKED: fire_event function (lines 146-172) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs})
146
172
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
has_log_callback
Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app.
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) # MASKED: has_log_callback function (lines 255-279) async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback
255
279
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
process_event_callbacks
Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None.
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback # MASKED: process_event_callbacks function (lines 281-353) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"])
281
353
"""Module to handle all events within AppDaemon.""" import uuid from copy import deepcopy import traceback import datetime from appdaemon.appdaemon import AppDaemon import appdaemon.utils as utils class Events: """Encapsulate event handling.""" def __init__(self, ad: AppDaemon): """Constructor. Args: ad: Reference to the AppDaemon object """ self.AD = ad self.logger = ad.logging.get_child("_events") # # Events # async def add_event_callback(self, name, namespace, cb, event, **kwargs): """Adds a callback for an event which is called internally by apps. Args: name (str): Name of the app. namespace (str): Namespace of the event. cb: Callback function. event (str): Name of the event. **kwargs: List of values to filter on, and additional arguments to pass to the callback. Returns: ``None`` or the reference to the callback handle. """ if self.AD.threading.validate_pin(name, kwargs) is True: if "pin" in kwargs: pin_app = kwargs["pin_app"] else: pin_app = self.AD.app_management.objects[name]["pin_app"] if "pin_thread" in kwargs: pin_thread = kwargs["pin_thread"] pin_app = True else: pin_thread = self.AD.app_management.objects[name]["pin_thread"] async with self.AD.callbacks.callbacks_lock: if name not in self.AD.callbacks.callbacks: self.AD.callbacks.callbacks[name] = {} handle = uuid.uuid4().hex self.AD.callbacks.callbacks[name][handle] = { "name": name, "id": self.AD.app_management.objects[name]["id"], "type": "event", "function": cb, "namespace": namespace, "event": event, "pin_app": pin_app, "pin_thread": pin_thread, "kwargs": kwargs, } if "timeout" in kwargs: exec_time = await self.AD.sched.get_now() + datetime.timedelta(seconds=int(kwargs["timeout"])) kwargs["__timeout"] = await self.AD.sched.insert_schedule( name, exec_time, None, False, None, __event_handle=handle, ) await self.AD.state.add_entity( "admin", "event_callback.{}".format(handle), "active", { "app": name, "event_name": event, "function": cb.__name__, "pinned": pin_app, "pinned_thread": pin_thread, "fired": 0, "executed": 0, "kwargs": kwargs, }, ) return handle else: return None async def cancel_event_callback(self, name, handle): """Cancels an event callback. Args: name (str): Name of the app or module. handle: Previously supplied callback handle for the callback. Returns: None. """ executed = False async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: del self.AD.callbacks.callbacks[name][handle] await self.AD.state.remove_entity("admin", "event_callback.{}".format(handle)) executed = True if name in self.AD.callbacks.callbacks and self.AD.callbacks.callbacks[name] == {}: del self.AD.callbacks.callbacks[name] if not executed: self.logger.warning( "Invalid callback handle '{}' in cancel_event_callback() from app {}".format(handle, name) ) return executed async def info_event_callback(self, name, handle): """Gets the information of an event callback. Args: name (str): Name of the app or subsystem. handle: Previously supplied handle for the callback. Returns: A dictionary of callback entries or rise a ``ValueError`` if an invalid handle is provided. """ async with self.AD.callbacks.callbacks_lock: if name in self.AD.callbacks.callbacks and handle in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][handle] return callback["event"], callback["kwargs"].copy() else: raise ValueError("Invalid handle: {}".format(handle)) async def fire_event(self, namespace, event, **kwargs): """Fires an event. If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin is associated, the firing of the event will be delegated to the plugin, under the understanding that when the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is communicating with. Args: namespace (str): Namespace for the event to be fired in. event (str): Name of the event. **kwargs: Arguments to associate with the event. Returns: None. """ self.logger.debug("fire_plugin_event() %s %s %s", namespace, event, kwargs) plugin = await self.AD.plugins.get_plugin_object(namespace) if hasattr(plugin, "fire_plugin_event"): # We assume that the event will come back to us via the plugin await plugin.fire_plugin_event(event, namespace, **kwargs) else: # Just fire the event locally await self.AD.events.process_event(namespace, {"event_type": event, "data": kwargs}) async def process_event(self, namespace, data): """Processes an event that has been received either locally or from a plugin. Args: namespace (str): Namespace the event was fired in. data: Data associated with the event. Returns: None. """ try: # if data["event_type"] == "__AD_ENTITY_REMOVED": # print("process event") self.logger.debug("Event type:%s:", data["event_type"]) self.logger.debug(data["data"]) # Kick the scheduler so it updates it's clock if self.AD.sched is not None and self.AD.sched.realtime is False and namespace != "admin": await self.AD.sched.kick() if data["event_type"] == "state_changed": if "entity_id" in data["data"] and "new_state" in data["data"]: if data["data"]["new_state"] is None: # most likely it is a deleted entity return entity_id = data["data"]["entity_id"] self.AD.state.set_state_simple(namespace, entity_id, data["data"]["new_state"]) if self.AD.apps is True and namespace != "admin": await self.AD.state.process_state_callbacks(namespace, data) else: self.logger.warning("Malformed 'state_changed' event: %s", data["data"]) return # Check for log callbacks and exit to prevent loops if data["event_type"] == "__AD_LOG_EVENT": if await self.has_log_callback(data["data"]["app_name"]): self.logger.debug("Discarding event for loop avoidance") return await self.AD.logging.process_log_callbacks(namespace, data) if self.AD.apps is True: # and namespace != "admin": # Process callbacks await self.process_event_callbacks(namespace, data) # # Send to the stream # if self.AD.http is not None: if data["event_type"] == "state_changed": if data["data"]["new_state"] == data["data"]["old_state"]: # Nothing changed so don't send return # take a copy without TS if present as it breaks deepcopy and jason if "ts" in data["data"]: ts = data["data"].pop("ts") mydata = deepcopy(data) data["data"]["ts"] = ts else: mydata = deepcopy(data) await self.AD.http.stream_update(namespace, mydata) except Exception: self.logger.warning("-" * 60) self.logger.warning("Unexpected error during process_event()") self.logger.warning("-" * 60) self.logger.warning(traceback.format_exc()) self.logger.warning("-" * 60) async def has_log_callback(self, name): """Returns ``True`` if the app has a log callback, ``False`` otherwise. Used to prevent callback loops. In the calling logic, if this function returns ``True`` the resulting logging event will be suppressed. Args: name (str): Name of the app. """ has_log_callback = False if name == "AppDaemon._stream": has_log_callback = True else: async with self.AD.callbacks.callbacks_lock: for callback in self.AD.callbacks.callbacks: for _uuid in self.AD.callbacks.callbacks[callback]: cb = self.AD.callbacks.callbacks[callback][_uuid] if cb["name"] == name and cb["type"] == "event" and cb["event"] == "__AD_LOG_EVENT": has_log_callback = True elif cb["name"] == name and cb["type"] == "log": has_log_callback = True return has_log_callback async def process_event_callbacks(self, namespace, data): """Processes a pure event callback. Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the event for further checking and eventual action. Args: namespace (str): Namespace of the event. data: Data associated with the event. Returns: None. """ self.logger.debug("process_event_callbacks() %s %s", namespace, data) removes = [] async with self.AD.callbacks.callbacks_lock: for name in self.AD.callbacks.callbacks.keys(): for uuid_ in self.AD.callbacks.callbacks[name]: callback = self.AD.callbacks.callbacks[name][uuid_] if callback["namespace"] == namespace or callback["namespace"] == "global" or namespace == "global": # # Check for either a blank event (for all events) # Or the event is a match # But don't allow a global listen for any system events (events that start with __) # if "event" in callback and ( (callback["event"] is None and data["event_type"][:2] != "__") or data["event_type"] == callback["event"] ): # Check any filters _run = True for key in callback["kwargs"]: if key in data["data"] and callback["kwargs"][key] != data["data"][key]: _run = False if data["event_type"] == "__AD_LOG_EVENT": if ( "log" in callback["kwargs"] and callback["kwargs"]["log"] != data["data"]["log_type"] ): _run = False if _run: if name in self.AD.app_management.objects: executed = await self.AD.threading.dispatch_worker( name, { "id": uuid_, "name": name, "objectid": self.AD.app_management.objects[name]["id"], "type": "event", "event": data["event_type"], "function": callback["function"], "data": data["data"], "pin_app": callback["pin_app"], "pin_thread": callback["pin_thread"], "kwargs": callback["kwargs"], }, ) # Remove the callback if appropriate if executed is True: remove = callback["kwargs"].get("oneshot", False) if remove is True: removes.append({"name": name, "uuid": uuid_}) for remove in removes: await self.cancel_event_callback(remove["name"], remove["uuid"]) async def event_services(self, namespace, domain, service, kwargs): if "event" in kwargs: event = kwargs["event"] del kwargs["event"] await self.fire_event(namespace, event, **kwargs) else: self.logger.warning("Malformed 'fire_event' service call, as no event given") @staticmethod def sanitize_event_kwargs(app, kwargs): kwargs_copy = kwargs.copy() return utils._sanitize_kwargs(kwargs_copy, ["__silent"])
send_msg
Find the socket descriptor mapped by workerId and send them a message. Args: workerId: UUID string used to identify and retrieve a worker. message: Message to be send.
import queue from ..workers import Worker from ..codes import WORKER_PROPERTIES class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class SocketHandler(metaclass=Singleton): """ Socket Handler is a sigleton class used to handle/manage websocket connections. """ def __init__(self): self.connections = {} def new_connection(self, workerId: str, socket): """ Create a mapping structure to establish a bond between a workerId and a socket descriptor. Args: workerId: UUID string used to identify workers. socket: Socket descriptor that will be used to send/receive messages from this client. Returns: Worker: a worker instance with the corresponding workerId """ if workerId not in self.connections: self.connections[workerId] = Worker(workerId, socket) else: worker = self.connections[workerId] if worker.status == WORKER_PROPERTIES.OFFLINE: worker._socket = socket return self.connections[workerId] # MASKED: send_msg function (lines 40-49) def get(self, query): """Retrieve a worker by its UUID string or its socket descriptor.""" if isinstance(query, str): return self.connections.get(query, None) else: return self.__retrieve_worker_by_socket(query) def remove(self, socket) -> str: """ Remove a socket descriptor from mapping structure. It will be used when the socket connection is closed. Args: socket: socket descriptor used to send/receive messages. Returns: workerId: Worker id linked to that connection. """ worker = self.__retrieve_worker_by_socket(socket) if worker: self.connections[worker._id]._socket = None self.connections[worker._id].connected_nodes = [] return worker._id def __retrieve_worker_by_socket(self, socket): for worker_id, worker in self.connections.items(): if worker._socket == socket: return self.connections[worker_id] @property def nodes(self) -> list: """Return all the connected nodes as a list of tuples of (worker_id, worker)""" return list(self.connections.items()) def __len__(self) -> int: """ Number of connections handled by this server. Returns: length: number of connections handled by this server. """ return len(self.connections)
def send_msg(self, workerId: str, message: str): """ Find the socket descriptor mapped by workerId and send them a message. Args: workerId: UUID string used to identify and retrieve a worker. message: Message to be send. """ socket = self.connections.get(workerId, None) if socket: socket.send(message)
40
49
import queue from ..workers import Worker from ..codes import WORKER_PROPERTIES class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class SocketHandler(metaclass=Singleton): """ Socket Handler is a sigleton class used to handle/manage websocket connections. """ def __init__(self): self.connections = {} def new_connection(self, workerId: str, socket): """ Create a mapping structure to establish a bond between a workerId and a socket descriptor. Args: workerId: UUID string used to identify workers. socket: Socket descriptor that will be used to send/receive messages from this client. Returns: Worker: a worker instance with the corresponding workerId """ if workerId not in self.connections: self.connections[workerId] = Worker(workerId, socket) else: worker = self.connections[workerId] if worker.status == WORKER_PROPERTIES.OFFLINE: worker._socket = socket return self.connections[workerId] def send_msg(self, workerId: str, message: str): """ Find the socket descriptor mapped by workerId and send them a message. Args: workerId: UUID string used to identify and retrieve a worker. message: Message to be send. """ socket = self.connections.get(workerId, None) if socket: socket.send(message) def get(self, query): """Retrieve a worker by its UUID string or its socket descriptor.""" if isinstance(query, str): return self.connections.get(query, None) else: return self.__retrieve_worker_by_socket(query) def remove(self, socket) -> str: """ Remove a socket descriptor from mapping structure. It will be used when the socket connection is closed. Args: socket: socket descriptor used to send/receive messages. Returns: workerId: Worker id linked to that connection. """ worker = self.__retrieve_worker_by_socket(socket) if worker: self.connections[worker._id]._socket = None self.connections[worker._id].connected_nodes = [] return worker._id def __retrieve_worker_by_socket(self, socket): for worker_id, worker in self.connections.items(): if worker._socket == socket: return self.connections[worker_id] @property def nodes(self) -> list: """Return all the connected nodes as a list of tuples of (worker_id, worker)""" return list(self.connections.items()) def __len__(self) -> int: """ Number of connections handled by this server. Returns: length: number of connections handled by this server. """ return len(self.connections)
forward
Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) # MASKED: forward function (lines 50-72) def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num
50
72
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
__call__
Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] # MASKED: __call__ function (lines 175-209) @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result
175
209
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
forward
Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) # MASKED: forward function (lines 363-407) @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _
363
407
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
__call__
Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss # MASKED: __call__ function (lines 515-570) @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num
515
570
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from ppdet.modeling.bbox_utils import nonempty_bbox, rbox2poly from ppdet.modeling.layers import TTFBox from .transformers import bbox_cxcywh_to_xyxy try: from collections.abc import Sequence except Exception: from collections import Sequence __all__ = [ 'BBoxPostProcess', 'MaskPostProcess', 'FCOSPostProcess', 'S2ANetBBoxPostProcess', 'JDEBBoxPostProcess', 'CenterNetPostProcess', 'DETRBBoxPostProcess', 'SparsePostProcess' ] @register class BBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=80, decode=None, nms=None): super(BBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.fake_bboxes = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, head_out, rois, im_shape, scale_factor): """ Decode the bbox and do NMS if needed. Args: head_out (tuple): bbox_pred and cls_prob of bbox_head output. rois (tuple): roi and rois_num of rpn_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. """ if self.nms is not None: bboxes, score = self.decode(head_out, rois, im_shape, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score, self.num_classes) else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Notes: Currently only support bs = 1. Args: bboxes (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: pred_result (Tensor): The final prediction results with shape [N, 6] including labels, scores and bboxes. """ if bboxes.shape[0] == 0: bboxes = self.fake_bboxes bbox_num = self.fake_bbox_num origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([scale_x, scale_y, scale_x, scale_y]) expand_scale = paddle.expand(scale, [bbox_num[i], 4]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) self.origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 6], label, score, bbox pred_label = bboxes[:, 0:1] pred_score = bboxes[:, 1:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image scaled_bbox = pred_bbox / scale_factor_list origin_h = self.origin_shape_list[:, 0] origin_w = self.origin_shape_list[:, 1] zeros = paddle.zeros_like(origin_h) # clip bbox to [0, original_size] x1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 0], origin_w), zeros) y1 = paddle.maximum(paddle.minimum(scaled_bbox[:, 1], origin_h), zeros) x2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 2], origin_w), zeros) y2 = paddle.maximum(paddle.minimum(scaled_bbox[:, 3], origin_h), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2], axis=-1) # filter empty bbox keep_mask = nonempty_bbox(pred_bbox, return_mask=True) keep_mask = paddle.unsqueeze(keep_mask, [1]) pred_label = paddle.where(keep_mask, pred_label, paddle.ones_like(pred_label) * -1) pred_result = paddle.concat([pred_label, pred_score, pred_bbox], axis=1) return pred_result def get_origin_shape(self, ): return self.origin_shape_list @register class MaskPostProcess(object): """ refer to: https://github.com/facebookresearch/detectron2/layers/mask_ops.py Get Mask output according to the output from model """ def __init__(self, binary_thresh=0.5): super(MaskPostProcess, self).__init__() self.binary_thresh = binary_thresh def paste_mask(self, masks, boxes, im_h, im_w): """ Paste the mask prediction to the original image. """ x0, y0, x1, y1 = paddle.split(boxes, 4, axis=1) masks = paddle.unsqueeze(masks, [0, 1]) img_y = paddle.arange(0, im_h, dtype='float32') + 0.5 img_x = paddle.arange(0, im_w, dtype='float32') + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 img_x = paddle.unsqueeze(img_x, [1]) img_y = paddle.unsqueeze(img_y, [2]) N = boxes.shape[0] gx = paddle.expand(img_x, [N, img_y.shape[1], img_x.shape[2]]) gy = paddle.expand(img_y, [N, img_y.shape[1], img_x.shape[2]]) grid = paddle.stack([gx, gy], axis=3) img_masks = F.grid_sample(masks, grid, align_corners=False) return img_masks[:, 0] def __call__(self, mask_out, bboxes, bbox_num, origin_shape): """ Decode the mask_out and paste the mask to the origin image. Args: mask_out (Tensor): mask_head output with shape [N, 28, 28]. bbox_pred (Tensor): The output bboxes with shape [N, 6] after decode and NMS, including labels, scores and bboxes. bbox_num (Tensor): The number of prediction boxes of each batch with shape [1], and is N. origin_shape (Tensor): The origin shape of the input image, the tensor shape is [N, 2], and each row is [h, w]. Returns: pred_result (Tensor): The final prediction mask results with shape [N, h, w] in binary mask style. """ num_mask = mask_out.shape[0] origin_shape = paddle.cast(origin_shape, 'int32') # TODO: support bs > 1 and mask output dtype is bool pred_result = paddle.zeros( [num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32') if bbox_num == 1 and bboxes[0][0] == -1: return pred_result # TODO: optimize chunk paste pred_result = [] for i in range(bboxes.shape[0]): im_h, im_w = origin_shape[i][0], origin_shape[i][1] pred_mask = self.paste_mask(mask_out[i], bboxes[i:i + 1, 2:], im_h, im_w) pred_mask = pred_mask >= self.binary_thresh pred_mask = paddle.cast(pred_mask, 'int32') pred_result.append(pred_mask) pred_result = paddle.concat(pred_result) return pred_result @register class FCOSPostProcess(object): __inject__ = ['decode', 'nms'] def __init__(self, decode=None, nms=None): super(FCOSPostProcess, self).__init__() self.decode = decode self.nms = nms def __call__(self, fcos_head_outs, scale_factor): """ Decode the bbox and do NMS in FCOS. """ locations, cls_logits, bboxes_reg, centerness = fcos_head_outs bboxes, score = self.decode(locations, cls_logits, bboxes_reg, centerness, scale_factor) bbox_pred, bbox_num, _ = self.nms(bboxes, score) return bbox_pred, bbox_num @register class S2ANetBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['nms'] def __init__(self, num_classes=15, nms_pre=2000, min_bbox_size=0, nms=None): super(S2ANetBBoxPostProcess, self).__init__() self.num_classes = num_classes self.nms_pre = paddle.to_tensor(nms_pre) self.min_bbox_size = min_bbox_size self.nms = nms self.origin_shape_list = [] self.fake_pred_cls_score_bbox = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) def forward(self, pred_scores, pred_bboxes): """ pred_scores : [N, M] score pred_bboxes : [N, 5] xc, yc, w, h, a im_shape : [N, 2] im_shape scale_factor : [N, 2] scale_factor """ pred_ploys0 = rbox2poly(pred_bboxes) pred_ploys = paddle.unsqueeze(pred_ploys0, axis=0) # pred_scores [NA, 16] --> [16, NA] pred_scores0 = paddle.transpose(pred_scores, [1, 0]) pred_scores = paddle.unsqueeze(pred_scores0, axis=0) pred_cls_score_bbox, bbox_num, _ = self.nms(pred_ploys, pred_scores, self.num_classes) # Prevent empty bbox_pred from decode or NMS. # Bboxes and score before NMS may be empty due to the score threshold. if pred_cls_score_bbox.shape[0] <= 0 or pred_cls_score_bbox.shape[ 1] <= 1: pred_cls_score_bbox = self.fake_pred_cls_score_bbox bbox_num = self.fake_bbox_num pred_cls_score_bbox = paddle.reshape(pred_cls_score_bbox, [-1, 10]) return pred_cls_score_bbox, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): """ Rescale, clip and filter the bbox from the output of NMS to get final prediction. Args: bboxes(Tensor): bboxes [N, 10] bbox_num(Tensor): bbox_num im_shape(Tensor): [1 2] scale_factor(Tensor): [1 2] Returns: bbox_pred(Tensor): The output is the prediction with shape [N, 8] including labels, scores and bboxes. The size of bboxes are corresponding to the original image. """ origin_shape = paddle.floor(im_shape / scale_factor + 0.5) origin_shape_list = [] scale_factor_list = [] # scale_factor: scale_y, scale_x for i in range(bbox_num.shape[0]): expand_shape = paddle.expand(origin_shape[i:i + 1, :], [bbox_num[i], 2]) scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] scale = paddle.concat([ scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, scale_y ]) expand_scale = paddle.expand(scale, [bbox_num[i], 8]) origin_shape_list.append(expand_shape) scale_factor_list.append(expand_scale) origin_shape_list = paddle.concat(origin_shape_list) scale_factor_list = paddle.concat(scale_factor_list) # bboxes: [N, 10], label, score, bbox pred_label_score = bboxes[:, 0:2] pred_bbox = bboxes[:, 2:] # rescale bbox to original image pred_bbox = pred_bbox.reshape([-1, 8]) scaled_bbox = pred_bbox / scale_factor_list origin_h = origin_shape_list[:, 0] origin_w = origin_shape_list[:, 1] bboxes = scaled_bbox zeros = paddle.zeros_like(origin_h) x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) return pred_result @register class JDEBBoxPostProcess(nn.Layer): __shared__ = ['num_classes'] __inject__ = ['decode', 'nms'] def __init__(self, num_classes=1, decode=None, nms=None, return_idx=True): super(JDEBBoxPostProcess, self).__init__() self.num_classes = num_classes self.decode = decode self.nms = nms self.return_idx = return_idx self.fake_bbox_pred = paddle.to_tensor( np.array( [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) self.fake_nms_keep_idx = paddle.to_tensor( np.array( [[0]], dtype='int32')) self.fake_yolo_boxes_out = paddle.to_tensor( np.array( [[[0.0, 0.0, 0.0, 0.0]]], dtype='float32')) self.fake_yolo_scores_out = paddle.to_tensor( np.array( [[[0.0]]], dtype='float32')) self.fake_boxes_idx = paddle.to_tensor(np.array([[0]], dtype='int64')) def forward(self, head_out, anchors): """ Decode the bbox and do NMS for JDE model. Args: head_out (list): Bbox_pred and cls_prob of bbox_head output. anchors (list): Anchors of JDE model. Returns: boxes_idx (Tensor): The index of kept bboxes after decode 'JDEBox'. bbox_pred (Tensor): The output is the prediction with shape [N, 6] including labels, scores and bboxes. bbox_num (Tensor): The number of prediction of each batch with shape [N]. nms_keep_idx (Tensor): The index of kept bboxes after NMS. """ boxes_idx, yolo_boxes_scores = self.decode(head_out, anchors) if len(boxes_idx) == 0: boxes_idx = self.fake_boxes_idx yolo_boxes_out = self.fake_yolo_boxes_out yolo_scores_out = self.fake_yolo_scores_out else: yolo_boxes = paddle.gather_nd(yolo_boxes_scores, boxes_idx) # TODO: only support bs=1 now yolo_boxes_out = paddle.reshape( yolo_boxes[:, :4], shape=[1, len(boxes_idx), 4]) yolo_scores_out = paddle.reshape( yolo_boxes[:, 4:5], shape=[1, 1, len(boxes_idx)]) boxes_idx = boxes_idx[:, 1:] if self.return_idx: bbox_pred, bbox_num, nms_keep_idx = self.nms( yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num nms_keep_idx = self.fake_nms_keep_idx return boxes_idx, bbox_pred, bbox_num, nms_keep_idx else: bbox_pred, bbox_num, _ = self.nms(yolo_boxes_out, yolo_scores_out, self.num_classes) if bbox_pred.shape[0] == 0: bbox_pred = self.fake_bbox_pred bbox_num = self.fake_bbox_num return _, bbox_pred, bbox_num, _ @register class CenterNetPostProcess(TTFBox): """ Postprocess the model outputs to get final prediction: 1. Do NMS for heatmap to get top `max_per_img` bboxes. 2. Decode bboxes using center offset and box size. 3. Rescale decoded bboxes reference to the origin image shape. Args: max_per_img(int): the maximum number of predicted objects in a image, 500 by default. down_ratio(int): the down ratio from images to heatmap, 4 by default. regress_ltrb (bool): whether to regress left/top/right/bottom or width/height for a box, true by default. for_mot (bool): whether return other features used in tracking model. """ __shared__ = ['down_ratio', 'for_mot'] def __init__(self, max_per_img=500, down_ratio=4, regress_ltrb=True, for_mot=False): super(TTFBox, self).__init__() self.max_per_img = max_per_img self.down_ratio = down_ratio self.regress_ltrb = regress_ltrb self.for_mot = for_mot def __call__(self, hm, wh, reg, im_shape, scale_factor): heat = self._simple_nms(hm) scores, inds, topk_clses, ys, xs = self._topk(heat) scores = paddle.tensor.unsqueeze(scores, [1]) clses = paddle.tensor.unsqueeze(topk_clses, [1]) reg_t = paddle.transpose(reg, [0, 2, 3, 1]) # Like TTFBox, batch size is 1. # TODO: support batch size > 1 reg = paddle.reshape(reg_t, [-1, paddle.shape(reg_t)[-1]]) reg = paddle.gather(reg, inds) xs = paddle.cast(xs, 'float32') ys = paddle.cast(ys, 'float32') xs = xs + reg[:, 0:1] ys = ys + reg[:, 1:2] wh_t = paddle.transpose(wh, [0, 2, 3, 1]) wh = paddle.reshape(wh_t, [-1, paddle.shape(wh_t)[-1]]) wh = paddle.gather(wh, inds) if self.regress_ltrb: x1 = xs - wh[:, 0:1] y1 = ys - wh[:, 1:2] x2 = xs + wh[:, 2:3] y2 = ys + wh[:, 3:4] else: x1 = xs - wh[:, 0:1] / 2 y1 = ys - wh[:, 1:2] / 2 x2 = xs + wh[:, 0:1] / 2 y2 = ys + wh[:, 1:2] / 2 n, c, feat_h, feat_w = hm.shape[:] padw = (feat_w * self.down_ratio - im_shape[0, 1]) / 2 padh = (feat_h * self.down_ratio - im_shape[0, 0]) / 2 x1 = x1 * self.down_ratio y1 = y1 * self.down_ratio x2 = x2 * self.down_ratio y2 = y2 * self.down_ratio x1 = x1 - padw y1 = y1 - padh x2 = x2 - padw y2 = y2 - padh bboxes = paddle.concat([x1, y1, x2, y2], axis=1) scale_y = scale_factor[:, 0:1] scale_x = scale_factor[:, 1:2] scale_expand = paddle.concat( [scale_x, scale_y, scale_x, scale_y], axis=1) boxes_shape = paddle.shape(bboxes) boxes_shape.stop_gradient = True scale_expand = paddle.expand(scale_expand, shape=boxes_shape) bboxes = paddle.divide(bboxes, scale_expand) if self.for_mot: results = paddle.concat([bboxes, scores, clses], axis=1) return results, inds, topk_clses else: results = paddle.concat([clses, scores, bboxes], axis=1) return results, paddle.shape(results)[0:1], topk_clses @register class DETRBBoxPostProcess(object): __shared__ = ['num_classes', 'use_focal_loss'] __inject__ = [] def __init__(self, num_classes=80, num_top_queries=100, use_focal_loss=False): super(DETRBBoxPostProcess, self).__init__() self.num_classes = num_classes self.num_top_queries = num_top_queries self.use_focal_loss = use_focal_loss def __call__(self, head_out, im_shape, scale_factor): """ Decode the bbox. Args: head_out (tuple): bbox_pred, cls_logit and masks of bbox_head output. im_shape (Tensor): The shape of the input image. scale_factor (Tensor): The scale factor of the input image. Returns: bbox_pred (Tensor): The output prediction with shape [N, 6], including labels, scores and bboxes. The size of bboxes are corresponding to the input image, the bboxes may be used in other branch. bbox_num (Tensor): The number of prediction boxes of each batch with shape [bs], and is N. """ bboxes, logits, masks = head_out bbox_pred = bbox_cxcywh_to_xyxy(bboxes) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) img_h, img_w = origin_shape.unbind(1) origin_shape = paddle.stack( [img_w, img_h, img_w, img_h], axis=-1).unsqueeze(0) bbox_pred *= origin_shape scores = F.sigmoid(logits) if self.use_focal_loss else F.softmax( logits)[:, :, :-1] if not self.use_focal_loss: scores, labels = scores.max(-1), scores.argmax(-1) if scores.shape[1] > self.num_top_queries: scores, index = paddle.topk( scores, self.num_top_queries, axis=-1) labels = paddle.stack( [paddle.gather(l, i) for l, i in zip(labels, index)]) bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) else: scores, index = paddle.topk( scores.reshape([logits.shape[0], -1]), self.num_top_queries, axis=-1) labels = index % logits.shape[2] index = index // logits.shape[2] bbox_pred = paddle.stack( [paddle.gather(b, i) for b, i in zip(bbox_pred, index)]) bbox_pred = paddle.concat( [ labels.unsqueeze(-1).astype('float32'), scores.unsqueeze(-1), bbox_pred ], axis=-1) bbox_num = paddle.to_tensor( bbox_pred.shape[1], dtype='int32').tile([bbox_pred.shape[0]]) bbox_pred = bbox_pred.reshape([-1, 6]) return bbox_pred, bbox_num @register class SparsePostProcess(object): __shared__ = ['num_classes'] def __init__(self, num_proposals, num_classes=80): super(SparsePostProcess, self).__init__() self.num_classes = num_classes self.num_proposals = num_proposals def __call__(self, box_cls, box_pred, scale_factor_wh, img_whwh): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_proposals, K). The tensor predicts the classification probability for each proposal. box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every proposal scale_factor_wh (Tensor): tensors of shape [batch_size, 2] the scalor of per img img_whwh (Tensor): tensors of shape [batch_size, 4] Returns: bbox_pred (Tensor): tensors of shape [num_boxes, 6] Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] bbox_num (Tensor): tensors of shape [batch_size] the number of RoIs in each image. """ assert len(box_cls) == len(scale_factor_wh) == len(img_whwh) img_wh = img_whwh[:, :2] scores = F.sigmoid(box_cls) labels = paddle.arange(0, self.num_classes). \ unsqueeze(0).tile([self.num_proposals, 1]).flatten(start_axis=0, stop_axis=1) classes_all = [] scores_all = [] boxes_all = [] for i, (scores_per_image, box_pred_per_image) in enumerate(zip(scores, box_pred)): scores_per_image, topk_indices = scores_per_image.flatten( 0, 1).topk( self.num_proposals, sorted=False) labels_per_image = paddle.gather(labels, topk_indices, axis=0) box_pred_per_image = box_pred_per_image.reshape([-1, 1, 4]).tile( [1, self.num_classes, 1]).reshape([-1, 4]) box_pred_per_image = paddle.gather( box_pred_per_image, topk_indices, axis=0) classes_all.append(labels_per_image) scores_all.append(scores_per_image) boxes_all.append(box_pred_per_image) bbox_num = paddle.zeros([len(scale_factor_wh)], dtype="int32") boxes_final = [] for i in range(len(scale_factor_wh)): classes = classes_all[i] boxes = boxes_all[i] scores = scores_all[i] boxes[:, 0::2] = paddle.clip( boxes[:, 0::2], min=0, max=img_wh[i][0]) / scale_factor_wh[i][0] boxes[:, 1::2] = paddle.clip( boxes[:, 1::2], min=0, max=img_wh[i][1]) / scale_factor_wh[i][1] boxes_w, boxes_h = (boxes[:, 2] - boxes[:, 0]).numpy(), ( boxes[:, 3] - boxes[:, 1]).numpy() keep = (boxes_w > 1.) & (boxes_h > 1.) if (keep.sum() == 0): bboxes = paddle.zeros([1, 6]).astype("float32") else: boxes = paddle.to_tensor(boxes.numpy()[keep]).astype("float32") classes = paddle.to_tensor(classes.numpy()[keep]).astype( "float32").unsqueeze(-1) scores = paddle.to_tensor(scores.numpy()[keep]).astype( "float32").unsqueeze(-1) bboxes = paddle.concat([classes, scores, boxes], axis=-1) boxes_final.append(bboxes) bbox_num[i] = bboxes.shape[0] bbox_pred = paddle.concat(boxes_final) return bbox_pred, bbox_num def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) # nominal indices # _i, _j # sorted indices # i, j # temp variables for box i's (the box currently under consideration) # ix1, iy1, ix2, iy2, iarea # variables for computing overlap with box j (lower scoring box) # xx1, yy1, xx2, yy2 # w, h # inter, ovr for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
authenticated_view
This view can be used to test requests with an authenticated user. Create a user with a default username, save it and then use this user to log in. Always returns a 200.
from django.conf.urls import url from django.contrib.auth import login from django.contrib.auth.models import User from django.http import HttpResponse from django.views.decorators.cache import cache_page from django.urls import include, path, re_path from .. import views def repath_view(request): return HttpResponse(status=200) def path_view(request): return HttpResponse(status=200) # MASKED: authenticated_view function (lines 19-29) urlpatterns = [ url(r"^$", views.index), url(r"^simple/$", views.BasicView.as_view()), url(r"^users/$", views.UserList.as_view(), name="users-list"), url(r"^cached-template/$", views.TemplateCachedUserList.as_view(), name="cached-template-list"), url(r"^cached-users/$", cache_page(60)(views.UserList.as_view()), name="cached-users-list"), url(r"^fail-view/$", views.ForbiddenView.as_view(), name="forbidden-view"), url(r"^authenticated/$", authenticated_view, name="authenticated-view"), url(r"^static-method-view/$", views.StaticMethodView.as_view(), name="static-method-view"), url(r"^fn-view/$", views.function_view, name="fn-view"), url(r"^feed-view/$", views.FeedView(), name="feed-view"), url(r"^partial-view/$", views.partial_view, name="partial-view"), url(r"^lambda-view/$", views.lambda_view, name="lambda-view"), url(r"^error-500/$", views.error_500, name="error-500"), re_path(r"re-path.*/", repath_view), path("path/", path_view), path("include/", include("tests.contrib.django.django_app.extra_urls")), ]
def authenticated_view(request): """ This view can be used to test requests with an authenticated user. Create a user with a default username, save it and then use this user to log in. Always returns a 200. """ user = User(username="Jane Doe") user.save() login(request, user) return HttpResponse(status=200)
19
29
from django.conf.urls import url from django.contrib.auth import login from django.contrib.auth.models import User from django.http import HttpResponse from django.views.decorators.cache import cache_page from django.urls import include, path, re_path from .. import views def repath_view(request): return HttpResponse(status=200) def path_view(request): return HttpResponse(status=200) def authenticated_view(request): """ This view can be used to test requests with an authenticated user. Create a user with a default username, save it and then use this user to log in. Always returns a 200. """ user = User(username="Jane Doe") user.save() login(request, user) return HttpResponse(status=200) urlpatterns = [ url(r"^$", views.index), url(r"^simple/$", views.BasicView.as_view()), url(r"^users/$", views.UserList.as_view(), name="users-list"), url(r"^cached-template/$", views.TemplateCachedUserList.as_view(), name="cached-template-list"), url(r"^cached-users/$", cache_page(60)(views.UserList.as_view()), name="cached-users-list"), url(r"^fail-view/$", views.ForbiddenView.as_view(), name="forbidden-view"), url(r"^authenticated/$", authenticated_view, name="authenticated-view"), url(r"^static-method-view/$", views.StaticMethodView.as_view(), name="static-method-view"), url(r"^fn-view/$", views.function_view, name="fn-view"), url(r"^feed-view/$", views.FeedView(), name="feed-view"), url(r"^partial-view/$", views.partial_view, name="partial-view"), url(r"^lambda-view/$", views.lambda_view, name="lambda-view"), url(r"^error-500/$", views.error_500, name="error-500"), re_path(r"re-path.*/", repath_view), path("path/", path_view), path("include/", include("tests.contrib.django.django_app.extra_urls")), ]
_handle_mark_groups_arg_for_clustering
Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) # MASKED: _handle_mark_groups_arg_for_clustering function (lines 1469-1517) ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver()
1,469
1,517
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
__init__
Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ # MASKED: __init__ function (lines 83-97) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params)
83
97
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
sizes
Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) # MASKED: sizes function (lines 159-172) def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts
159
172
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
summary
Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) # MASKED: summary function (lines 182-207) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip()
182
207
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
__init__
Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None # MASKED: __init__ function (lines 234-263) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params)
234
263
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
recalculate_modularity
Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph # MASKED: recalculate_modularity function (lines 374-387) def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity
374
387
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
giant
Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] # MASKED: giant function (lines 424-437) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size))
424
437
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
_traverse_inorder
Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] # MASKED: _traverse_inorder function (lines 594-621) def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result
594
621
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
format
Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;'
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) # MASKED: format function (lines 626-652) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format)
626
652
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
sizes
Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) # MASKED: sizes function (lines 1156-1164) def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self]
1,156
1,164
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
summary
Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) # MASKED: summary function (lines 1174-1198) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip()
1,174
1,198
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
__init__
Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # MASKED: __init__ function (lines 1221-1236) def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph
1,221
1,236
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
__init__
Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks()
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ # MASKED: __init__ function (lines 1360-1389) def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None
1,360
1,389
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
__plot__
Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details.
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] # MASKED: __plot__ function (lines 1440-1467) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds)
1,440
1,467
# vim:ts=4:sw=4:sts=4:et # -*- coding: utf-8 -*- """Classes related to graph clustering. @undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison""" __license__ = u""" Copyright (C) 2006-2012 Tamás Nepusz <[email protected]> Pázmány Péter sétány 1/a, 1117 Budapest, Hungary This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA """ from copy import deepcopy from itertools import izip from math import pi from cStringIO import StringIO from igraph import community_to_membership from igraph.compat import property from igraph.configuration import Configuration from igraph.datatypes import UniqueIdGenerator from igraph.drawing.colors import ClusterColoringPalette from igraph.statistics import Histogram from igraph.summary import _get_wrapper_for_width from igraph.utils import str_to_orientation class Clustering(object): """Class representing a clustering of an arbitrary ordered set. This is now used as a base for L{VertexClustering}, but it might be useful for other purposes as well. Members of an individual cluster can be accessed by the C{[]} operator: >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property: >>> cl.membership [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the clustering object as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 4 5 6 7 8 9 10 If you need all the clusters at once as lists, you can simply convert the clustering object to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]] @undocumented: _formatted_cluster_iterator """ def __init__(self, membership, params = None): """Constructor. @param membership: the membership list -- that is, the cluster index in which each element of the set belongs to. @param params: additional parameters to be stored in this object's dictionary.""" self._membership = list(membership) if len(self._membership)>0: self._len = max(m for m in self._membership if m is not None)+1 else: self._len = 0 if params: self.__dict__.update(params) def __getitem__(self, idx): """Returns the members of the specified cluster. @param idx: the index of the cluster @return: the members of the specified cluster as a list @raise IndexError: if the index is out of bounds""" if idx < 0 or idx >= self._len: raise IndexError("cluster index out of range") return [i for i, e in enumerate(self._membership) if e == idx] def __iter__(self): """Iterates over the clusters in this clustering. This method will return a generator that generates the clusters one by one.""" clusters = [[] for _ in xrange(self._len)] for idx, cluster in enumerate(self._membership): clusters[cluster].append(idx) return iter(clusters) def __len__(self): """Returns the number of clusters. @return: the number of clusters """ return self._len def __str__(self): return self.summary(verbosity=1, width=78) def as_cover(self): """Returns a L{Cover} that contains the same clusters as this clustering.""" return Cover(self._graph, self) def compare_to(self, other, *args, **kwds): """Compares this clustering to another one using some similarity or distance metric. This is a convenience method that simply calls L{compare_communities} with the two clusterings as arguments. Any extra positional or keyword argument is also forwarded to L{compare_communities}.""" return compare_communities(self, other, *args, **kwds) @property def membership(self): """Returns the membership vector.""" return self._membership[:] @property def n(self): """Returns the number of elements covered by this clustering.""" return len(self._membership) def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ counts = [0] * len(self) for x in self._membership: counts[x] += 1 if args: return [counts[idx] for idx in args] return counts def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the clustering. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the clustering as a string. """ out = StringIO() print >>out, "Clustering with %d elements and %d clusters" % \ (len(self._membership), len(self)) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexClustering(Clustering): """The clustering of the vertex set of a graph. This class extends L{Clustering} by linking it to a specific L{Graph} object and by optionally storing the modularity score of the clustering. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexClustering} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ # Allow None to be passed to __plot__ as the "palette" keyword argument _default_palette = None def __init__(self, graph, membership = None, modularity = None, \ params = None, modularity_params = None): """Creates a clustering object for a given graph. @param graph: the graph that will be associated to the clustering @param membership: the membership list. The length of the list must be equal to the number of vertices in the graph. If C{None}, every vertex is assumed to belong to the same cluster. @param modularity: the modularity score of the clustering. If C{None}, it will be calculated when needed. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ if membership is None: Clustering.__init__(self, [0]*graph.vcount(), params) else: if len(membership) != graph.vcount(): raise ValueError("membership list has invalid length") Clustering.__init__(self, membership, params) self._graph = graph self._modularity = modularity self._modularity_dirty = modularity is None if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) # pylint: disable-msg=C0103 @classmethod def FromAttribute(cls, graph, attribute, intervals=None, params=None): """Creates a vertex clustering based on the value of a vertex attribute. Vertices having the same attribute will correspond to the same cluster. @param graph: the graph on which we are working @param attribute: name of the attribute on which the clustering is based. @param intervals: for numeric attributes, you can either pass a single number or a list of numbers here. A single number means that the vertices will be put in bins of that width and vertices ending up in the same bin will be in the same cluster. A list of numbers specify the bin positions explicitly; e.g., C{[10, 20, 30]} means that there will be four categories: vertices with the attribute value less than 10, between 10 and 20, between 20 and 30 and over 30. Intervals are closed from the left and open from the right. @param params: additional parameters to be stored in this object. @return: a new VertexClustering object """ from bisect import bisect def safeintdiv(x, y): """Safe integer division that handles None gracefully""" if x is None: return None return int(x / y) def safebisect(intervals, x): """Safe list bisection that handles None gracefully""" if x is None: return None return bisect(intervals, x) try: _ = iter(intervals) iterable = True except TypeError: iterable = False if intervals is None: vec = graph.vs[attribute] elif iterable: intervals = list(intervals) vec = [safebisect(intervals, x) for x in graph.vs[attribute]] else: intervals = float(intervals) vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]] idgen = UniqueIdGenerator() idgen[None] = None vec = [idgen[i] for i in vec] return cls(graph, vec, None, params) def as_cover(self): """Returns a L{VertexCover} that contains the same clusters as this clustering.""" return VertexCover(self._graph, self) def cluster_graph(self, combine_vertices=None, combine_edges=None): """Returns a graph where each cluster is contracted into a single vertex. In the resulting graph, vertex M{i} represents cluster M{i} in this clustering. Vertex M{i} and M{j} will be connected if there was at least one connected vertex pair M{(a, b)} in the original graph such that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster M{j}. @param combine_vertices: specifies how to derive the attributes of the vertices in the new graph from the attributes of the old ones. See L{Graph.contract_vertices()} for more details. @param combine_edges: specifies how to derive the attributes of the edges in the new graph from the attributes of the old ones. See L{Graph.simplify()} for more details. If you specify C{False} here, edges will not be combined, and the number of edges between the vertices representing the original clusters will be equal to the number of edges between the members of those clusters in the original graph. @return: the new graph. """ result = self.graph.copy() result.contract_vertices(self.membership, combine_vertices) if combine_edges != False: result.simplify(combine_edges=combine_edges) return result def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = self.membership return [membership[v1] != membership[v2] \ for v1, v2 in self.graph.get_edgelist()] @property def modularity(self): """Returns the modularity score""" if self._modularity_dirty: return self._recalculate_modularity_safe() return self._modularity q = modularity @property def graph(self): """Returns the graph belonging to this object""" return self._graph def recalculate_modularity(self): """Recalculates the stored modularity value. This method must be called before querying the modularity score of the clustering through the class member C{modularity} or C{q} if the graph has been modified (edges have been added or removed) since the creation of the L{VertexClustering} object. @return: the new modularity score """ self._modularity = self._graph.modularity(self._membership, **self._modularity_params) self._modularity_dirty = False return self._modularity def _recalculate_modularity_safe(self): """Recalculates the stored modularity value and swallows all exceptions raised by the modularity function (if any). @return: the new modularity score or C{None} if the modularity function could not be calculated. """ try: return self.recalculate_modularity() except: return None finally: self._modularity_dirty = False def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ return [self._graph.subgraph(cl) for cl in self] def giant(self): """Returns the giant community of the clustered graph. The giant component a community for which no larger community exists. @note: there can be multiple giant communities, this method will return the copy of an arbitrary one if there are multiple giant communities. @return: a copy of the giant community. @precondition: the vertex set of the graph hasn't been modified since the moment the clustering was constructed. """ ss = self.sizes() max_size = max(ss) return self.subgraph(ss.index(max_size)) def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the clustering to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but coloring the graph vertices according to the current clustering (unless overridden by the C{vertex_color} argument explicitly). This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight some of the vertex groups by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the groups will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if palette is None: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = ( (group, color) for color, group in enumerate(self) ) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) if "vertex_color" not in kwds: kwds["vertex_color"] = self.membership return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) ############################################################################### class Dendrogram(object): """The hierarchical clustering (dendrogram) of some dataset. A hierarchical clustering means that we know not only the way the elements are separated into groups, but also the exact history of how individual elements were joined into larger subgroups. This class internally represents the hierarchy by a matrix with n rows and 2 columns -- or more precisely, a list of lists of size 2. This is exactly the same as the original format used by C{igraph}'s C core. The M{i}th row of the matrix contains the indices of the two clusters being joined in time step M{i}. The joint group will be represented by the ID M{n+i}, with M{i} starting from one. The ID of the joint group will be referenced in the upcoming steps instead of any of its individual members. So, IDs less than or equal to M{n} (where M{n} is the number of rows in the matrix) mean the original members of the dataset (with ID from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an example, take a look at the dendrogram and the internal representation of a given clustering of five nodes:: 0 -+ | 1 -+-+ | 2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]] | 3 -+ | | | 4 -+---+--- @undocumented: _item_box_size, _plot_item, _traverse_inorder """ def __init__(self, merges): """Creates a hierarchical clustering. @param merges: the merge history either in matrix or tuple format""" self._merges = [tuple(pair) for pair in merges] self._nmerges = len(self._merges) if self._nmerges: self._nitems = max(self._merges[-1])-self._nmerges+2 else: self._nitems = 0 self._names = None @staticmethod def _convert_matrix_to_tuple_repr(merges, n=None): """Converts the matrix representation of a clustering to a tuple representation. @param merges: the matrix representation of the clustering @return: the tuple representation of the clustering """ if n is None: n = len(merges)+1 tuple_repr = range(n) idxs = range(n) for rowidx, row in enumerate(merges): i, j = row try: idxi, idxj = idxs[i], idxs[j] tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj]) tuple_repr[idxj] = None except IndexError: raise ValueError("malformed matrix, subgroup referenced "+ "before being created in step %d" % rowidx) idxs.append(j) return [x for x in tuple_repr if x is not None] def _traverse_inorder(self): """Conducts an inorder traversal of the merge tree. The inorder traversal returns the nodes on the last level in the order they should be drawn so that no edges cross each other. @return: the result of the inorder traversal in a list.""" result = [] seen_nodes = set() for node_index in reversed(xrange(self._nitems+self._nmerges)): if node_index in seen_nodes: continue stack = [node_index] while stack: last = stack.pop() seen_nodes.add(last) if last < self._nitems: # 'last' is a regular node so the traversal ends here, we # can append it to the results result.append(last) else: # 'last' is a merge node, so let us proceed with the entry # where this merge node was created stack.extend(self._merges[last-self._nitems]) return result def __str__(self): return self.summary(verbosity=1) def format(self, format="newick"): """Formats the dendrogram in a foreign format. Currently only the Newick format is supported. Example: >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)]) >>> d.format() '((2,3)4,(0,1)5)6;' >>> d.names = list("ABCDEFG") >>> d.format() '((C,D)E,(A,B)F)G;' """ if format == "newick": n = self._nitems + self._nmerges if self._names is None: nodes = range(n) else: nodes = list(self._names) if len(nodes) < n: nodes.extend("" for _ in xrange(n - len(nodes))) for k, (i, j) in enumerate(self._merges, self._nitems): nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k]) nodes[i] = nodes[j] = None return nodes[-1] + ";" raise ValueError("unsupported format: %r" % format) def summary(self, verbosity=0, max_leaf_count=40): """Returns the summary of the dendrogram. The summary includes the number of leafs and branches, and also an ASCII art representation of the dendrogram unless it is too large. @param verbosity: determines whether the ASCII representation of the dendrogram should be printed. Zero verbosity prints only the number of leafs and branches. @param max_leaf_count: the maximal number of leafs to print in the ASCII representation. If the dendrogram has more leafs than this limit, the ASCII representation will not be printed even if the verbosity is larger than or equal to 1. @return: the summary of the dendrogram as a string. """ out = StringIO() print >>out, "Dendrogram, %d elements, %d merges" % \ (self._nitems, self._nmerges) if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count: return out.getvalue().strip() print >>out positions = [None] * self._nitems inorder = self._traverse_inorder() distance = 2 level_distance = 2 nextp = 0 for idx, element in enumerate(inorder): positions[element] = nextp inorder[idx] = str(element) nextp += max(distance, len(inorder[idx])+1) width = max(positions)+1 # Print the nodes on the lowest level print >>out, (" " * (distance-1)).join(inorder) midx = 0 max_community_idx = self._nitems while midx < self._nmerges: char_array = [" "] * width for position in positions: if position >= 0: char_array[position] = "|" char_str = "".join(char_array) for _ in xrange(level_distance-1): print >>out, char_str # Print the lines cidx_incr = 0 while midx < self._nmerges: id1, id2 = self._merges[midx] if id1 >= max_community_idx or id2 >= max_community_idx: break midx += 1 pos1, pos2 = positions[id1], positions[id2] positions[id1], positions[id2] = -1, -1 if pos1 > pos2: pos1, pos2 = pos2, pos1 positions.append((pos1+pos2) // 2) dashes = "-" * (pos2 - pos1 - 1) char_array[pos1:(pos2+1)] = "`%s'" % dashes cidx_incr += 1 max_community_idx += cidx_incr print >>out, "".join(char_array) return out.getvalue().strip() def _item_box_size(self, context, horiz, idx): """Calculates the amount of space needed for drawing an individual vertex at the bottom of the dendrogram.""" if self._names is None or self._names[idx] is None: x_bearing, _, _, height, x_advance, _ = context.text_extents("") else: x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx])) if horiz: return x_advance - x_bearing, height return height, x_advance - x_bearing # pylint: disable-msg=R0913 def _plot_item(self, context, horiz, idx, x, y): """Plots a dendrogram item to the given Cairo context @param context: the Cairo context we are plotting on @param horiz: whether the dendrogram is horizontally oriented @param idx: the index of the item @param x: the X position of the item @param y: the Y position of the item """ if self._names is None or self._names[idx] is None: return height = self._item_box_size(context, True, idx)[1] if horiz: context.move_to(x, y+height) context.show_text(str(self._names[idx])) else: context.save() context.translate(x, y) context.rotate(-pi/2.) context.move_to(0, height) context.show_text(str(self._names[idx])) context.restore() # pylint: disable-msg=C0103,W0613 # W0613 = unused argument 'palette' def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the dendrogram on the given Cairo context Supported keyword arguments are: - C{orientation}: the orientation of the dendrogram. Must be one of the following values: C{left-right}, C{bottom-top}, C{right-left} or C{top-bottom}. Individual elements are always placed at the former edge and merges are performed towards the latter edge. Possible aliases: C{horizontal} = C{left-right}, C{vertical} = C{bottom-top}, C{lr} = C{left-right}, C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}. The default is C{left-right}. """ from igraph.layout import Layout if self._names is None: self._names = [str(x) for x in xrange(self._nitems)] orientation = str_to_orientation(kwds.get("orientation", "lr"), reversed_vertical=True) horiz = orientation in ("lr", "rl") # Get the font height font_height = context.font_extents()[2] # Calculate space needed for individual items at the # bottom of the dendrogram item_boxes = [self._item_box_size(context, horiz, idx) \ for idx in xrange(self._nitems)] # Small correction for cases when the right edge of the labels is # aligned with the tips of the dendrogram branches ygap = 2 if orientation == "bt" else 0 xgap = 2 if orientation == "lr" else 0 item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes] # Calculate coordinates layout = Layout([(0, 0)] * self._nitems, dim=2) inorder = self._traverse_inorder() if not horiz: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (x, 0) x += max(font_height, item_boxes[element][0]) for id1, id2 in self._merges: y += 1 layout.append(((layout[id1][0]+layout[id2][0])/2., y)) # Mirror or rotate the layout if necessary if orientation == "bt": layout.mirror(1) else: x, y = 0, 0 for idx, element in enumerate(inorder): layout[element] = (0, y) y += max(font_height, item_boxes[element][1]) for id1, id2 in self._merges: x += 1 layout.append((x, (layout[id1][1]+layout[id2][1])/2.)) # Mirror or rotate the layout if necessary if orientation == "rl": layout.mirror(0) # Rescale layout to the bounding box maxw = max(e[0] for e in item_boxes) maxh = max(e[1] for e in item_boxes) # w, h: width and height of the area containing the dendrogram # tree without the items. # delta_x, delta_y: displacement of the dendrogram tree width, height = float(bbox.width), float(bbox.height) delta_x, delta_y = 0, 0 if horiz: width -= maxw if orientation == "lr": delta_x = maxw else: height -= maxh if orientation == "tb": delta_y = maxh if horiz: delta_y += font_height / 2. else: delta_x += font_height / 2. layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y), keep_aspect_ratio=False) context.save() context.translate(bbox.left, bbox.top) context.set_source_rgb(0., 0., 0.) context.set_line_width(1) # Draw items if horiz: sgn = 0 if orientation == "rl" else -1 for idx in xrange(self._nitems): x = layout[idx][0] + sgn * item_boxes[idx][0] y = layout[idx][1] - item_boxes[idx][1]/2. self._plot_item(context, horiz, idx, x, y) else: sgn = 1 if orientation == "bt" else 0 for idx in xrange(self._nitems): x = layout[idx][0] - item_boxes[idx][0]/2. y = layout[idx][1] + sgn * item_boxes[idx][1] self._plot_item(context, horiz, idx, x, y) # Draw dendrogram lines if not horiz: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x0, y2) context.line_to(x1, y2) context.line_to(x1, y1) context.stroke() else: for idx, (id1, id2) in enumerate(self._merges): x0, y0 = layout[id1] x1, y1 = layout[id2] x2, y2 = layout[idx + self._nitems] context.move_to(x0, y0) context.line_to(x2, y0) context.line_to(x2, y1) context.line_to(x1, y1) context.stroke() context.restore() @property def merges(self): """Returns the performed merges in matrix format""" return deepcopy(self._merges) @property def names(self): """Returns the names of the nodes in the dendrogram""" return self._names @names.setter def names(self, items): """Sets the names of the nodes in the dendrogram""" if items is None: self._names = None return items = list(items) if len(items) < self._nitems: raise ValueError("must specify at least %d names" % self._nitems) n = self._nitems + self._nmerges self._names = items[:n] if len(self._names) < n: self._names.extend("" for _ in xrange(n-len(self._names))) class VertexDendrogram(Dendrogram): """The dendrogram resulting from the hierarchical clustering of the vertex set of a graph.""" def __init__(self, graph, merges, optimal_count = None, params = None, modularity_params = None): """Creates a dendrogram object for a given graph. @param graph: the graph that will be associated to the clustering @param merges: the merges performed given in matrix form. @param optimal_count: the optimal number of clusters where the dendrogram should be cut. This is a hint usually provided by the clustering algorithm that produces the dendrogram. C{None} means that such a hint is not available; the optimal count will then be selected based on the modularity in such a case. @param params: additional parameters to be stored in this object. @param modularity_params: arguments that should be passed to L{Graph.modularity} when the modularity is (re)calculated. If the original graph was weighted, you should pass a dictionary containing a C{weight} key with the appropriate value here. """ Dendrogram.__init__(self, merges) self._graph = graph self._optimal_count = optimal_count if modularity_params is None: self._modularity_params = {} else: self._modularity_params = dict(modularity_params) def as_clustering(self, n=None): """Cuts the dendrogram at the given level and returns a corresponding L{VertexClustering} object. @param n: the desired number of clusters. Merges are replayed from the beginning until the membership vector has exactly M{n} distinct elements or until there are no more recorded merges, whichever happens first. If C{None}, the optimal count hint given by the clustering algorithm will be used If the optimal count was not given either, it will be calculated by selecting the level where the modularity is maximal. @return: a new L{VertexClustering} object. """ if n is None: n = self.optimal_count num_elts = self._graph.vcount() idgen = UniqueIdGenerator() membership = community_to_membership(self._merges, num_elts, \ num_elts - n) membership = [idgen[m] for m in membership] return VertexClustering(self._graph, membership, modularity_params=self._modularity_params) @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time, this property simply returns the hint. If such a count was not given, this method calculates the optimal number of clusters by maximizing the modularity along all the possible cuts in the dendrogram. """ if self._optimal_count is not None: return self._optimal_count n = self._graph.vcount() max_q, optimal_count = 0, 1 for step in xrange(min(n-1, len(self._merges))): membs = community_to_membership(self._merges, n, step) q = self._graph.modularity(membs, **self._modularity_params) if q > max_q: optimal_count = n-step max_q = q self._optimal_count = optimal_count return optimal_count @optimal_count.setter def optimal_count(self, value): self._optimal_count = max(int(value), 1) def __plot__(self, context, bbox, palette, *args, **kwds): """Draws the vertex dendrogram on the given Cairo context See L{Dendrogram.__plot__} for the list of supported keyword arguments.""" from igraph.drawing.metamagic import AttributeCollectorBase class VisualVertexBuilder(AttributeCollectorBase): _kwds_prefix = "vertex_" label = None builder = VisualVertexBuilder(self._graph.vs, kwds) self._names = [vertex.label for vertex in builder] self._names = [name if name is not None else str(idx) for idx, name in enumerate(self._names)] result = Dendrogram.__plot__(self, context, bbox, palette, \ *args, **kwds) del self._names return result ############################################################################### class Cover(object): """Class representing a cover of an arbitrary ordered set. Covers are similar to clusterings, but each element of the set may belong to more than one cluster in a cover, and elements not belonging to any cluster are also allowed. L{Cover} instances provide a similar API as L{Clustering} instances; for instance, iterating over a L{Cover} will iterate over the clusters just like with a regular L{Clustering} instance. However, they are not derived from each other or from a common superclass, and there might be functions that exist only in one of them or the other. Clusters of an individual cover can be accessed by the C{[]} operator: >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]]) >>> cl[0] [0, 1, 2, 3] The membership vector can be accessed by the C{membership} property. Note that contrary to L{Clustering} instances, the membership vector will contain lists that contain the cluster indices each item belongs to: >>> cl.membership [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]] The number of clusters can be retrieved by the C{len} function: >>> len(cl) 3 You can iterate over the cover as if it were a regular list of clusters: >>> for cluster in cl: ... print " ".join(str(idx) for idx in cluster) ... 0 1 2 3 2 3 4 0 1 6 If you need all the clusters at once as lists, you can simply convert the cover to a list: >>> cluster_list = list(cl) >>> print cluster_list [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]] L{Clustering} objects can readily be converted to L{Cover} objects using the constructor: >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> cover = Cover(clustering) >>> list(clustering) == list(cover) True @undocumented: _formatted_cluster_iterator """ def __init__(self, clusters, n=0): """Constructs a cover with the given clusters. @param clusters: the clusters in this cover, as a list or iterable. Each cluster is specified by a list or tuple that contains the IDs of the items in this cluster. IDs start from zero. @param n: the total number of elements in the set that is covered by this cover. If it is less than the number of unique elements found in all the clusters, we will simply use the number of unique elements, so it is safe to leave this at zero. You only have to specify this parameter if there are some elements that are covered by none of the clusters. """ self._clusters = [list(cluster) for cluster in clusters] try: self._n = max(max(cluster)+1 for cluster in self._clusters if cluster) except ValueError: self._n = 0 self._n = max(n, self._n) def __getitem__(self, index): """Returns the cluster with the given index.""" return self._clusters[index] def __iter__(self): """Iterates over the clusters in this cover.""" return iter(self._clusters) def __len__(self): """Returns the number of clusters in this cover.""" return len(self._clusters) def __str__(self): """Returns a string representation of the cover.""" return self.summary(verbosity=1, width=78) @property def membership(self): """Returns the membership vector of this cover. The membership vector of a cover covering I{n} elements is a list of length I{n}, where element I{i} contains the cluster indices of the I{i}th item. """ result = [[] for _ in xrange(self._n)] for idx, cluster in enumerate(self): for item in cluster: result[item].append(idx) return result @property def n(self): """Returns the number of elements in the set covered by this cover.""" return self._n def size(self, idx): """Returns the size of a given cluster. @param idx: the cluster in which we are interested. """ return len(self[idx]) def sizes(self, *args): """Returns the size of given clusters. The indices are given as positional arguments. If there are no positional arguments, the function will return the sizes of all clusters. """ if args: return [len(self._clusters[idx]) for idx in args] return [len(cluster) for cluster in self] def size_histogram(self, bin_width = 1): """Returns the histogram of cluster sizes. @param bin_width: the bin width of the histogram @return: a L{Histogram} object """ return Histogram(bin_width, self.sizes()) def summary(self, verbosity=0, width=None): """Returns the summary of the cover. The summary includes the number of items and clusters, and also the list of members for each of the clusters if the verbosity is nonzero. @param verbosity: determines whether the cluster members should be printed. Zero verbosity prints the number of items and clusters only. @return: the summary of the cover as a string. """ out = StringIO() print >>out, "Cover with %d clusters" % len(self) if verbosity < 1: return out.getvalue().strip() ndigits = len(str(len(self))) wrapper = _get_wrapper_for_width(width, subsequent_indent = " " * (ndigits+3)) for idx, cluster in enumerate(self._formatted_cluster_iterator()): wrapper.initial_indent = "[%*d] " % (ndigits, idx) print >>out, "\n".join(wrapper.wrap(cluster)) return out.getvalue().strip() def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" for cluster in self: yield ", ".join(str(member) for member in cluster) class VertexCover(Cover): """The cover of the vertex set of a graph. This class extends L{Cover} by linking it to a specific L{Graph} object. It also provides some handy methods like getting the subgraph corresponding to a cluster and such. @note: since this class is linked to a L{Graph}, destroying the graph by the C{del} operator does not free the memory occupied by the graph if there exists a L{VertexCover} that references the L{Graph}. @undocumented: _formatted_cluster_iterator """ def __init__(self, graph, clusters = None): """Creates a cover object for a given graph. @param graph: the graph that will be associated to the cover @param clusters: the list of clusters. If C{None}, it is assumed that there is only a single cluster that covers the whole graph. """ if clusters is None: clusters = [range(graph.vcount())] Cover.__init__(self, clusters, n = graph.vcount()) if self._n > graph.vcount(): raise ValueError("cluster list contains vertex ID larger than the " "number of vertices in the graph") self._graph = graph def crossing(self): """Returns a boolean vector where element M{i} is C{True} iff edge M{i} lies between clusters, C{False} otherwise.""" membership = [frozenset(cluster) for cluster in self.membership] return [membership[v1].isdisjoint(membership[v2]) \ for v1, v2 in self.graph.get_edgelist()] @property def graph(self): """Returns the graph belonging to this object""" return self._graph def subgraph(self, idx): """Get the subgraph belonging to a given cluster. @param idx: the cluster index @return: a copy of the subgraph @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return self._graph.subgraph(self[idx]) def subgraphs(self): """Gets all the subgraphs belonging to each of the clusters. @return: a list containing copies of the subgraphs @precondition: the vertex set of the graph hasn't been modified since the moment the cover was constructed. """ return [self._graph.subgraph(cl) for cl in self] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cover to the given Cairo context in the given bounding box. This is done by calling L{Graph.__plot__()} with the same arguments, but drawing nice colored blobs around the vertex groups. This method understands all the positional and keyword arguments that are understood by L{Graph.__plot__()}, only the differences will be highlighted here: - C{mark_groups}: whether to highlight the vertex clusters by colored polygons. Besides the values accepted by L{Graph.__plot__} (i.e., a dict mapping colors to vertex indices, a list containing lists of vertex indices, or C{False}), the following are also accepted: - C{True}: all the clusters will be highlighted, the colors matching the corresponding color indices from the current palette (see the C{palette} keyword argument of L{Graph.__plot__}. - A dict mapping cluster indices or tuples of vertex indices to color names. The given clusters or vertex groups will be highlighted by the given colors. - A list of cluster indices. This is equivalent to passing a dict mapping numeric color indices from the current palette to cluster indices; therefore, the cluster referred to by element I{i} of the list will be highlighted by color I{i} from the palette. The value of the C{plotting.mark_groups} configuration key is also taken into account here; if that configuration key is C{True} and C{mark_groups} is not given explicitly, it will automatically be set to C{True}. In place of lists of vertex indices, you may also use L{VertexSeq} instances. In place of color names, you may also use color indices into the current palette. C{None} as a color name will mean that the corresponding group is ignored. - C{palette}: the palette used to resolve numeric color indices to RGBA values. By default, this is an instance of L{ClusterColoringPalette}. @see: L{Graph.__plot__()} for more supported keyword arguments. """ if "edge_color" not in kwds and "color" not in self.graph.edge_attributes(): # Set up a default edge coloring based on internal vs external edges colors = ["grey20", "grey80"] kwds["edge_color"] = [colors[is_crossing] for is_crossing in self.crossing()] if "palette" in kwds: palette = kwds["palette"] else: palette = ClusterColoringPalette(len(self)) if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: kwds["mark_groups"] = enumerate(self) else: kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering( kwds["mark_groups"], self) return self._graph.__plot__(context, bbox, palette, *args, **kwds) def _formatted_cluster_iterator(self): """Iterates over the clusters and formats them into a string to be presented in the summary.""" if self._graph.is_named(): names = self._graph.vs["name"] for cluster in self: yield ", ".join(str(names[member]) for member in cluster) else: for cluster in self: yield ", ".join(str(member) for member in cluster) class CohesiveBlocks(VertexCover): """The cohesive block structure of a graph. Instances of this type are created by L{Graph.cohesive_blocks()}. See the documentation of L{Graph.cohesive_blocks()} for an explanation of what cohesive blocks are. This class provides a few more methods that make handling of cohesive block structures easier. """ def __init__(self, graph, blocks = None, cohesion = None, parent = None): """Constructs a new cohesive block structure for the given graph. If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the arguments will be ignored and L{Graph.cohesive_blocks()} will be called to calculate the cohesive blocks. Otherwise, these three variables should describe the *result* of a cohesive block structure calculation. Chances are that you never have to construct L{CohesiveBlocks} instances directly, just use L{Graph.cohesive_blocks()}. @param graph: the graph itself @param blocks: a list containing the blocks; each block is described as a list containing vertex IDs. @param cohesion: the cohesion of each block. The length of this list must be equal to the length of I{blocks}. @param parent: the parent block of each block. Negative values or C{None} mean that there is no parent block for that block. There should be only one parent block, which covers the entire graph. @see: Graph.cohesive_blocks() """ if blocks is None or cohesion is None or parent is None: blocks, cohesion, parent = graph.cohesive_blocks() VertexCover.__init__(self, graph, blocks) self._cohesion = cohesion self._parent = parent for idx, p in enumerate(self._parent): if p < 0: self._parent[idx] = None def cohesion(self, idx): """Returns the cohesion of the group with the given index.""" return self._cohesion[idx] def cohesions(self): """Returns the list of cohesion values for each group.""" return self._cohesion[:] def hierarchy(self): """Returns a new graph that describes the hierarchical relationships between the groups. The new graph will be a directed tree; an edge will point from vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}. In other words, the edges point downwards. """ from igraph import Graph edges = [pair for pair in izip(self._parent, xrange(len(self))) if pair[0] is not None] return Graph(edges, directed=True) def max_cohesion(self, idx): """Finds the maximum cohesion score among all the groups that contain the given vertex.""" result = 0 for cohesion, cluster in izip(self._cohesion, self._clusters): if idx in cluster: result = max(result, cohesion) return result def max_cohesions(self): """For each vertex in the graph, returns the maximum cohesion score among all the groups that contain the vertex.""" result = [0] * self._graph.vcount() for cohesion, cluster in izip(self._cohesion, self._clusters): for idx in cluster: result[idx] = max(result[idx], cohesion) return result def parent(self, idx): """Returns the parent group index of the group with the given index or C{None} if the given group is the root.""" return self._parent[idx] def parents(self): """Returns the list of parent group indices for each group or C{None} if the given group is the root.""" return self._parent[:] def __plot__(self, context, bbox, palette, *args, **kwds): """Plots the cohesive block structure to the given Cairo context in the given bounding box. Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword arguments accepted by L{VertexCover.__plot__()} are also accepted here. The only difference is that the vertices are colored according to their maximal cohesions by default, and groups are marked by colored blobs except the last group which encapsulates the whole graph. See the documentation of L{VertexCover.__plot__()} for more details. """ prepare_groups = False if "mark_groups" not in kwds: if Configuration.instance()["plotting.mark_groups"]: prepare_groups = True elif kwds["mark_groups"] == True: prepare_groups = True if prepare_groups: colors = [pair for pair in enumerate(self.cohesions()) if pair[1] > 1] kwds["mark_groups"] = colors if "vertex_color" not in kwds: kwds["vertex_color"] = self.max_cohesions() return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds) def _handle_mark_groups_arg_for_clustering(mark_groups, clustering): """Handles the mark_groups=... keyword argument in plotting methods of clusterings. This is an internal method, you shouldn't need to mess around with it. Its purpose is to handle the extended semantics of the mark_groups=... keyword argument in the C{__plot__} method of L{VertexClustering} and L{VertexCover} instances, namely the feature that numeric IDs are resolved to clusters automatically. """ # Handle the case of mark_groups = True, mark_groups containing a list or # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color) # pairs if mark_groups is True: group_iter = ((group, color) for color, group in enumerate(clustering)) elif isinstance(mark_groups, dict): group_iter = mark_groups.iteritems() elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"): # Lists, tuples try: first = mark_groups[0] except: # Hmm. Maybe not a list or tuple? first = None if first is not None: # Okay. Is the first element of the list a single number? if isinstance(first, (int, long)): # Yes. Seems like we have a list of cluster indices. # Assign color indices automatically. group_iter = ((group, color) for color, group in enumerate(mark_groups)) else: # No. Seems like we have good ol' group-color pairs. group_iter = mark_groups else: group_iter = mark_groups elif hasattr(mark_groups, "__iter__"): # Iterators etc group_iter = mark_groups else: group_iter = {}.iteritems() def cluster_index_resolver(): for group, color in group_iter: if isinstance(group, (int, long)): group = clustering[group] yield group, color return cluster_index_resolver() ############################################################## def _prepare_community_comparison(comm1, comm2, remove_none=False): """Auxiliary method that takes two community structures either as membership lists or instances of L{Clustering}, and returns a tuple whose two elements are membership lists. This is used by L{compare_communities} and L{split_join_distance}. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. """ def _ensure_list(obj): if isinstance(obj, Clustering): return obj.membership return list(obj) vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2) if len(vec1) != len(vec2): raise ValueError("the two membership vectors must be equal in length") if remove_none and (None in vec1 or None in vec2): idxs_to_remove = [i for i in xrange(len(vec1)) \ if vec1[i] is None or vec2[i] is None] idxs_to_remove.reverse() n = len(vec1) for i in idxs_to_remove: n -= 1 vec1[i], vec1[n] = vec1[n], vec1[i] vec2[i], vec2[n] = vec2[n], vec2[i] del vec1[n:] del vec2[n:] return vec1, vec2 def compare_communities(comm1, comm2, method="vi", remove_none=False): """Compares two community structures using various distance measures. @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param method: the measure to use. C{"vi"} or C{"meila"} means the variation of information metric of Meila (2003), C{"nmi"} or C{"danon"} means the normalized mutual information as defined by Danon et al (2005), C{"split-join"} means the split-join distance of van Dongen (2000), C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"} means the adjusted Rand index of Hubert and Arabie (1985). @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the calculated measure. @newfield ref: Reference @ref: Meila M: Comparing clusterings by the variation of information. In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel Machines: 16th Annual Conference on Computational Learning Theory and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1. @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure identification. J Stat Mech P09008, 2005. @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @ref: Rand WM: Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846-850, 1971. @ref: Hubert L and Arabie P: Comparing partitions. Journal of Classification 2:193-218, 1985. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._compare_communities(vec1, vec2, method) def split_join_distance(comm1, comm2, remove_none=False): """Calculates the split-join distance between two community structures. The split-join distance is a distance measure defined on the space of partitions of a given set. It is the sum of the projection distance of one partition from the other and vice versa, where the projection number of A from B is if calculated as follows: 1. For each set in A, find the set in B with which it has the maximal overlap, and take note of the size of the overlap. 2. Take the sum of the maximal overlap sizes for each set in A. 3. Subtract the sum from M{n}, the number of elements in the partition. Note that the projection distance is asymmetric, that's why it has to be calculated in both directions and then added together. This function returns the projection distance of C{comm1} from C{comm2} and the projection distance of C{comm2} from C{comm1}, and returns them in a pair. The actual split-join distance is the sum of the two distances. The reason why it is presented this way is that one of the elements being zero then implies that one of the partitions is a subpartition of the other (and if it is close to zero, then one of the partitions is close to being a subpartition of the other). @param comm1: the first community structure as a membership list or as a L{Clustering} object. @param comm2: the second community structure as a membership list or as a L{Clustering} object. @param remove_none: whether to remove C{None} entries from the membership lists. This is handy if your L{Clustering} object was constructed using L{VertexClustering.FromAttribute} using an attribute which was not defined for all the vertices. If C{remove_none} is C{False}, a C{None} entry in either C{comm1} or C{comm2} will result in an exception. If C{remove_none} is C{True}, C{None} values are filtered away and only the remaining lists are compared. @return: the projection distance of C{comm1} from C{comm2} and vice versa in a tuple. The split-join distance is the sum of the two. @newfield ref: Reference @ref: van Dongen D: Performance criteria for graph clustering and Markov cluster experiments. Technical Report INS-R0012, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000. @see: L{compare_communities()} with C{method = "split-join"} if you are not interested in the individual projection distances but only the sum of them. """ import igraph._igraph vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none) return igraph._igraph._split_join_distance(vec1, vec2)
minute_timedeltas_wrt_first
Converts a list of datetime objects into a list of minute time deltas with respect to the first item. For example, given the input datetime_lst: [ '2019-08-22 14:32', '2019-08-22 14:38', '2019-08-22 14:42', '2019-08-22 14:52', '2019-08-22 14:57' ], the result would be: [32, 38, 42, 52, 57] :param datetime_lst: list of datetime objects :return: minute time deltas with respect to the first item of datetime_lst
from datetime import datetime, timedelta from typing import Callable def create_batch_list(n_batches: int) -> list: return list(map(lambda x: x, range(1, n_batches + 1))) def create_batch_dictionary(batch_lst: list, duration_lst: list, expected_finish_lst: list) -> dict: batch_dict = {batch_lst[i]: (duration_lst[i], expected_finish_lst[i]) for i in range(0, len(batch_lst))} return batch_dict def create_result_batch_dictionary(batch_lst: list, start_datetime_lst: list, delta_time_lst: list) -> dict: batch_dict = {batch_lst[i]: (start_datetime_lst[i], delta_time_lst[i]) for i in range(0, len(batch_lst))} return batch_dict def create_dynamic_ordering_constraint(index: int) -> str: """ Creates a valid AMPL constraint of the form: [LaTex]: $start\_time_j+1 >= start\_time_j + duration_j$, $\forall j \in BATCH$ :param index: j index where the current constraint should start :return: single AMPL JIT constraint as a string """ i = str(index) i_next = str(index + 1) constraint_name = f'ordering_{i_next}_{i}' return f's.t. {constraint_name}: start_time[{i_next}] >= start_time[{i}] + duration[{i}];' def create_multiple_ordering_constraints(start_index: int, last_index: int) -> str: constraints = '' for i in range(start_index, last_index): constraints += f'{create_dynamic_ordering_constraint(i)}\n' return constraints def create_multiple_constraints(start_index: int, last_index: int, create_constraints: Callable[[int, int], str]): return create_constraints(start_index, last_index) def dict_to_list(obj: dict) -> list: """ Converts a dictionary to a list, extracting the values of the dictionary. The list is sorted according to the dict's keys ascendant order. The given dictionary should always have the same numeric keys as the result of create_batch_dictionary(). :param obj: the dictionary to convert which should have numeric keys :return: the list of values in the dictionary """ return list(obj.values()) def strings_to_datetimes(str_date_lst: list, datetime_format: str) -> list: """ Converts a list of strings into a list of datetime objects :param str_date_lst: list of string objects compatible with the ISO8601 format :param datetime_format: format of the datetime :return: list of datetime objects equivalent to the given str_date_lst """ return [datetime.strptime(d, datetime_format) for d in str_date_lst] def minute_timedelta(first: datetime, second: datetime) -> int: """ Returns the difference expressed in minutes between 2 datetime objects :param first: datetime object that comes before second :param second: datetime object that comes after first :return: difference in minutes between second and first """ delta: timedelta = second - first return divmod(delta.total_seconds(), 60)[0] # MASKED: minute_timedeltas_wrt_first function (lines 75-96) def set_minutes_to_datetimes(datetime_lst: list, minutes_lst: list) -> list: """ Given a list of minutes and datetime objects, sets each amount of minutes to each datetime object with respect to the list index. The two lists must have the same size. :param datetime_lst: list of datetime objects :param minutes_lst: list of minutes to set to a list of datetime objects :return: list of datetime objects similar to datetime_lst but shifted according to minutes_lst """ return [d.replace(minute=0) + timedelta(minutes=m) for d, m in zip(datetime_lst, minutes_lst)] def datetimes_to_strings(datetime_lst: list, datetime_format: str) -> list: """ Converts a list of datetime objects to strings, according to a certain datetime format. :param datetime_lst: list of datetime objects to convert to string :param datetime_format: format of the datetime :return: the list of datetime objects converted to strings in the given datetime format """ return [d.strftime(datetime_format) for d in datetime_lst]
def minute_timedeltas_wrt_first(datetime_lst: list) -> list: """ Converts a list of datetime objects into a list of minute time deltas with respect to the first item. For example, given the input datetime_lst: [ '2019-08-22 14:32', '2019-08-22 14:38', '2019-08-22 14:42', '2019-08-22 14:52', '2019-08-22 14:57' ], the result would be: [32, 38, 42, 52, 57] :param datetime_lst: list of datetime objects :return: minute time deltas with respect to the first item of datetime_lst """ first_datetime: datetime = datetime_lst[0] partial_deltas = [minute_timedelta(first=first_datetime, second=v) for v in datetime_lst[1:]] first_minutes = first_datetime.minute return [first_minutes] + list(map(lambda x: x + first_minutes, partial_deltas))
75
96
from datetime import datetime, timedelta from typing import Callable def create_batch_list(n_batches: int) -> list: return list(map(lambda x: x, range(1, n_batches + 1))) def create_batch_dictionary(batch_lst: list, duration_lst: list, expected_finish_lst: list) -> dict: batch_dict = {batch_lst[i]: (duration_lst[i], expected_finish_lst[i]) for i in range(0, len(batch_lst))} return batch_dict def create_result_batch_dictionary(batch_lst: list, start_datetime_lst: list, delta_time_lst: list) -> dict: batch_dict = {batch_lst[i]: (start_datetime_lst[i], delta_time_lst[i]) for i in range(0, len(batch_lst))} return batch_dict def create_dynamic_ordering_constraint(index: int) -> str: """ Creates a valid AMPL constraint of the form: [LaTex]: $start\_time_j+1 >= start\_time_j + duration_j$, $\forall j \in BATCH$ :param index: j index where the current constraint should start :return: single AMPL JIT constraint as a string """ i = str(index) i_next = str(index + 1) constraint_name = f'ordering_{i_next}_{i}' return f's.t. {constraint_name}: start_time[{i_next}] >= start_time[{i}] + duration[{i}];' def create_multiple_ordering_constraints(start_index: int, last_index: int) -> str: constraints = '' for i in range(start_index, last_index): constraints += f'{create_dynamic_ordering_constraint(i)}\n' return constraints def create_multiple_constraints(start_index: int, last_index: int, create_constraints: Callable[[int, int], str]): return create_constraints(start_index, last_index) def dict_to_list(obj: dict) -> list: """ Converts a dictionary to a list, extracting the values of the dictionary. The list is sorted according to the dict's keys ascendant order. The given dictionary should always have the same numeric keys as the result of create_batch_dictionary(). :param obj: the dictionary to convert which should have numeric keys :return: the list of values in the dictionary """ return list(obj.values()) def strings_to_datetimes(str_date_lst: list, datetime_format: str) -> list: """ Converts a list of strings into a list of datetime objects :param str_date_lst: list of string objects compatible with the ISO8601 format :param datetime_format: format of the datetime :return: list of datetime objects equivalent to the given str_date_lst """ return [datetime.strptime(d, datetime_format) for d in str_date_lst] def minute_timedelta(first: datetime, second: datetime) -> int: """ Returns the difference expressed in minutes between 2 datetime objects :param first: datetime object that comes before second :param second: datetime object that comes after first :return: difference in minutes between second and first """ delta: timedelta = second - first return divmod(delta.total_seconds(), 60)[0] def minute_timedeltas_wrt_first(datetime_lst: list) -> list: """ Converts a list of datetime objects into a list of minute time deltas with respect to the first item. For example, given the input datetime_lst: [ '2019-08-22 14:32', '2019-08-22 14:38', '2019-08-22 14:42', '2019-08-22 14:52', '2019-08-22 14:57' ], the result would be: [32, 38, 42, 52, 57] :param datetime_lst: list of datetime objects :return: minute time deltas with respect to the first item of datetime_lst """ first_datetime: datetime = datetime_lst[0] partial_deltas = [minute_timedelta(first=first_datetime, second=v) for v in datetime_lst[1:]] first_minutes = first_datetime.minute return [first_minutes] + list(map(lambda x: x + first_minutes, partial_deltas)) def set_minutes_to_datetimes(datetime_lst: list, minutes_lst: list) -> list: """ Given a list of minutes and datetime objects, sets each amount of minutes to each datetime object with respect to the list index. The two lists must have the same size. :param datetime_lst: list of datetime objects :param minutes_lst: list of minutes to set to a list of datetime objects :return: list of datetime objects similar to datetime_lst but shifted according to minutes_lst """ return [d.replace(minute=0) + timedelta(minutes=m) for d, m in zip(datetime_lst, minutes_lst)] def datetimes_to_strings(datetime_lst: list, datetime_format: str) -> list: """ Converts a list of datetime objects to strings, according to a certain datetime format. :param datetime_lst: list of datetime objects to convert to string :param datetime_format: format of the datetime :return: the list of datetime objects converted to strings in the given datetime format """ return [d.strftime(datetime_format) for d in datetime_lst]
_build_top_model
Build Top Model Build the fully connected layers of the network. Parameters ---------- input_shape : tuple Input data shape dense_output : tuple, optional Size of dense output layers, default is (256, 1024) dropout : float, optional Dropout rate, default is 0.1 Returns ------- keras.model Fully connected top model
# -*- coding: utf-8 -*- """ NETWORK This module defines the BlendHunter class which can be used to retrain the network or use predefined weights to make predictions on unseen data. :Author: Samuel Farrens <[email protected]> """ import os import numpy as np import matplotlib.pyplot as plt import seaborn as sns from time import time from cv2 import imread from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, Input from keras.applications import VGG16 from keras.optimizers import Adam, SGD from keras.callbacks import ModelCheckpoint from keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau class BlendHunter(object): """ BlendHunter Class for identifying blended galaxy images in postage stamps. Parameters ---------- image_shape : tuple, optional Expected shape of input images classes : tuple, optional List of classes, default is ('blended', 'not_blended') weights_path : str, optional Path to weights, default is './weights' top_model_file : str, optional File name for top model weights, default is 'top_model_weights' final_model_file : str, optional File name of the final model weights, default is 'final_model_weights' """ def __init__(self, image_shape=None, classes=('blended', 'not_blended'), weights_path='./weights', top_model_file='top_model_weights', final_model_file='final_model_weights', verbose=0): self._image_shape = image_shape self._classes = classes self._weights_path = weights_path self._top_model_file = self._format(weights_path, top_model_file) self._final_model_file = self._format(weights_path, final_model_file) self._verbose = verbose self.history = None @staticmethod def _format(path, name): """ Format Add path to name. Parameters ---------- path : str Base path name : str Path extension Returns ------- str Formated path """ return '{}/{}'.format(path, name) def getkwarg(self, key, default=None): """ Get keyword agrument Get value from keyword agruments if it exists otherwise return default. Parameters ---------- key : str Dictionary key default : optional Default value """ return self._kwargs[key] if key in self._kwargs else default @staticmethod def _get_image_shape(file): """ Get Image Shape Get the input image shape from an example image. Parameters ---------- file : str File name Returns ------- tuple Image shape """ return imread(file).shape def _get_target_shape(self, image_path=None): """ Get Target Shape Get the network target shape from the image shape. Parameters ---------- image_path : str, optional Path to image file """ if isinstance(self._image_shape, type(None)) and image_path: file = self._format(image_path, os.listdir(image_path)[0]) self._image_shape = self._get_image_shape(file) self._target_size = self._image_shape[:2] def _load_generator(self, input_dir, batch_size=None, class_mode=None, augmentation=False): """ Load Generator Load files from an input directory into a Keras generator. Parameters ---------- input_dir : str Input directory batch_size : int, optional Batch size class_mode : str, optional Generator class mode shuffle : bool, optional Option to shuffle input files Returns ------- keras_preprocessing.image.DirectoryIterator Keras generator """ if augmentation: datagen = ImageDataGenerator(rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) else: datagen = ImageDataGenerator(rescale=1. / 255) generator = (datagen.flow_from_directory(input_dir, target_size=self._target_size, batch_size=batch_size, class_mode=class_mode, shuffle=False)) generator.steps = generator.n // generator.batch_size return generator def _get_feature(self, input_dir): """ Get Feature Get network feature and labels from VGG16 model. Parameters ---------- input_dir : str Input directory Returns ------- tuple VGG16 bottleneck feature, class labels """ generator = self._load_generator(input_dir, batch_size=self._batch_size_top) labels = generator.classes[:generator.steps * self._batch_size_top] return (self._vgg16_model.predict_generator(generator, generator.steps), labels) @staticmethod def _save_data(data, data_type, file_path): """ Save Data Save data to file. Parameters ---------- data : np.ndarray Output data data_type : str Type of feature to be saved file_path : str File path """ file_name = '{}_{}.npy'.format(file_path, data_type) np.save(file_name, data) @staticmethod def _load_data(data_type, file_path): """ Load Data Load data from file. Parameters ---------- data_type : str Type of feature to be loaded file_path : str File path """ file_name = '{}_{}.npy'.format(file_path, data_type) if os.path.isfile(file_name): return np.load(file_name) else: raise IOError('{} not found'.format(file_name)) @staticmethod def _build_vgg16_model(input_shape=None): """ Build VGG16 Model Build VGG16 CNN model using imagenet weights. Parameters ---------- input_shape : str, optional Input data shape Returns ------- VGG16 model """ return VGG16(include_top=False, weights='imagenet', input_shape=input_shape) def _get_features(self): """ Get Features Get the network (bottleneck) features from the VGG16 model. """ self._vgg16_model = self._build_vgg16_model() for key, value in self._features.items(): bot_feat, labels = self._get_feature(value['dir']) if self._save_bottleneck: self._save_data(bot_feat, key, self._bottleneck_file) if self._save_labels: self._save_data(labels, key, self._labels_file) value['bottleneck'] = bot_feat value['labels'] = labels def _load_features(self): """ Load Bottleneck Features Load VGG16 bottleneck features. """ for feature_name in ('bottleneck', 'labels'): if feature_name == 'bottleneck': out_path = self._bottleneck_file else: out_path = self._labels_file for key, value in self._features.items(): if feature_name not in value: value[feature_name] = self._load_data(key, out_path) # MASKED: _build_top_model function (lines 303-332) def _train_top_model(self): """ Train Top Model Train fully connected top model of the network. """ self._load_features() model = (self._build_top_model( input_shape=self._features['train']['bottleneck'].shape[1:])) model.compile(optimizer=self.getkwarg('top_opt', 'adam'), loss=self.getkwarg('top_loss', 'binary_crossentropy'), metrics=self.getkwarg('top_metrics', ['accuracy'])) top_model_file = '{}.h5'.format(self._top_model_file) callbacks = [] callbacks.append(ModelCheckpoint(top_model_file, monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) if self.getkwarg('top_early_stop', True): min_delta = self.getkwarg('top_min_delta', 0.001) patience = self.getkwarg('top_patience', 10) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=min_delta, patience=patience, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) self.history = (model.fit(self._features['train']['bottleneck'], self._features['train']['labels'], epochs=self._epochs_top, batch_size=self._batch_size_top, callbacks=callbacks, validation_data=(self._features['valid']['bottleneck'], self._features['valid']['labels']), verbose=self._verbose)) model.save_weights(top_model_file) def plot_history(self): """ Plot History Plot the training history metrics. """ sns.set(style="darkgrid") if not isinstance(self.history, type(None)): plt.figure(figsize=(16, 8)) plt.subplot(121) plt.plot(self.history.history['acc']) plt.plot(self.history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.subplot(122) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.show() else: print('No history to display. Run training first.') def _freeze_layers(self, model, depth): """ Freeze Network Layers Parameters ---------- model : Keras model depth : int Depth of layers to be frozen """ for layer in model.layers[:depth]: layer.trainable = False def _build_final_model(self, load_top_weights=False, load_final_weights=False): """ Build Final Model Build the final BlendHunter model. Parameters ---------- load_top_weights : bool Option to load the top model weights load_final_weights : bool Option to load the final model weights Returns ------- Final model """ vgg16_model = self._build_vgg16_model(self._image_shape) top_model = self._build_top_model(vgg16_model.output_shape[1:], dropout=0.4) if load_top_weights: top_model.load_weights('{}.h5'.format(self._top_model_file)) model = Model(inputs=vgg16_model.input, outputs=top_model(vgg16_model.output)) if load_final_weights: model.load_weights('{}.h5'.format(self._final_model_file)) return model def _fine_tune(self): """ Fine Tune Fine tune the final model training. """ model = self._build_final_model(load_top_weights=True) self._freeze_layers(model, 18) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001), metrics=['binary_accuracy']) train_gen = self._load_generator(self._features['train']['dir'], batch_size=self._batch_size_fine, class_mode='binary', augmentation=True) valid_gen = self._load_generator(self._features['valid']['dir'], batch_size=self._batch_size_fine, class_mode='binary') callbacks = [] callbacks.append(ModelCheckpoint('{}.h5'.format(self._fine_tune_file), monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=0.001, patience=10, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) self._freeze_layers(model, 19) model.layers[17].trainable = True model.compile(loss='binary_crossentropy', optimizer=SGD(lr=10e-5), metrics=['binary_accuracy']) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) model.save_weights('{}.h5'.format(self._final_model_file)) def train(self, input_path, get_features=True, train_top=True, fine_tune=True, train_dir_name='train', valid_dir_name='validation', epochs_top=500, epochs_fine=50, batch_size_top=250, batch_size_fine=16, save_bottleneck=True, bottleneck_file='bottleneck_features', save_labels=True, labels_file='labels', fine_tune_file='fine_tune_checkpoint', top_model_file='top_model_weights', **kwargs): """ Train Train the BlendHunter network. Parameters ---------- input_path : str Path to input data get_features : bool, optional Option to get bottleneck features, default is True train_top : bool, optional Option to train top model, default is True fine_tune : bool, optional Option to run fine tuning component of training, default is True train_dir_name : str, optional Training data directory name, default is 'train' valid_dir_name : str, optional Validation data directory name, default is 'validation' epochs_top : int, optional Number of training epochs for top model, default is 500 epochs_fine : int, optional Number of training epochs for fine tuning, default is 50 batch_size_top : int, optional Batch size for top model, default is 256 batch_size_fine : int, optional Batch size for fine tuning, default is 16 save_bottleneck : bool, optional Option to save bottleneck features, default is True bottleneck_file : str, optional File name for bottleneck features, default is 'bottleneck_features' fine_tune_file : str, optional Training checkpoint for the fine tuning step, default is 'fine_tune_checkpoint' """ start = time() self._epochs_top = epochs_top self._epochs_fine = epochs_fine self._batch_size_top = batch_size_top self._batch_size_fine = batch_size_fine self._save_bottleneck = save_bottleneck self._save_labels = save_labels self._bottleneck_file = self._format(self._weights_path, bottleneck_file) self._labels_file = self._format(self._weights_path, labels_file) self._fine_tune_file = self._format(self._weights_path, fine_tune_file) self._features = {'train': {}, 'valid': {}} self._features['train']['dir'] = self._format(input_path, train_dir_name) self._features['valid']['dir'] = self._format(input_path, valid_dir_name) self._kwargs = kwargs self._get_target_shape(self._format(self._features['train']['dir'], self._classes[0])) if get_features: self._get_features() if train_top: self._train_top_model() if fine_tune: self._fine_tune() end = time() print('Duration {:0.2f}s'.format(end - start)) def predict(self, input_path=None, input_path_keras=None, input_data=None, weights_type='fine'): """ Predict Predict classes for test data Parameters ---------- input_path : str Path to input data input_path_keras : str Path to input data in Keras format, i.e. path to directory one level above where the data is stored input_data : np.ndarray Array of input images weights_type : str, optional {'fine', 'top'} Type of weights to use for predition, default is 'fine' Returns ------- dict Dictionary of file names and corresponding classes """ if input_path: test_path = '/'.join(input_path.split('/')[:-1]) elif input_path_keras: test_path = input_path_keras else: test_path = None if weights_type not in ('fine', 'top'): raise ValueError('Invalid value for weights_type. Options are ' '"fine" or "top"') if test_path: self._get_target_shape(self._format(test_path, os.listdir(test_path)[0])) if weights_type == 'fine': model = self._build_final_model(load_final_weights=True) elif weights_type == 'top': model = self._build_final_model(load_top_weights=True) test_gen = self._load_generator(test_path, class_mode='categorical', batch_size=1) self.filenames = test_gen.filenames test_gen.reset() res = model.predict_generator(test_gen, verbose=self._verbose, steps=test_gen.steps).flatten() elif not isinstance(input_data, type(None)): self._image_shape = input_data.shape[1:] self._get_target_shape() model = self._build_final_model(load_final_weights=True) res = model.predict(input_data, verbose=self._verbose).flatten() else: raise RuntimeError('No input data provided.') labels = {0: self._classes[0], 1: self._classes[1]} preds = [labels[k] for k in np.around(res)] return preds
@staticmethod def _build_top_model(input_shape, dense_output=(256, 1024), dropout=0.1): """ Build Top Model Build the fully connected layers of the network. Parameters ---------- input_shape : tuple Input data shape dense_output : tuple, optional Size of dense output layers, default is (256, 1024) dropout : float, optional Dropout rate, default is 0.1 Returns ------- keras.model Fully connected top model """ model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(dense_output[0])) model.add(Dropout(dropout)) model.add(Dense(dense_output[1], activation='relu')) model.add(Dense(1, activation='sigmoid')) return model
303
332
# -*- coding: utf-8 -*- """ NETWORK This module defines the BlendHunter class which can be used to retrain the network or use predefined weights to make predictions on unseen data. :Author: Samuel Farrens <[email protected]> """ import os import numpy as np import matplotlib.pyplot as plt import seaborn as sns from time import time from cv2 import imread from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, Input from keras.applications import VGG16 from keras.optimizers import Adam, SGD from keras.callbacks import ModelCheckpoint from keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau class BlendHunter(object): """ BlendHunter Class for identifying blended galaxy images in postage stamps. Parameters ---------- image_shape : tuple, optional Expected shape of input images classes : tuple, optional List of classes, default is ('blended', 'not_blended') weights_path : str, optional Path to weights, default is './weights' top_model_file : str, optional File name for top model weights, default is 'top_model_weights' final_model_file : str, optional File name of the final model weights, default is 'final_model_weights' """ def __init__(self, image_shape=None, classes=('blended', 'not_blended'), weights_path='./weights', top_model_file='top_model_weights', final_model_file='final_model_weights', verbose=0): self._image_shape = image_shape self._classes = classes self._weights_path = weights_path self._top_model_file = self._format(weights_path, top_model_file) self._final_model_file = self._format(weights_path, final_model_file) self._verbose = verbose self.history = None @staticmethod def _format(path, name): """ Format Add path to name. Parameters ---------- path : str Base path name : str Path extension Returns ------- str Formated path """ return '{}/{}'.format(path, name) def getkwarg(self, key, default=None): """ Get keyword agrument Get value from keyword agruments if it exists otherwise return default. Parameters ---------- key : str Dictionary key default : optional Default value """ return self._kwargs[key] if key in self._kwargs else default @staticmethod def _get_image_shape(file): """ Get Image Shape Get the input image shape from an example image. Parameters ---------- file : str File name Returns ------- tuple Image shape """ return imread(file).shape def _get_target_shape(self, image_path=None): """ Get Target Shape Get the network target shape from the image shape. Parameters ---------- image_path : str, optional Path to image file """ if isinstance(self._image_shape, type(None)) and image_path: file = self._format(image_path, os.listdir(image_path)[0]) self._image_shape = self._get_image_shape(file) self._target_size = self._image_shape[:2] def _load_generator(self, input_dir, batch_size=None, class_mode=None, augmentation=False): """ Load Generator Load files from an input directory into a Keras generator. Parameters ---------- input_dir : str Input directory batch_size : int, optional Batch size class_mode : str, optional Generator class mode shuffle : bool, optional Option to shuffle input files Returns ------- keras_preprocessing.image.DirectoryIterator Keras generator """ if augmentation: datagen = ImageDataGenerator(rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) else: datagen = ImageDataGenerator(rescale=1. / 255) generator = (datagen.flow_from_directory(input_dir, target_size=self._target_size, batch_size=batch_size, class_mode=class_mode, shuffle=False)) generator.steps = generator.n // generator.batch_size return generator def _get_feature(self, input_dir): """ Get Feature Get network feature and labels from VGG16 model. Parameters ---------- input_dir : str Input directory Returns ------- tuple VGG16 bottleneck feature, class labels """ generator = self._load_generator(input_dir, batch_size=self._batch_size_top) labels = generator.classes[:generator.steps * self._batch_size_top] return (self._vgg16_model.predict_generator(generator, generator.steps), labels) @staticmethod def _save_data(data, data_type, file_path): """ Save Data Save data to file. Parameters ---------- data : np.ndarray Output data data_type : str Type of feature to be saved file_path : str File path """ file_name = '{}_{}.npy'.format(file_path, data_type) np.save(file_name, data) @staticmethod def _load_data(data_type, file_path): """ Load Data Load data from file. Parameters ---------- data_type : str Type of feature to be loaded file_path : str File path """ file_name = '{}_{}.npy'.format(file_path, data_type) if os.path.isfile(file_name): return np.load(file_name) else: raise IOError('{} not found'.format(file_name)) @staticmethod def _build_vgg16_model(input_shape=None): """ Build VGG16 Model Build VGG16 CNN model using imagenet weights. Parameters ---------- input_shape : str, optional Input data shape Returns ------- VGG16 model """ return VGG16(include_top=False, weights='imagenet', input_shape=input_shape) def _get_features(self): """ Get Features Get the network (bottleneck) features from the VGG16 model. """ self._vgg16_model = self._build_vgg16_model() for key, value in self._features.items(): bot_feat, labels = self._get_feature(value['dir']) if self._save_bottleneck: self._save_data(bot_feat, key, self._bottleneck_file) if self._save_labels: self._save_data(labels, key, self._labels_file) value['bottleneck'] = bot_feat value['labels'] = labels def _load_features(self): """ Load Bottleneck Features Load VGG16 bottleneck features. """ for feature_name in ('bottleneck', 'labels'): if feature_name == 'bottleneck': out_path = self._bottleneck_file else: out_path = self._labels_file for key, value in self._features.items(): if feature_name not in value: value[feature_name] = self._load_data(key, out_path) @staticmethod def _build_top_model(input_shape, dense_output=(256, 1024), dropout=0.1): """ Build Top Model Build the fully connected layers of the network. Parameters ---------- input_shape : tuple Input data shape dense_output : tuple, optional Size of dense output layers, default is (256, 1024) dropout : float, optional Dropout rate, default is 0.1 Returns ------- keras.model Fully connected top model """ model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(dense_output[0])) model.add(Dropout(dropout)) model.add(Dense(dense_output[1], activation='relu')) model.add(Dense(1, activation='sigmoid')) return model def _train_top_model(self): """ Train Top Model Train fully connected top model of the network. """ self._load_features() model = (self._build_top_model( input_shape=self._features['train']['bottleneck'].shape[1:])) model.compile(optimizer=self.getkwarg('top_opt', 'adam'), loss=self.getkwarg('top_loss', 'binary_crossentropy'), metrics=self.getkwarg('top_metrics', ['accuracy'])) top_model_file = '{}.h5'.format(self._top_model_file) callbacks = [] callbacks.append(ModelCheckpoint(top_model_file, monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) if self.getkwarg('top_early_stop', True): min_delta = self.getkwarg('top_min_delta', 0.001) patience = self.getkwarg('top_patience', 10) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=min_delta, patience=patience, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) self.history = (model.fit(self._features['train']['bottleneck'], self._features['train']['labels'], epochs=self._epochs_top, batch_size=self._batch_size_top, callbacks=callbacks, validation_data=(self._features['valid']['bottleneck'], self._features['valid']['labels']), verbose=self._verbose)) model.save_weights(top_model_file) def plot_history(self): """ Plot History Plot the training history metrics. """ sns.set(style="darkgrid") if not isinstance(self.history, type(None)): plt.figure(figsize=(16, 8)) plt.subplot(121) plt.plot(self.history.history['acc']) plt.plot(self.history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.subplot(122) plt.plot(self.history.history['loss']) plt.plot(self.history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'valid'], loc='upper left') plt.show() else: print('No history to display. Run training first.') def _freeze_layers(self, model, depth): """ Freeze Network Layers Parameters ---------- model : Keras model depth : int Depth of layers to be frozen """ for layer in model.layers[:depth]: layer.trainable = False def _build_final_model(self, load_top_weights=False, load_final_weights=False): """ Build Final Model Build the final BlendHunter model. Parameters ---------- load_top_weights : bool Option to load the top model weights load_final_weights : bool Option to load the final model weights Returns ------- Final model """ vgg16_model = self._build_vgg16_model(self._image_shape) top_model = self._build_top_model(vgg16_model.output_shape[1:], dropout=0.4) if load_top_weights: top_model.load_weights('{}.h5'.format(self._top_model_file)) model = Model(inputs=vgg16_model.input, outputs=top_model(vgg16_model.output)) if load_final_weights: model.load_weights('{}.h5'.format(self._final_model_file)) return model def _fine_tune(self): """ Fine Tune Fine tune the final model training. """ model = self._build_final_model(load_top_weights=True) self._freeze_layers(model, 18) model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001), metrics=['binary_accuracy']) train_gen = self._load_generator(self._features['train']['dir'], batch_size=self._batch_size_fine, class_mode='binary', augmentation=True) valid_gen = self._load_generator(self._features['valid']['dir'], batch_size=self._batch_size_fine, class_mode='binary') callbacks = [] callbacks.append(ModelCheckpoint('{}.h5'.format(self._fine_tune_file), monitor='val_loss', verbose=self._verbose, save_best_only=True, save_weights_only=True, mode='auto', period=1)) callbacks.append(EarlyStopping(monitor='val_loss', min_delta=0.001, patience=10, verbose=self._verbose)) callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_delta=0.001, cooldown=2, verbose=self._verbose)) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) self._freeze_layers(model, 19) model.layers[17].trainable = True model.compile(loss='binary_crossentropy', optimizer=SGD(lr=10e-5), metrics=['binary_accuracy']) model.fit_generator(train_gen, steps_per_epoch=train_gen.steps, epochs=self._epochs_fine, callbacks=callbacks, validation_data=valid_gen, validation_steps=valid_gen.steps, verbose=self._verbose) model.save_weights('{}.h5'.format(self._final_model_file)) def train(self, input_path, get_features=True, train_top=True, fine_tune=True, train_dir_name='train', valid_dir_name='validation', epochs_top=500, epochs_fine=50, batch_size_top=250, batch_size_fine=16, save_bottleneck=True, bottleneck_file='bottleneck_features', save_labels=True, labels_file='labels', fine_tune_file='fine_tune_checkpoint', top_model_file='top_model_weights', **kwargs): """ Train Train the BlendHunter network. Parameters ---------- input_path : str Path to input data get_features : bool, optional Option to get bottleneck features, default is True train_top : bool, optional Option to train top model, default is True fine_tune : bool, optional Option to run fine tuning component of training, default is True train_dir_name : str, optional Training data directory name, default is 'train' valid_dir_name : str, optional Validation data directory name, default is 'validation' epochs_top : int, optional Number of training epochs for top model, default is 500 epochs_fine : int, optional Number of training epochs for fine tuning, default is 50 batch_size_top : int, optional Batch size for top model, default is 256 batch_size_fine : int, optional Batch size for fine tuning, default is 16 save_bottleneck : bool, optional Option to save bottleneck features, default is True bottleneck_file : str, optional File name for bottleneck features, default is 'bottleneck_features' fine_tune_file : str, optional Training checkpoint for the fine tuning step, default is 'fine_tune_checkpoint' """ start = time() self._epochs_top = epochs_top self._epochs_fine = epochs_fine self._batch_size_top = batch_size_top self._batch_size_fine = batch_size_fine self._save_bottleneck = save_bottleneck self._save_labels = save_labels self._bottleneck_file = self._format(self._weights_path, bottleneck_file) self._labels_file = self._format(self._weights_path, labels_file) self._fine_tune_file = self._format(self._weights_path, fine_tune_file) self._features = {'train': {}, 'valid': {}} self._features['train']['dir'] = self._format(input_path, train_dir_name) self._features['valid']['dir'] = self._format(input_path, valid_dir_name) self._kwargs = kwargs self._get_target_shape(self._format(self._features['train']['dir'], self._classes[0])) if get_features: self._get_features() if train_top: self._train_top_model() if fine_tune: self._fine_tune() end = time() print('Duration {:0.2f}s'.format(end - start)) def predict(self, input_path=None, input_path_keras=None, input_data=None, weights_type='fine'): """ Predict Predict classes for test data Parameters ---------- input_path : str Path to input data input_path_keras : str Path to input data in Keras format, i.e. path to directory one level above where the data is stored input_data : np.ndarray Array of input images weights_type : str, optional {'fine', 'top'} Type of weights to use for predition, default is 'fine' Returns ------- dict Dictionary of file names and corresponding classes """ if input_path: test_path = '/'.join(input_path.split('/')[:-1]) elif input_path_keras: test_path = input_path_keras else: test_path = None if weights_type not in ('fine', 'top'): raise ValueError('Invalid value for weights_type. Options are ' '"fine" or "top"') if test_path: self._get_target_shape(self._format(test_path, os.listdir(test_path)[0])) if weights_type == 'fine': model = self._build_final_model(load_final_weights=True) elif weights_type == 'top': model = self._build_final_model(load_top_weights=True) test_gen = self._load_generator(test_path, class_mode='categorical', batch_size=1) self.filenames = test_gen.filenames test_gen.reset() res = model.predict_generator(test_gen, verbose=self._verbose, steps=test_gen.steps).flatten() elif not isinstance(input_data, type(None)): self._image_shape = input_data.shape[1:] self._get_target_shape() model = self._build_final_model(load_final_weights=True) res = model.predict(input_data, verbose=self._verbose).flatten() else: raise RuntimeError('No input data provided.') labels = {0: self._classes[0], 1: self._classes[1]} preds = [labels[k] for k in np.around(res)] return preds
__init_subclass__
An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them.
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() # MASKED: __init_subclass__ function (lines 80-90) def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for
80
90
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
quantity
Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity`
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # # MASKED: quantity function (lines 150-165) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit)
150
165
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
plot
Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes.
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # # MASKED: plot function (lines 367-392) def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes
367
392
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
_validate_meta
Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # # MASKED: _validate_meta function (lines 424-445) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning)
424
445
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
_validate_units
Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) # MASKED: _validate_units function (lines 447-470) def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result
447
470
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
_sanitize_units
Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns.
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result # MASKED: _sanitize_units function (lines 472-495) def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units
472
495
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
_sanitize_metadata
Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data.
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units # MASKED: _sanitize_metadata function (lines 497-515) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols)
497
515
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
__eq__
Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool`
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values # MASKED: __eq__ function (lines 576-598) def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match
576
598
""" TimeSeries is a generic time series class from which all other TimeSeries classes inherit from. """ import copy import warnings from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt import astropy import astropy.units as u from astropy.table import Table, Column from sunpy import config from sunpy.time import TimeRange from sunpy.timeseries import TimeSeriesMetaData from sunpy.util.metadata import MetaDict from sunpy.util.exceptions import SunpyUserWarning # define and register a new unit, needed for RHESSI det = u.def_unit('detector') u.add_enabled_units([det]) TIME_FORMAT = config.get("general", "time_format") class GenericTimeSeries: """ A generic time series object. Parameters ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData`, optional The metadata giving details about the time series data/instrument. units : dict, optional A mapping from column names in *data* to the physical units of that column. Attributes ---------- data : `~pandas.DataFrame` A pandas DataFrame representing one or more fields as a function of time. meta : `~sunpy.timeseries.metadata.TimeSeriesMetaData` The metadata giving details about the time series data/instrument. units : dict A mapping from column names in *data* to the physical units of that column. Examples -------- >>> from sunpy.timeseries import TimeSeries >>> from sunpy.time import parse_time >>> import datetime >>> from astropy.time import TimeDelta >>> import numpy as np >>> import pandas as pd >>> base = parse_time(datetime.datetime.today()) >>> times = base - TimeDelta(np.arange(24 * 60)*u.minute) >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / (24 * 60))) >>> df = pd.DataFrame(intensity, index=times, columns=['intensity']) >>> ts = TimeSeries(df) >>> ts.peek() # doctest: +SKIP References ---------- * `Pandas Documentation <https://pandas.pydata.org/pandas-docs/stable/>`_ """ # Class attribute used to specify the source class of the TimeSeries. _source = None _registry = dict() def __init_subclass__(cls, **kwargs): """ An __init_subclass__ hook initializes all of the subclasses of a given class. So for each subclass, it will call this block of code on import. This replicates some metaclass magic without the need to be aware of metaclasses. Here we use this to register each subclass in a dict that has the `is_datasource_for` attribute. This is then passed into the TimeSeries Factory so we can register them. """ super().__init_subclass__(**kwargs) if hasattr(cls, 'is_datasource_for'): cls._registry[cls] = cls.is_datasource_for def __init__(self, data, meta=None, units=None, **kwargs): self.data = data tr = self.time_range # Check metadata input if meta is None: # No meta given, so default self.meta = TimeSeriesMetaData(MetaDict(), tr, list(self.data.columns.values)) elif isinstance(meta, (dict, OrderedDict, MetaDict)): # Given the values for metadata (dict) and infer timerange and colnames from the data self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) elif isinstance(meta, tuple): # Given the values all in a tuple self.meta = TimeSeriesMetaData(meta, tr, list(self.data.columns.values)) else: # Should have a list of 3-tuples giving a complex metadata list. self.meta = meta if units is None: self.units = {} else: self.units = units # Validate input data # self._validate_meta() # self._validate_units() # #### Attribute definitions #### # @property def source(self): """ A string/object used to specify the source class of the TimeSeries. """ return self._source @property def columns(self): """A list of all the names of the columns in the data.""" return list(self.data.columns.values) @property def index(self): """The time index of the data.""" return self.data.index @property def time_range(self): """ The start and end times of the TimeSeries as a `~sunpy.time.TimeRange` object """ if len(self.data)>0: return TimeRange(self.data.index.min(), self.data.index.max()) else: return None # #### Data Access, Selection and Organisation Methods #### # def quantity(self, colname, **kwargs): """ Return a `~astropy.units.quantity.Quantity` for the given column. Parameters ---------- colname : `str` The heading of the column you want output. Returns ------- quantity : `~astropy.units.quantity.Quantity` """ values = self.data[colname].values unit = self.units[colname] return u.Quantity(values, unit) def add_column(self, colname, quantity, unit=False, overwrite=True, **kwargs): """ Return an new TimeSeries with the given column added or updated. Parameters ---------- colname : `str` The heading of the column you want output. quantity : `~astropy.units.quantity.Quantity` or `~numpy.ndarray` The values to be placed within the column. If updating values only then a numpy array is permitted. overwrite : `bool`, optional, default:True Set to true to allow the method to overwrite a column already present in the TimeSeries. Returns ------- newts : TimeSeries """ # Get the expected units from the quantity if required if not unit and isinstance(quantity, astropy.units.quantity.Quantity): unit = quantity.unit elif not unit: unit = u.dimensionless_unscaled # Make a copy of all the TimeSeries components. data = copy.copy(self.data) meta = TimeSeriesMetaData(copy.copy(self.meta.metadata)) units = copy.copy(self.units) # Add the unit to the units dictionary if already there. if not (colname in self.data.columns): units[colname] = unit # Convert the given quantity into values for given units if necessary. values = quantity if isinstance(values, astropy.units.quantity.Quantity) and overwrite: values = values.to(units[colname]).value # Update or add the data. if not (colname in self.data.columns) or overwrite: data[colname] = values # Return a new TimeSeries with the given updated/added column. return self.__class__(data, meta, units) def sort_index(self, **kwargs): """Returns a sorted version of the TimeSeries object. Generally this shouldn't be necessary as most TimeSeries operations sort the data anyway to ensure consistent behaviour when truncating. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series in ascending chronological order. """ return GenericTimeSeries(self.data.sort_index(**kwargs), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) def truncate(self, a, b=None, int=None): """Returns a truncated version of the TimeSeries object. Parameters ---------- a : `sunpy.time.TimeRange`, `str` or `int` Either a time range to truncate to, or a start time in some format recognised by pandas, or a index integer. b : `str` or `int` If specified, the end time of the time range in some format recognised by pandas, or a index integer. int : `int` If specified, the integer indicating the slicing intervals. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected times. """ # Evaluate inputs # If given strings, then use to create a sunpy.time.timerange.TimeRange # for the SunPy text date parser. if isinstance(a, str) and isinstance(b, str): a = TimeRange(a, b) if isinstance(a, TimeRange): # If we have a TimeRange, extract the values start = a.start.datetime end = a.end.datetime else: # Otherwise we already have the values start = a end = b # If an interval integer was given then use in truncation. truncated_data = self.data.sort_index()[start:end:int] # Truncate the metadata # Check there is data still truncated_meta = TimeSeriesMetaData([]) if len(truncated_data) > 0: tr = TimeRange(truncated_data.index.min(), truncated_data.index.max()) truncated_meta = TimeSeriesMetaData(copy.deepcopy(self.meta.metadata)) truncated_meta._truncate(tr) # Build similar TimeSeries object and sanatise metadata and units. object = self.__class__(truncated_data.sort_index(), truncated_meta, copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def extract(self, column_name): """Returns a new time series with the chosen column. Parameters ---------- column_name : `str` A valid column name. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series with only the selected column. """ """ # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return GenericTimeSeries(self.data[column_name], TimeSeriesMetaData(self.meta.metadata.copy())) """ # Extract column and remove empty rows data = self.data[[column_name]].dropna() # Build generic TimeSeries object and sanatise metadata and units. object = GenericTimeSeries(data.sort_index(), TimeSeriesMetaData(copy.copy(self.meta.metadata)), copy.copy(self.units)) object._sanitize_metadata() object._sanitize_units() return object def concatenate(self, otherts, **kwargs): """Concatenate with another TimeSeries. This function will check and remove any duplicate times. It will keep the column values from the original time series to which the new time series is being added. Parameters ---------- otherts : `~sunpy.timeseries.TimeSeries` Another time series. same_source : `bool` Optional Set to true to check if the sources of the time series match. Returns ------- newts : `~sunpy.timeseries.TimeSeries` A new time series. Debate: decide if we want to be able to concatenate multiple time series at once. """ # check to see if nothing needs to be done if self == otherts: return self # Check the sources match if specified. same_source = kwargs.get('same_source', False) if same_source and not (isinstance(otherts, self.__class__)): raise TypeError("TimeSeries classes must match if specified.") # Concatenate the metadata and data meta = self.meta.concatenate(otherts.meta) data = pd.concat([self.data.copy(), otherts.data], **kwargs) # Add all the new units to the dictionary. units = OrderedDict() units.update(self.units) units.update(otherts.units) # If sources match then build similar TimeSeries. if self.__class__ == otherts.__class__: object = self.__class__(data.sort_index(), meta, units) else: # Build generic time series if the sources don't match. object = GenericTimeSeries(data.sort_index(), meta, units) # Sanatise metadata and units object._sanitize_metadata() object._sanitize_units() return object # #### Plotting Methods #### # def plot(self, axes=None, **plot_args): """Plot a plot of the time series Parameters ---------- axes : `~matplotlib.axes.Axes` or None If provided the image will be plotted on the given axes. Otherwise the current axes will be used. **plot_args : `dict` Any additional plot arguments that should be used when plotting. Returns ------- axes : `~matplotlib.axes.Axes` The plot axes. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the time series in a new figure. Parameters ---------- **kwargs : `dict` Any additional plot arguments that should be used when plotting. """ # Check we have a timeseries valid for plotting self._validate_data_for_ploting() # Now make the plot figure = plt.figure() self.plot(**kwargs) figure.show() def _validate_data_for_ploting(self): """Raises an exception if the timeseries is invalid for plotting. To be added into all the peek methods in all source sup-classes. Currently only checks if we have an empty timeseries, where: len(self.data) == 0 """ # Check we have a valid TS if len(self.data) == 0: raise ValueError("The timeseries can't be plotted as it has no data present. " "(len(self.data) == 0)") # #### Miscellaneous #### # def _validate_meta(self): """ Validates the meta-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) for meta_property in ('cunit1', 'cunit2', 'waveunit'): if (self.meta.get(meta_property) and u.Unit(self.meta.get(meta_property), parse_strict='silent').physical_type == 'unknown'): warnings.warn(f"Unknown value for {meta_property.upper()}.", SunpyUserWarning) def _validate_units(self, units, **kwargs): """ Validates the astropy unit-information associated with a TimeSeries. This method includes very basic validation checks which apply to all of the kinds of files that SunPy can read. Datasource-specific validation should be handled in the relevant file in the sunpy.timeseries.sources package. Allows for default unit assignment for: COL_UNITS """ warnings.simplefilter('always', Warning) result = True for key in units: if not isinstance(units[key], astropy.units.UnitBase): # If this is not a unit then this can't be a valid units dict. result = False warnings.warn(f"Invalid unit given for {key}.", SunpyUserWarning) return result def _sanitize_units(self, **kwargs): """ Sanitises the collections.OrderedDict used to store the units. Primarily this method will: Remove entries that don't match up to a column, Add unitless entries for columns with no units defined. Re-arrange the order of the dictionary to match the columns. """ warnings.simplefilter('always', Warning) # Populate unspecified units: for column in set(self.data.columns.tolist()) - set(self.units.keys()): # For all columns not present in the units dictionary. self.units[column] = u.dimensionless_unscaled warnings.warn(f"Unknown units for {column}.", SunpyUserWarning) # Re-arrange so it's in the same order as the columns and removed unused. units = OrderedDict() for column in self.data.columns.tolist(): units.update({column:self.units[column]}) # Now use the amended units Ordered Dictionary self.units = units def _sanitize_metadata(self, **kwargs): """ Sanitises the TimeSeriesMetaData object used to store the metadata. Primarily this method will: Remove entries outside of the datas TimeRange or truncate TimeRanges if the metadata overflows past the data, Remove column references in the metadata that don't match to a column in the data. Remove metadata entries that have no columns matching the data. """ warnings.simplefilter('always', Warning) # Truncate the metadata self.meta._truncate(self.time_range) # Remove non-existant columns redundant_cols = list(set(self.meta.columns) - set(self.columns)) self.meta._remove_columns(redundant_cols) # #### Export/Output Methods #### # def to_table(self, **kwargs): """ Return an Astropy Table of the give TimeSeries object. Returns ------- newtable : `~astrpy.table` A new astropy table containing the data from the time series. The table will include units where relevant. """ # ToDo: Table.from_pandas(df) doesn't include the index column. Add request? # Get data columns table = Table.from_pandas(self.data) # Get index column and add to table. index_col = Column(self.data.index.values, name='date') table.add_column(index_col, index=0) # Add in units. for key in self.units: table[key].unit = self.units[key] # Output the table return table def to_dataframe(self, **kwargs): """ Return a Pandas DataFrame of the give TimeSeries object. Returns ------- newdf : `~pandas.core.frame.DataFrame` A Pandas Dataframe containing the data. """ return self.data def to_array(self, columns=None): """ Return a numpy array of the give TimeSeries object. Parameters ---------- columns: `list`, optional, default:None If None, return all columns minus the index, otherwise, returns specified columns. Returns ------- values : `~numpy.ndarray` If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes. """ if columns: return self.data.values[columns] else: return self.data.values def __eq__(self, other): """ Check two TimeSeries objects are the same, they have matching type, data, metadata and units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ match = True if isinstance(other, type(self)): if ((not self.data.equals(other.data)) or (self.meta != other.meta) or (self.units != other.units)): match = False else: match = False return match def __ne__(self, other): """ Check two TimeSeries objects are not the same, they don't have matching type, data, metadata and/or units entries. Parameters ---------- other : `~sunpy.timeseries.GenericTimeSeries` The second TimeSeries object to compare with. Returns ------- result : `bool` """ return not self == other @classmethod def _parse_file(cls, filepath): """Parses a file - to be implemented in any subclass that may use files""" return NotImplemented
find_T_bit_to_right_of
Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count # MASKED: find_T_bit_to_right_of function (lines 151-182) def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1
151
182
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
find_T_bit_to_left_of
Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 # MASKED: find_T_bit_to_left_of function (lines 184-215) def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1
184
215
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
get_bit_string
Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) # MASKED: get_bit_string function (lines 249-266) def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str
249
266
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
lazy_advance
This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy # MASKED: lazy_advance function (lines 346-377) if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
@staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy
346
377
class BitVector: """ This class uses an int called dec_rep as a vector of self.len many bits, where self.len <= self.max_len. The class wraps some common bitwise operations, and some less common ones too (like Gray coding that is needed by Qubiter). In some cases, the bitwise manipulation might be more succinct than the corresponding function in this wrapper, but the wrapper function's name spells out in words what is wanted. Attributes ---------- dec_rep : int decimal representation, the int whose binary representation carries a bit vector of length self.len len : int the length of the bit vector max_len : int maximum self.len allowed """ def __init__(self, length, dec_rep): """ Constructor Parameters ---------- length : int dec_rep : int Returns ------- """ self.len = length self.dec_rep = dec_rep self.max_len = 16 assert length <= self.max_len, "bit vector is too long" assert length > 0, "bit vector len must be >=1" @staticmethod def copy(bvec): """ Copy constructor, returns a new BitVector which is a copy of the BitVector bvec. Parameters ---------- bvec : BitVector Returns ------- BitVector """ return BitVector(bvec.len, bvec.dec_rep) def bit_is_T(self, bpos): """ Returns True iff bit at position bpos is 1 (True) Parameters ---------- bpos : int bit position Returns ------- bool """ assert bpos < self.len, "bit position is too large" mask = (1 << bpos) return (self.dec_rep & mask) == mask def set_bit_T(self, bpos): """ Sets to 1 (True) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep |= (1 << bpos) def set_bit_F(self, bpos): """ Sets to 0 (False) the bit of self at position bpos. Parameters ---------- bpos : int bit position Returns ------- None """ assert bpos < self.len, "bit position is too large" self.dec_rep &= ~(1 << bpos) def set_all_bits_T(self): """ Sets to 1 (True) the bits of self at position bpos from 0 to len-1 inclusive. Returns ------- None """ # example: len = 3, dec_rep becomes 15 = b0111 self.dec_rep = (1 << self.len + 1) - 1 def set_all_bits_F(self): """ Sets to 0 (False) the bits of self at positions bpos from 0 to len-1 inclusive. Returns ------- None """ self.dec_rep = 0 def get_num_T_bits(self): """ Returns the number of 1 (True) bits at positions bpos from 0 to len-1 inclusive. Returns ------- int """ count = 0 for bpos in range(self.len): if self.bit_is_T(bpos): count += 1 return count def find_T_bit_to_right_of(self, bpos): """ Returns position of 1 (True) bit immediately to the right of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos <= 0: return -1 right_T_bit = bpos mask = (1 << right_T_bit) found_it = False while True: right_T_bit -= 1 mask >>= 1 found_it = ((self.dec_rep & mask) == mask) if right_T_bit == 0 or found_it: break if found_it: return right_T_bit else: return -1 def find_T_bit_to_left_of(self, bpos): """ Returns position of 1 (True) bit immediately to the left of position bpos. Returns -1 if there is no such bit. Parameters ---------- bpos : int bit position Returns ------- int """ if bpos >= self.len-1: return -1 left_T_bit = bpos mask = (1 << left_T_bit) found_it = False while True: left_T_bit += 1 mask <<= 1 found_it = ((self.dec_rep & mask) == mask) if left_T_bit == self.len-1 or found_it: break if found_it: return left_T_bit else: return -1 def find_leftmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the leftmost one of those to the the left of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(self.len-1): return self.len-1 else: return self.find_T_bit_to_right_of(self.len - 1) def find_rightmost_T_bit(self): """ Out of all 1 (True) bits, returns position of the rightmost one of those to the the right of position bpos. Returns -1 if there is no such bit. Returns ------- int """ if self.bit_is_T(0): return 0 else: return self.find_T_bit_to_left_of(0) def get_bit_string(self): """ Returns self represented as string of length self.len of ones and zeros. If bit_str is the output, [int(x) for x in bit_str] will turn result to list of ints. Returns ------- str """ bit_str = '' for beta in range(self.len-1, -1, -1): if self.bit_is_T(beta): bit_str += '1' else: bit_str += '0' return bit_str def __str__(self): """ Readable representation of self Returns ------- str """ return self.get_bit_string() + '=' + str(self.dec_rep) @staticmethod def new_with_T_on_diff(bvec1, bvec2): """ Given two BitVectors bevc1 and bvec2, this return a BitVector which is a bitwise xor (mod 2 sum) of the bits of bvec1 and bvec2. Parameters ---------- bvec1 : BitVector bvec2 : BitVector Returns ------- BitVector """ assert bvec1.len == bvec2.len return BitVector(bvec1.len, bvec1.dec_rep ^ bvec2.dec_rep) @staticmethod def get_lazy_from_normal(bit_len, normal): """ Throughout Qubiter, we will often refer to "Gray Code" as "lazy ordering". In lazy ordering with bit_len many bits, one gives a sequence of bit vectors of length bit_len, so that two adjacent items of the sequence differ by just one bit. For example 000=0, 100=4, 110=6, 010=2, 011=3, 111=7, 101=5, 001=1. Each element of this sequence represented as an int will be called lazy, and each int in the sequence 0, 1, 2, 3, 4, 5, 6, 7 will be called normal. Normal ordering is usually called dictionary ordering. Normal and lazy sequences both start at 0. Suppose bit_len = 3. The lazy sequence 000, 100, 110, 010, 011, 111, 101, 001 is easily obtained from the "standard" lazy sequence 000, 001, 011, 010, 110, 111, 101, 100 by "reflecting" each sequence term. We will use the second sequence because it is more common in the literature. References ---------- 1. Martin Gardener, "Knotted DoughNuts and Other Mathematical Entertainments", chapt. 2, "The Binary Gray Code" 2. "Numerical Recipies in C" 3. Many books on Discrete Mathematics for CompSci types 4. On the web, in Eric's Treasure Trove/Math/Gray Codes Parameters ---------- bit_len : int normal : int Function returns the lazy int that corresponds to this normal int. Returns ------- int """ lazy_bvec = BitVector(bit_len, normal) lazy = lazy_bvec.dec_rep if bit_len > 1: for m in range(bit_len-2, -1, -1): # Look at bpos = m+1, if it's ON, then flip bpos=m. # Remember that ^ is same as a mod2 sum. lazy ^= (((normal >> m+1) & 1) << m) return lazy @staticmethod def lazy_advance(old_normal, old_lazy): """ This method takes int "old_lazy" (which corresponds to bit vector "old_normal"), and changes it to the next lazy int, "new_lazy" ( which corresponds to "new_normal"). example: lazy sequence: 000, 001, 011, 010, 110, 111, 101, 100 old_lazy = 011 old_normal = 2 = 010 new_normal = 3 = 011 mask = (new_normal & ~old_normal) = 011 & 101 = 001 new_lazy = new_normal ^ mask = 011 ^ 001 = 010 Parameters ---------- old_normal : int old_lazy : int Returns ------- int, int """ new_normal = old_normal + 1 new_lazy = old_lazy ^ (new_normal & ~(new_normal-1)) return new_normal, new_lazy if __name__ == "__main__": def main(): for length in [3, 4]: print('\nlength=', length) print('normal, lazy, lazy in binary:') max_normal = (1 << length) - 1 normal = 0 lazy = 0 while normal <= max_normal: lazy_bvec = BitVector(length, lazy) print(normal, lazy, BitVector.get_bit_string(lazy_bvec)) normal, lazy = BitVector.lazy_advance(normal, lazy) main()
__init__
Creates an instance of this class. Arguments: sol_dim (int): The dimensionality of the problem space max_iters (int): The maximum number of iterations to perform during optimization popsize (int): The number of candidate solutions to be sampled at every iteration num_elites (int): The number of top solutions that will be used to obtain the distribution at the next iteration. upper_bound (np.array): An array of upper bounds lower_bound (np.array): An array of lower bounds epsilon (float): A minimum variance. If the maximum variance drops below epsilon, optimization is stopped. alpha (float): Controls how much of the previous mean and variance is used for the next iteration. next_mean = alpha * old_mean + (1 - alpha) * elite_mean, and similarly for variance.
import os import os.path as osp import pickle import random from collections import deque from datetime import datetime import gym import numpy as np import scipy.stats as stats import torch import torch.optim as optim from mpi4py import MPI import dr from dr.ppo.models import Policy, ValueNet from dr.ppo.train import one_train_iter from dr.ppo.utils import set_torch_num_threads, RunningMeanStd, traj_seg_gen COMM = MPI.COMM_WORLD import tensorboardX def set_global_seeds(i): torch.manual_seed(i) np.random.seed(i) random.seed(i) if torch.cuda.is_available(): torch.cuda.manual_seed_all(i) class CEMOptimizer(object): # MASKED: __init__ function (lines 35-65) def reset(self): pass def obtain_solution(self, init_mean, init_var): """Optimizes the cost function using the provided initial candidate distribution Arguments: init_mean (np.ndarray): The mean of the initial candidate distribution. init_var (np.ndarray): The variance of the initial candidate distribution. """ mean, var, t = init_mean, init_var, 0 X = stats.truncnorm(-2, 2, loc=np.zeros_like(mean), scale=np.ones_like(var)) costs_hist = [] mean_hist = [] var_hist = [] while (t < self.max_iters) and np.max(var) > self.epsilon: lb_dist, ub_dist = mean - self.lb, self.ub - mean constrained_var = np.minimum(np.minimum(np.square(lb_dist / 2), np.square(ub_dist / 2)), var) samples = X.rvs(size=[self.popsize, self.sol_dim]) * np.sqrt(constrained_var) + mean samples = samples.astype(np.float32) costs = self.cost_function(samples, t) elites = samples[np.argsort(costs)][:self.num_elites] new_mean = np.mean(elites, axis=0) new_var = np.var(elites, axis=0) mean = self.alpha * mean + (1 - self.alpha) * new_mean var = self.alpha * var + (1 - self.alpha) * new_var for i, m in enumerate(mean): self.writer.add_scalar(f'mean/{i}', m, t) for i, m in enumerate(var): self.writer.add_scalar(f'var/{i}', m, t) self.writer.add_scalar('costs', np.min(costs), t) t += 1 costs_hist.append(costs) mean_hist.append(mean) var_hist.append(var) self.writer.close() return dict( mean_hist=mean_hist, costs_hist=costs_hist, var_hist=var_hist ) class PPO_Pytorch(object): def __init__(self, experiment_name, env_params, train_params, **kwargs): self.experiment_name = experiment_name self.env_params = env_params self.train_params = train_params self.log_dir = osp.join('runs', f'seed_{str(train_params["seed"])}_{datetime.now().strftime("%b%d_%H-%M-%S")}') os.makedirs(self.log_dir, exist_ok=True) with open(osp.join(self.log_dir, 'env_params.pkl'), 'wb+') as f: pickle.dump(env_params, f) with open(osp.join(self.log_dir, 'train_params.pkl'), 'wb+') as f: pickle.dump(train_params, f) super().__init__() def train(self, env_id, backend, train_params, env_params, means, stdevs): # Unpack params hid_size = train_params['hid_size'] pol_init_std = train_params['pol_init_std'] adam_epsilon = train_params['adam_epsilon'] optim_stepsize = train_params['optim_stepsize'] # Convert means and stdevs to dict format assert len(means) == len(stdevs), (len(means), len(stdevs)) mean_dict, stdev_dict = PPO_Pytorch._vec_to_dict(env_id, means, stdevs) # Set parameter of env self.env_dist.default_parameters = mean_dict self.env_dist.stdev_dict = stdev_dict env = self.env_dist.root_env set_torch_num_threads() # Construct policy and value network pol = Policy(env.observation_space, env.action_space, hid_size, pol_init_std) pol_optim = optim.Adam(pol.parameters(), lr=optim_stepsize, eps=adam_epsilon) val = ValueNet(env.observation_space, hid_size) val_optim = optim.Adam(val.parameters(), lr=optim_stepsize, eps=adam_epsilon) optims = {'pol_optim': pol_optim, 'val_optim': val_optim} num_train_iter = int(train_params['num_timesteps'] / train_params['ts_per_batch']) # Buffer for running statistics eps_rets_buff = deque(maxlen=100) eps_rets_mean_buff = [] state_running_m_std = RunningMeanStd(shape=env.observation_space.shape) # seg_gen is a generator that yields the training data points seg_gen = traj_seg_gen(self.env_dist, pol, val, state_running_m_std, env_params, train_params) eval_perfs = [] for iter_i in range(num_train_iter): one_train_iter(pol, val, optims, iter_i, eps_rets_buff, eps_rets_mean_buff, seg_gen, state_running_m_std, train_params, self.eval_envs, eval_perfs) return eval_perfs def run(self): set_global_seeds(self.train_params['seed']) # Unpack params env_name = self.env_params['env_name'] backend = self.env_params['backend'] stdev = self.train_params['env_dist_stdev'] mean_scale = self.train_params['mean_scale'] seed = self.train_params['seed'] num_eval_env = self.train_params['num_eval_env'] collision_detector = self.env_params['collision_detector'] # Obtain the initial value for the simulation parameters env_dist = dr.dist.Normal(env_name, backend, mean_scale=mean_scale) init_mean_param = PPO_Pytorch._dict_to_vec(env_name, env_dist.default_parameters) init_stdev_param = np.array([stdev] * len(init_mean_param), dtype=np.float32) cem_init_mean = np.concatenate((init_mean_param, init_stdev_param)) cem_init_stdev = np.array([1.0] * len(cem_init_mean), dtype=np.float32) # Make envs that will be reused for training and eval self.env_dist = dr.dist.Normal(env_name, backend) self.env_dist.backend.set_collision_detector(env_dist.root_env, collision_detector) self.env_dist.seed(seed) if env_name == 'Walker': self.eval_envs = [gym.make('Walker2d-v2') for _ in range(num_eval_env)] elif env_name == 'Hopper': self.eval_envs = [gym.make('Hopper-v2') for _ in range(num_eval_env)] else: exit('Unrecognized environment') if COMM.Get_rank() == 0: self.optimizer = CEMOptimizer( sol_dim=30, max_iters=300, popsize=self.train_params['pop_size'], num_elites=self.train_params['num_elites'], cost_function=self._cost_function, lower_bound=0.0, # TODO: setting the upper bound this way, means that # if the initial dimension value is 0, then the upper bound is 0 upper_bound=cem_init_mean * 5.0, alpha=0.75, viz_dir=self.log_dir ) # This is buggy # https://github.com/lanpa/tensorboardX/issues/345 self.optimizer.writer.add_text('env_params', str(self.env_params), 0) self.optimizer.writer.add_text('train_params', str(self.train_params), 0) res = self.optimizer.obtain_solution(cem_init_mean, cem_init_stdev) path = osp.join(self.log_dir, 'res.pkl') with open(path, 'wb') as f: pickle.dump(res, f) COMM.Abort(0) else: while True: args = COMM.recv(source=0) r = self.train(*args) COMM.send(r, dest=0) def _cost_function(self, samples, cem_timestep): print(f'cem_timestep: {cem_timestep}') env_name = self.env_params['env_name'] backend = self.env_params['backend'] pop_size = self.train_params['pop_size'] argss = [(env_name, backend, self.train_params, self.env_params, samples[rank][:len(samples[rank]) // 2], samples[rank][len(samples[rank]) // 2:]) for rank in range(len(samples))] # Send args to other MPI processes for rank in range(1, COMM.size): COMM.send(argss[rank], dest=rank) # Obtain results for all args r = self.train(*argss[0]) reses = [(0, r)] # 0 is the rank of this process # Receive results from the other processes: for rank in range(1, COMM.size): r = COMM.recv(source=rank) reses.append((rank, r)) reses = sorted(reses, key=lambda k: k[0]) print(reses) # Get the index of the highest performing model in population # and write result to tensorboard max_idx = 0 max_perf = max(reses[0][1]) # 0 is the result of process rank 0. 1 brings us the eval perf list for i, item in enumerate(reses): perf = max(item[1]) if perf > max_perf: max_perf = perf max_idx = i # Obtain the "costs" that the CEM cost function should return costs = [- max(i[1]) for i in reses] print(costs) print(min(costs)) print() return costs @classmethod def _dict_to_vec(cls, env_id, d): return np.concatenate(( d['mass'], d['damping'], [d['gravity']] )).flatten().copy() @classmethod def _vec_to_dict(cls, env_id, means, stdevs): if env_id == 'Walker': return dict( mass=means[:7], damping=means[7:-1], gravity=means[-1] ), dict( mass=stdevs[:7], damping=stdevs[7:-1], gravity=stdevs[-1] ) elif env_id == 'Hopper': return dict( mass=means[:4], damping=means[4:-1], gravity=means[-1] ), dict( mass=stdevs[:4], damping=stdevs[4:-1], gravity=stdevs[-1] ) else: exit('Unrecognized environment')
def __init__(self, sol_dim, max_iters, popsize, num_elites, cost_function, upper_bound=None, lower_bound=None, epsilon=0.001, alpha=0.25, viz_dir=None): """Creates an instance of this class. Arguments: sol_dim (int): The dimensionality of the problem space max_iters (int): The maximum number of iterations to perform during optimization popsize (int): The number of candidate solutions to be sampled at every iteration num_elites (int): The number of top solutions that will be used to obtain the distribution at the next iteration. upper_bound (np.array): An array of upper bounds lower_bound (np.array): An array of lower bounds epsilon (float): A minimum variance. If the maximum variance drops below epsilon, optimization is stopped. alpha (float): Controls how much of the previous mean and variance is used for the next iteration. next_mean = alpha * old_mean + (1 - alpha) * elite_mean, and similarly for variance. """ super().__init__() self.sol_dim, self.max_iters, self.popsize, self.num_elites = sol_dim, max_iters, popsize, num_elites self.ub, self.lb = upper_bound, lower_bound self.epsilon, self.alpha = epsilon, alpha self.cost_function = cost_function if viz_dir is not None: self.writer = tensorboardX.SummaryWriter(viz_dir) else: self.writer = tensorboardX.SummaryWriter() if num_elites > popsize: raise ValueError("Number of elites must be at most the population size.")
35
65
import os import os.path as osp import pickle import random from collections import deque from datetime import datetime import gym import numpy as np import scipy.stats as stats import torch import torch.optim as optim from mpi4py import MPI import dr from dr.ppo.models import Policy, ValueNet from dr.ppo.train import one_train_iter from dr.ppo.utils import set_torch_num_threads, RunningMeanStd, traj_seg_gen COMM = MPI.COMM_WORLD import tensorboardX def set_global_seeds(i): torch.manual_seed(i) np.random.seed(i) random.seed(i) if torch.cuda.is_available(): torch.cuda.manual_seed_all(i) class CEMOptimizer(object): def __init__(self, sol_dim, max_iters, popsize, num_elites, cost_function, upper_bound=None, lower_bound=None, epsilon=0.001, alpha=0.25, viz_dir=None): """Creates an instance of this class. Arguments: sol_dim (int): The dimensionality of the problem space max_iters (int): The maximum number of iterations to perform during optimization popsize (int): The number of candidate solutions to be sampled at every iteration num_elites (int): The number of top solutions that will be used to obtain the distribution at the next iteration. upper_bound (np.array): An array of upper bounds lower_bound (np.array): An array of lower bounds epsilon (float): A minimum variance. If the maximum variance drops below epsilon, optimization is stopped. alpha (float): Controls how much of the previous mean and variance is used for the next iteration. next_mean = alpha * old_mean + (1 - alpha) * elite_mean, and similarly for variance. """ super().__init__() self.sol_dim, self.max_iters, self.popsize, self.num_elites = sol_dim, max_iters, popsize, num_elites self.ub, self.lb = upper_bound, lower_bound self.epsilon, self.alpha = epsilon, alpha self.cost_function = cost_function if viz_dir is not None: self.writer = tensorboardX.SummaryWriter(viz_dir) else: self.writer = tensorboardX.SummaryWriter() if num_elites > popsize: raise ValueError("Number of elites must be at most the population size.") def reset(self): pass def obtain_solution(self, init_mean, init_var): """Optimizes the cost function using the provided initial candidate distribution Arguments: init_mean (np.ndarray): The mean of the initial candidate distribution. init_var (np.ndarray): The variance of the initial candidate distribution. """ mean, var, t = init_mean, init_var, 0 X = stats.truncnorm(-2, 2, loc=np.zeros_like(mean), scale=np.ones_like(var)) costs_hist = [] mean_hist = [] var_hist = [] while (t < self.max_iters) and np.max(var) > self.epsilon: lb_dist, ub_dist = mean - self.lb, self.ub - mean constrained_var = np.minimum(np.minimum(np.square(lb_dist / 2), np.square(ub_dist / 2)), var) samples = X.rvs(size=[self.popsize, self.sol_dim]) * np.sqrt(constrained_var) + mean samples = samples.astype(np.float32) costs = self.cost_function(samples, t) elites = samples[np.argsort(costs)][:self.num_elites] new_mean = np.mean(elites, axis=0) new_var = np.var(elites, axis=0) mean = self.alpha * mean + (1 - self.alpha) * new_mean var = self.alpha * var + (1 - self.alpha) * new_var for i, m in enumerate(mean): self.writer.add_scalar(f'mean/{i}', m, t) for i, m in enumerate(var): self.writer.add_scalar(f'var/{i}', m, t) self.writer.add_scalar('costs', np.min(costs), t) t += 1 costs_hist.append(costs) mean_hist.append(mean) var_hist.append(var) self.writer.close() return dict( mean_hist=mean_hist, costs_hist=costs_hist, var_hist=var_hist ) class PPO_Pytorch(object): def __init__(self, experiment_name, env_params, train_params, **kwargs): self.experiment_name = experiment_name self.env_params = env_params self.train_params = train_params self.log_dir = osp.join('runs', f'seed_{str(train_params["seed"])}_{datetime.now().strftime("%b%d_%H-%M-%S")}') os.makedirs(self.log_dir, exist_ok=True) with open(osp.join(self.log_dir, 'env_params.pkl'), 'wb+') as f: pickle.dump(env_params, f) with open(osp.join(self.log_dir, 'train_params.pkl'), 'wb+') as f: pickle.dump(train_params, f) super().__init__() def train(self, env_id, backend, train_params, env_params, means, stdevs): # Unpack params hid_size = train_params['hid_size'] pol_init_std = train_params['pol_init_std'] adam_epsilon = train_params['adam_epsilon'] optim_stepsize = train_params['optim_stepsize'] # Convert means and stdevs to dict format assert len(means) == len(stdevs), (len(means), len(stdevs)) mean_dict, stdev_dict = PPO_Pytorch._vec_to_dict(env_id, means, stdevs) # Set parameter of env self.env_dist.default_parameters = mean_dict self.env_dist.stdev_dict = stdev_dict env = self.env_dist.root_env set_torch_num_threads() # Construct policy and value network pol = Policy(env.observation_space, env.action_space, hid_size, pol_init_std) pol_optim = optim.Adam(pol.parameters(), lr=optim_stepsize, eps=adam_epsilon) val = ValueNet(env.observation_space, hid_size) val_optim = optim.Adam(val.parameters(), lr=optim_stepsize, eps=adam_epsilon) optims = {'pol_optim': pol_optim, 'val_optim': val_optim} num_train_iter = int(train_params['num_timesteps'] / train_params['ts_per_batch']) # Buffer for running statistics eps_rets_buff = deque(maxlen=100) eps_rets_mean_buff = [] state_running_m_std = RunningMeanStd(shape=env.observation_space.shape) # seg_gen is a generator that yields the training data points seg_gen = traj_seg_gen(self.env_dist, pol, val, state_running_m_std, env_params, train_params) eval_perfs = [] for iter_i in range(num_train_iter): one_train_iter(pol, val, optims, iter_i, eps_rets_buff, eps_rets_mean_buff, seg_gen, state_running_m_std, train_params, self.eval_envs, eval_perfs) return eval_perfs def run(self): set_global_seeds(self.train_params['seed']) # Unpack params env_name = self.env_params['env_name'] backend = self.env_params['backend'] stdev = self.train_params['env_dist_stdev'] mean_scale = self.train_params['mean_scale'] seed = self.train_params['seed'] num_eval_env = self.train_params['num_eval_env'] collision_detector = self.env_params['collision_detector'] # Obtain the initial value for the simulation parameters env_dist = dr.dist.Normal(env_name, backend, mean_scale=mean_scale) init_mean_param = PPO_Pytorch._dict_to_vec(env_name, env_dist.default_parameters) init_stdev_param = np.array([stdev] * len(init_mean_param), dtype=np.float32) cem_init_mean = np.concatenate((init_mean_param, init_stdev_param)) cem_init_stdev = np.array([1.0] * len(cem_init_mean), dtype=np.float32) # Make envs that will be reused for training and eval self.env_dist = dr.dist.Normal(env_name, backend) self.env_dist.backend.set_collision_detector(env_dist.root_env, collision_detector) self.env_dist.seed(seed) if env_name == 'Walker': self.eval_envs = [gym.make('Walker2d-v2') for _ in range(num_eval_env)] elif env_name == 'Hopper': self.eval_envs = [gym.make('Hopper-v2') for _ in range(num_eval_env)] else: exit('Unrecognized environment') if COMM.Get_rank() == 0: self.optimizer = CEMOptimizer( sol_dim=30, max_iters=300, popsize=self.train_params['pop_size'], num_elites=self.train_params['num_elites'], cost_function=self._cost_function, lower_bound=0.0, # TODO: setting the upper bound this way, means that # if the initial dimension value is 0, then the upper bound is 0 upper_bound=cem_init_mean * 5.0, alpha=0.75, viz_dir=self.log_dir ) # This is buggy # https://github.com/lanpa/tensorboardX/issues/345 self.optimizer.writer.add_text('env_params', str(self.env_params), 0) self.optimizer.writer.add_text('train_params', str(self.train_params), 0) res = self.optimizer.obtain_solution(cem_init_mean, cem_init_stdev) path = osp.join(self.log_dir, 'res.pkl') with open(path, 'wb') as f: pickle.dump(res, f) COMM.Abort(0) else: while True: args = COMM.recv(source=0) r = self.train(*args) COMM.send(r, dest=0) def _cost_function(self, samples, cem_timestep): print(f'cem_timestep: {cem_timestep}') env_name = self.env_params['env_name'] backend = self.env_params['backend'] pop_size = self.train_params['pop_size'] argss = [(env_name, backend, self.train_params, self.env_params, samples[rank][:len(samples[rank]) // 2], samples[rank][len(samples[rank]) // 2:]) for rank in range(len(samples))] # Send args to other MPI processes for rank in range(1, COMM.size): COMM.send(argss[rank], dest=rank) # Obtain results for all args r = self.train(*argss[0]) reses = [(0, r)] # 0 is the rank of this process # Receive results from the other processes: for rank in range(1, COMM.size): r = COMM.recv(source=rank) reses.append((rank, r)) reses = sorted(reses, key=lambda k: k[0]) print(reses) # Get the index of the highest performing model in population # and write result to tensorboard max_idx = 0 max_perf = max(reses[0][1]) # 0 is the result of process rank 0. 1 brings us the eval perf list for i, item in enumerate(reses): perf = max(item[1]) if perf > max_perf: max_perf = perf max_idx = i # Obtain the "costs" that the CEM cost function should return costs = [- max(i[1]) for i in reses] print(costs) print(min(costs)) print() return costs @classmethod def _dict_to_vec(cls, env_id, d): return np.concatenate(( d['mass'], d['damping'], [d['gravity']] )).flatten().copy() @classmethod def _vec_to_dict(cls, env_id, means, stdevs): if env_id == 'Walker': return dict( mass=means[:7], damping=means[7:-1], gravity=means[-1] ), dict( mass=stdevs[:7], damping=stdevs[7:-1], gravity=stdevs[-1] ) elif env_id == 'Hopper': return dict( mass=means[:4], damping=means[4:-1], gravity=means[-1] ), dict( mass=stdevs[:4], damping=stdevs[4:-1], gravity=stdevs[-1] ) else: exit('Unrecognized environment')
plotfft
This functions computes the fft of a signal, returning the frequency and their magnitude values. Parameters ---------- s: array-like the input signal. fmax: int the sampling frequency. doplot: boolean a variable to indicate whether the plot is done or not. Returns ------- f: array-like the frequency values (xx axis) fs: array-like the amplitude of the frequency values (yy axis)
import pylab as pl import numpy as np from os import path from numpy import abs, linspace, sin, pi, int16 import pandas # MASKED: plotfft function (lines 8-33) def synthbeats2(duration, meanhr=60, stdhr=1, samplingfreq=250): #Minimaly based on the parameters from: #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m #Inputs: duration in seconds #Returns: signal, peaks ibi = 60 / float(meanhr) * samplingfreq sibi = ibi - 60 / (float(meanhr) - stdhr) * samplingfreq peaks = np.arange(0, duration * samplingfreq, ibi) peaks[1:] = peaks[1:] + np.random.randn(len(peaks) - 1) * sibi if peaks[-1] >= duration * samplingfreq: peaks = peaks[:-1] peaks = peaks.astype('int') signal = np.zeros(duration * samplingfreq) signal[peaks] = 1.0 return signal, peaks def synthbeats(duration, meanhr=60, stdhr=1, samplingfreq=250, sinfreq=None): #Minimaly based on the parameters from: #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m #If freq exist it will be used to generate a sin instead of using rand #Inputs: duration in seconds #Returns: signal, peaks t = np.arange(duration * samplingfreq) / float(samplingfreq) signal = np.zeros(len(t)) print(len(t)) print(len(signal)) if sinfreq == None: npeaks = 1.2 * (duration * meanhr / 60) # add 20% more beats for some cummulative error hr = pl.randn(npeaks) * stdhr + meanhr peaks = pl.cumsum(60. / hr) * samplingfreq peaks = peaks.astype('int') peaks = peaks[peaks < t[-1] * samplingfreq] else: hr = meanhr + sin(2 * pi * t * sinfreq) * float(stdhr) index = int(60. / hr[0] * samplingfreq) peaks = [] while index < len(t): peaks += [index] index += int(60. / hr[index] * samplingfreq) signal[peaks] = 1.0 return t, signal, peaks def load_with_cache(file_, recache=False, sampling=1, columns=None, temp_dir='.', data_type='int16'): """@brief This function loads a file from the current directory and saves the cached file to later executions. It's also possible to make a recache or a subsampling of the signal and choose only a few columns of the signal, to accelerate the opening process. @param file String: the name of the file to open. @param recache Boolean: indication whether it's done recache or not (default = false). @param sampling Integer: the sampling step. if 1, the signal isn't sampled (default = 1). @param columns Array-Like: the columns to read from the file. if None, all columns are considered (default = None). @return data Array-Like: the data from the file. TODO: Should save cache in a different directory TODO: Create test function and check size of generated files TODO: receive a file handle """ cfile = '%s.npy' % file_ if (not path.exists(cfile)) or recache: if columns == None: data = np.loadtxt(file_)[::sampling, :] else: data = np.loadtxt(file_)[::sampling, columns] np.save(cfile, data.astype(data_type)) else: data = np.load(cfile) return data def load_data(filename): """ :rtype : numpy matrix """ data = pandas.read_csv(filename, header=None, delimiter='\t', skiprows=9) return data.as_matrix()
def plotfft(s, fmax, doplot=False): """ This functions computes the fft of a signal, returning the frequency and their magnitude values. Parameters ---------- s: array-like the input signal. fmax: int the sampling frequency. doplot: boolean a variable to indicate whether the plot is done or not. Returns ------- f: array-like the frequency values (xx axis) fs: array-like the amplitude of the frequency values (yy axis) """ fs = abs(np.fft.fft(s)) f = linspace(0, fmax / 2, len(s) / 2) if doplot: pl.plot(f[1:len(s) / 2], fs[1:len(s) / 2]) return (f[1:len(s) / 2].copy(), fs[1:len(s) / 2].copy())
8
33
import pylab as pl import numpy as np from os import path from numpy import abs, linspace, sin, pi, int16 import pandas def plotfft(s, fmax, doplot=False): """ This functions computes the fft of a signal, returning the frequency and their magnitude values. Parameters ---------- s: array-like the input signal. fmax: int the sampling frequency. doplot: boolean a variable to indicate whether the plot is done or not. Returns ------- f: array-like the frequency values (xx axis) fs: array-like the amplitude of the frequency values (yy axis) """ fs = abs(np.fft.fft(s)) f = linspace(0, fmax / 2, len(s) / 2) if doplot: pl.plot(f[1:len(s) / 2], fs[1:len(s) / 2]) return (f[1:len(s) / 2].copy(), fs[1:len(s) / 2].copy()) def synthbeats2(duration, meanhr=60, stdhr=1, samplingfreq=250): #Minimaly based on the parameters from: #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m #Inputs: duration in seconds #Returns: signal, peaks ibi = 60 / float(meanhr) * samplingfreq sibi = ibi - 60 / (float(meanhr) - stdhr) * samplingfreq peaks = np.arange(0, duration * samplingfreq, ibi) peaks[1:] = peaks[1:] + np.random.randn(len(peaks) - 1) * sibi if peaks[-1] >= duration * samplingfreq: peaks = peaks[:-1] peaks = peaks.astype('int') signal = np.zeros(duration * samplingfreq) signal[peaks] = 1.0 return signal, peaks def synthbeats(duration, meanhr=60, stdhr=1, samplingfreq=250, sinfreq=None): #Minimaly based on the parameters from: #http://physionet.cps.unizar.es/physiotools/ecgsyn/Matlab/ecgsyn.m #If freq exist it will be used to generate a sin instead of using rand #Inputs: duration in seconds #Returns: signal, peaks t = np.arange(duration * samplingfreq) / float(samplingfreq) signal = np.zeros(len(t)) print(len(t)) print(len(signal)) if sinfreq == None: npeaks = 1.2 * (duration * meanhr / 60) # add 20% more beats for some cummulative error hr = pl.randn(npeaks) * stdhr + meanhr peaks = pl.cumsum(60. / hr) * samplingfreq peaks = peaks.astype('int') peaks = peaks[peaks < t[-1] * samplingfreq] else: hr = meanhr + sin(2 * pi * t * sinfreq) * float(stdhr) index = int(60. / hr[0] * samplingfreq) peaks = [] while index < len(t): peaks += [index] index += int(60. / hr[index] * samplingfreq) signal[peaks] = 1.0 return t, signal, peaks def load_with_cache(file_, recache=False, sampling=1, columns=None, temp_dir='.', data_type='int16'): """@brief This function loads a file from the current directory and saves the cached file to later executions. It's also possible to make a recache or a subsampling of the signal and choose only a few columns of the signal, to accelerate the opening process. @param file String: the name of the file to open. @param recache Boolean: indication whether it's done recache or not (default = false). @param sampling Integer: the sampling step. if 1, the signal isn't sampled (default = 1). @param columns Array-Like: the columns to read from the file. if None, all columns are considered (default = None). @return data Array-Like: the data from the file. TODO: Should save cache in a different directory TODO: Create test function and check size of generated files TODO: receive a file handle """ cfile = '%s.npy' % file_ if (not path.exists(cfile)) or recache: if columns == None: data = np.loadtxt(file_)[::sampling, :] else: data = np.loadtxt(file_)[::sampling, columns] np.save(cfile, data.astype(data_type)) else: data = np.load(cfile) return data def load_data(filename): """ :rtype : numpy matrix """ data = pandas.read_csv(filename, header=None, delimiter='\t', skiprows=9) return data.as_matrix()
decorated_function
Decorator to check if the user is allowed access to the app. If user is allowed, return the decorated function. Otherwise, return an error page with corresponding message.
# -*- coding: utf-8 -*- import json import logging from collections import defaultdict from functools import wraps from logging.config import dictConfig from subprocess import call import redis import requests from flask import Flask, Response, redirect, render_template, request, session, url_for from flask_migrate import Migrate from pylti.flask import lti from redis.exceptions import ConnectionError from rq import Queue, get_current_job from rq.exceptions import NoSuchJobError from rq.job import Job from sqlalchemy.sql import text import config from models import Course, Extension, Quiz, User, db from utils import ( extend_quiz, get_course, get_or_create, get_quizzes, get_user, missing_and_stale_quizzes, search_students, update_job, ) conn = redis.from_url(config.REDIS_URL) q = Queue("quizext", connection=conn) app = Flask(__name__) app.config.from_object("config") dictConfig(config.LOGGING_CONFIG) logger = logging.getLogger("app") db.init_app(app) migrate = Migrate(app, db) json_headers = { "Authorization": "Bearer " + config.API_KEY, "Content-type": "application/json", } def check_valid_user(f): # MASKED: decorated_function function (lines 53-90) return decorated_function def error(exception=None): return Response( render_template( "error.html", message=exception.get( "exception", "Please contact your System Administrator." ), ) ) @app.context_processor def add_google_analytics_id(): return dict(GOOGLE_ANALYTICS=config.GOOGLE_ANALYTICS) @app.route("/", methods=["POST", "GET"]) def index(): """ Default app index. """ return "Please contact your System Administrator." @app.route("/status", methods=["GET"]) def status(): # pragma: no cover """ Runs smoke tests and reports status """ try: job_queue_length = len(q.jobs) except ConnectionError: job_queue_length = -1 status = { "tool": "Quiz Extensions", "checks": { "index": False, "xml": False, "api_key": False, "redis": False, "db": False, "worker": False, }, "url": url_for("index", _external=True), "api_url": config.API_URL, "debug": app.debug, "xml_url": url_for("xml", _external=True), "job_queue": job_queue_length, } # Check index try: response = requests.get(url_for("index", _external=True), verify=False) status["checks"]["index"] = ( response.text == "Please contact your System Administrator." ) except Exception: logger.exception("Index check failed.") # Check xml try: response = requests.get(url_for("xml", _external=True), verify=False) status["checks"]["xml"] = "application/xml" in response.headers.get( "Content-Type" ) except Exception: logger.exception("XML check failed.") # Check API Key try: response = requests.get( "{}users/self".format(config.API_URL), headers={"Authorization": "Bearer " + config.API_KEY}, ) status["checks"]["api_key"] = response.status_code == 200 except Exception: logger.exception("API Key check failed.") # Check redis try: response = conn.echo("test") status["checks"]["redis"] = response == b"test" except ConnectionError: logger.exception("Redis connection failed.") # Check DB connection try: db.session.query(text("1")).all() status["checks"]["db"] = True except Exception: logger.exception("DB connection failed.") # Check RQ Worker status["checks"]["worker"] = ( call('ps aux | grep "rq worker" | grep "quizext" | grep -v grep', shell=True) == 0 ) # Overall health check - if all checks are True status["healthy"] = all(v is True for k, v in status["checks"].items()) return Response(json.dumps(status), mimetype="application/json") @app.route("/lti.xml", methods=["GET"]) def xml(): """ Returns the lti.xml file for the app. """ from urllib.parse import urlparse domain = urlparse(request.url_root).netloc return Response( render_template("lti.xml", tool_id=config.LTI_TOOL_ID, domain=domain), mimetype="application/xml", ) @app.route("/quiz/<course_id>/", methods=["GET"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def quiz(lti=lti, course_id=None): """ Main landing page for the app. Displays a page to the user that allows them to select students to moderate quizzes for. """ return render_template( "userselect.html", course_id=course_id, current_page_number=1 ) @app.route("/refresh/<course_id>/", methods=["POST"]) def refresh(course_id=None): """ Creates a new `refresh_background` job. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: flask.Response :returns: A JSON-formatted response containing a url for the started job. """ job = q.enqueue_call(func=refresh_background, args=(course_id,)) return Response( json.dumps({"refresh_job_url": url_for("job_status", job_key=job.get_id())}), mimetype="application/json", status=202, ) @app.route("/update/<course_id>/", methods=["POST"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def update(lti=lti, course_id=None): """ Creates a new `update_background` job. :param course_id: The Canvas ID of the Course. :type coruse_id: int :rtype: flask.Response :returns: A JSON-formatted response containing urls for the started jobs. """ refresh_job = q.enqueue_call(func=refresh_background, args=(course_id,)) update_job = q.enqueue_call( func=update_background, args=(course_id, request.get_json()), depends_on=refresh_job, ) return Response( json.dumps( { "refresh_job_url": url_for("job_status", job_key=refresh_job.get_id()), "update_job_url": url_for("job_status", job_key=update_job.get_id()), } ), mimetype="application/json", status=202, ) @app.route("/jobs/<job_key>/", methods=["GET"]) def job_status(job_key): try: job = Job.fetch(job_key, connection=conn) except NoSuchJobError: return Response( json.dumps( { "error": True, "status_msg": "{} is not a valid job key.".format(job_key), } ), mimetype="application/json", status=404, ) if job.is_finished: return Response(json.dumps(job.result), mimetype="application/json", status=200) elif job.is_failed: logger.error("Job {} failed.\n{}".format(job_key, job.exc_info)) return Response( json.dumps( { "error": True, "status_msg": "Job {} failed to complete.".format(job_key), } ), mimetype="application/json", status=500, ) else: return Response(json.dumps(job.meta), mimetype="application/json", status=202) def update_background(course_id, extension_dict): """ Update time on selected students' quizzes to a specified percentage. :param course_id: The Canvas ID of the Course to update in :type course_id: int :param extension_dict: A dictionary that includes the percent of time and a list of canvas user ids. Example: { 'percent': '300', 'user_ids': [ '0123456', '1234567', '9867543', '5555555' ] } :type extension_dict: dict """ job = get_current_job() update_job(job, 0, "Starting...", "started") with app.app_context(): if not extension_dict: update_job(job, 0, "Invalid Request", "failed", error=True) logger.warning("Invalid Request: {}".format(extension_dict)) return job.meta try: course_json = get_course(course_id) except requests.exceptions.HTTPError: update_job(job, 0, "Course not found.", "failed", error=True) logger.exception("Unable to find course #{}".format(course_id)) return job.meta course_name = course_json.get("name", "<UNNAMED COURSE>") user_ids = extension_dict.get("user_ids", []) percent = extension_dict.get("percent", None) if not percent: update_job(job, 0, "`percent` field required.", "failed", error=True) logger.warning( "Percent field not provided. Request: {}".format(extension_dict) ) return job.meta course, created = get_or_create(db.session, Course, canvas_id=course_id) course.course_name = course_name db.session.commit() for user_id in user_ids: try: canvas_user = get_user(course_id, user_id) sortable_name = canvas_user.get("sortable_name", "<MISSING NAME>") sis_id = canvas_user.get("sis_user_id") except requests.exceptions.HTTPError: # Unable to find user. Log and skip them. logger.warning( "Unable to find user #{} in course #{}".format(user_id, course_id) ) continue user, created = get_or_create(db.session, User, canvas_id=user_id) user.sortable_name = sortable_name user.sis_id = sis_id db.session.commit() # create/update extension extension, created = get_or_create( db.session, Extension, course_id=course.id, user_id=user.id ) extension.percent = percent db.session.commit() quizzes = get_quizzes(course_id) num_quizzes = len(quizzes) quiz_time_list = [] unchanged_quiz_time_list = [] if num_quizzes < 1: update_job( job, 0, "Sorry, there are no quizzes for this course.", "failed", error=True, ) logger.warning( "No quizzes found for course {}. Unable to update.".format(course_id) ) return job.meta for index, quiz in enumerate(quizzes): quiz_id = quiz.get("id", None) quiz_title = quiz.get("title", "[UNTITLED QUIZ]") comp_perc = int(((float(index)) / float(num_quizzes)) * 100) updating_str = "Updating quiz #{} - {} [{} of {}]" update_job( job, comp_perc, updating_str.format(quiz_id, quiz_title, index + 1, num_quizzes), "processing", error=False, ) extension_response = extend_quiz(course_id, quiz, percent, user_ids) if extension_response.get("success", False) is True: # add/update quiz quiz_obj, created = get_or_create( db.session, Quiz, canvas_id=quiz_id, course_id=course.id ) quiz_obj.title = quiz_title quiz_obj.time_limit = quiz.get("time_limit") db.session.commit() added_time = extension_response.get("added_time", None) if added_time is not None: quiz_time_list.append( {"title": quiz_title, "added_time": added_time} ) else: unchanged_quiz_time_list.append({"title": quiz_title}) else: update_job( job, comp_perc, extension_response.get("message", "An unknown error occured."), "failed", error=True, ) logger.error("Extension failed: {}".format(extension_response)) return job.meta msg_str = ( "Success! {} {} been updated for {} student(s) to have {}% time. " "{} {} no time limit and were left unchanged." ) message = msg_str.format( len(quiz_time_list), "quizzes have" if len(quiz_time_list) != 1 else "quiz has", len(user_ids), percent, len(unchanged_quiz_time_list), "quizzes have" if len(unchanged_quiz_time_list) != 1 else "quiz has", ) update_job(job, 100, message, "complete", error=False) job.meta["quiz_list"] = quiz_time_list job.meta["unchanged_list"] = unchanged_quiz_time_list job.save() return job.meta def refresh_background(course_id): """ Look up existing extensions and apply them to new quizzes. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: dict :returns: A dictionary containing two parts: - success `bool` False if there was an error, True otherwise. - message `str` A long description of success or failure. """ job = get_current_job() update_job(job, 0, "Starting...", "started") with app.app_context(): course, created = get_or_create(db.session, Course, canvas_id=course_id) try: course_name = get_course(course_id).get("name", "<UNNAMED COURSE>") course.course_name = course_name db.session.commit() except requests.exceptions.HTTPError: update_job(job, 0, "Course not found.", "failed", error=True) logger.exception("Unable to find course #{}".format(course_id)) return job.meta quizzes = missing_and_stale_quizzes(course_id) num_quizzes = len(quizzes) if num_quizzes < 1: update_job( job, 100, "Complete. No quizzes required updates.", "complete", error=False, ) return job.meta percent_user_map = defaultdict(list) inactive_list = [] update_job(job, 0, "Getting past extensions.", "processing", False) for extension in course.extensions: # If extension is inactive, ignore. if not extension.active: inactive_list.append(extension.user.sortable_name) logger.debug("Extension #{} is inactive.".format(extension.id)) continue user_canvas_id = ( User.query.filter_by(id=extension.user_id).first().canvas_id ) # Check if user is in course. If not, deactivate extension. try: canvas_user = get_user(course_id, user_canvas_id) # Skip user if not a student. Fixes an edge case where a # student that previously recieved an extension changes roles. enrolls = canvas_user.get("enrollments", []) type_list = [ e["type"] for e in enrolls if e["enrollment_state"] == "active" ] if not any(t == "StudentEnrollment" for t in type_list): logger.info( ( "User #{} was found in course #{}, but is not an " "active student. Deactivating extension #{}. Roles " "found: {}" ).format( user_canvas_id, course_id, extension.id, ", ".join(type_list) if len(enrolls) > 0 else None, ) ) extension.active = False db.session.commit() inactive_list.append(extension.user.sortable_name) continue except requests.exceptions.HTTPError: log_str = "User #{} not in course #{}. Deactivating extension #{}." logger.info(log_str.format(user_canvas_id, course_id, extension.id)) extension.active = False db.session.commit() inactive_list.append(extension.user.sortable_name) continue percent_user_map[extension.percent].append(user_canvas_id) if len(percent_user_map) < 1: msg_str = "No active extensions were found.<br>" if len(inactive_list) > 0: msg_str += " Extensions for the following students are inactive:<br>{}" msg_str = msg_str.format("<br>".join(inactive_list)) update_job(job, 100, msg_str, "complete", error=False) return job.meta for index, quiz in enumerate(quizzes): quiz_id = quiz.get("id", None) quiz_title = quiz.get("title", "[UNTITLED QUIZ]") comp_perc = int(((float(index)) / float(num_quizzes)) * 100) refreshing_str = "Refreshing quiz #{} - {} [{} of {}]" update_job( job, comp_perc, refreshing_str.format(quiz_id, quiz_title, index + 1, num_quizzes), "processing", error=False, ) for percent, user_list in percent_user_map.items(): extension_response = extend_quiz(course_id, quiz, percent, user_list) if extension_response.get("success", False) is True: # add/update quiz quiz_obj, created = get_or_create( db.session, Quiz, canvas_id=quiz_id, course_id=course.id ) quiz_obj.title = quiz_title quiz_obj.time_limit = quiz.get("time_limit") db.session.commit() else: error_message = "Some quizzes couldn't be updated. " error_message += extension_response.get("message", "") update_job(job, comp_perc, error_message, "failed", error=True) return job.meta msg = "{} quizzes have been updated.".format(len(quizzes)) update_job(job, 100, msg, "complete", error=False) return job.meta @app.route("/missing_and_stale_quizzes/<course_id>/", methods=["GET"]) def missing_and_stale_quizzes_check(course_id): """ Check if there are missing quizzes. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: str :returns: A JSON-formatted string representation of a boolean. "true" if there are missing quizzes, "false" if there are not. """ course = Course.query.filter_by(canvas_id=course_id).first() if course is None: # No record of this course. No need to update yet. return "false" num_extensions = Extension.query.filter_by(course_id=course.id).count() if num_extensions == 0: # There are no extensions for this course yet. No need to update. return "false" missing = len(missing_and_stale_quizzes(course_id, True)) > 0 return json.dumps(missing) @app.route("/filter/<course_id>/", methods=["GET"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def filter(lti=lti, course_id=None): """ Display a filtered and paginated list of students in the course. :param course_id: :type: int :rtype: str :returns: A list of students in the course using the template user_list.html. """ query = request.args.get("query", "").lower() page = int(request.args.get("page", 1)) per_page = int(request.args.get("per_page", config.DEFAULT_PER_PAGE)) user_list, max_pages = search_students( course_id, per_page=per_page, page=page, search_term=query ) if not user_list or max_pages < 1: user_list = [] max_pages = 1 return render_template( "user_list.html", users=user_list, current_page_number=page, max_pages=max_pages ) @app.route("/launch", methods=["POST"]) @lti(error=error, request="initial", role="staff", app=app) def lti_tool(lti=lti): """ Bootstrapper for lti. """ course_id = request.values.get("custom_canvas_course_id") canvas_user_id = request.values.get("custom_canvas_user_id") canvas_domain = request.values.get("custom_canvas_api_domain") if canvas_domain not in config.ALLOWED_CANVAS_DOMAINS: msg = ( "<p>This tool is only available from the following domain(s):<br/>{}</p>" "<p>You attempted to access from this domain:<br/>{}</p>" ) return render_template( "error.html", message=msg.format(", ".join(config.ALLOWED_CANVAS_DOMAINS), canvas_domain), ) roles = request.values.get("roles", []) session["is_admin"] = "Administrator" in roles session["canvas_user_id"] = canvas_user_id session["lti_logged_in"] = True return redirect(url_for("quiz", course_id=course_id))
@wraps(f) def decorated_function(*args, **kwargs): """ Decorator to check if the user is allowed access to the app. If user is allowed, return the decorated function. Otherwise, return an error page with corresponding message. """ canvas_user_id = session.get("canvas_user_id") lti_logged_in = session.get("lti_logged_in", False) if not lti_logged_in or not canvas_user_id: return render_template("error.html", message="Not allowed!") if "course_id" not in kwargs.keys(): return render_template("error.html", message="No course_id provided.") course_id = int(kwargs.get("course_id")) if not session.get("is_admin", False): enrollments_url = "{}courses/{}/enrollments".format( config.API_URL, course_id ) payload = { "user_id": canvas_user_id, "type": ["TeacherEnrollment", "TaEnrollment", "DesignerEnrollment"], } user_enrollments_response = requests.get( enrollments_url, data=json.dumps(payload), headers=json_headers ) user_enrollments = user_enrollments_response.json() if not user_enrollments or "errors" in user_enrollments: message = ( "You are not enrolled in this course as a Teacher, " "TA, or Designer." ) return render_template("error.html", message=message) return f(*args, **kwargs)
53
90
# -*- coding: utf-8 -*- import json import logging from collections import defaultdict from functools import wraps from logging.config import dictConfig from subprocess import call import redis import requests from flask import Flask, Response, redirect, render_template, request, session, url_for from flask_migrate import Migrate from pylti.flask import lti from redis.exceptions import ConnectionError from rq import Queue, get_current_job from rq.exceptions import NoSuchJobError from rq.job import Job from sqlalchemy.sql import text import config from models import Course, Extension, Quiz, User, db from utils import ( extend_quiz, get_course, get_or_create, get_quizzes, get_user, missing_and_stale_quizzes, search_students, update_job, ) conn = redis.from_url(config.REDIS_URL) q = Queue("quizext", connection=conn) app = Flask(__name__) app.config.from_object("config") dictConfig(config.LOGGING_CONFIG) logger = logging.getLogger("app") db.init_app(app) migrate = Migrate(app, db) json_headers = { "Authorization": "Bearer " + config.API_KEY, "Content-type": "application/json", } def check_valid_user(f): @wraps(f) def decorated_function(*args, **kwargs): """ Decorator to check if the user is allowed access to the app. If user is allowed, return the decorated function. Otherwise, return an error page with corresponding message. """ canvas_user_id = session.get("canvas_user_id") lti_logged_in = session.get("lti_logged_in", False) if not lti_logged_in or not canvas_user_id: return render_template("error.html", message="Not allowed!") if "course_id" not in kwargs.keys(): return render_template("error.html", message="No course_id provided.") course_id = int(kwargs.get("course_id")) if not session.get("is_admin", False): enrollments_url = "{}courses/{}/enrollments".format( config.API_URL, course_id ) payload = { "user_id": canvas_user_id, "type": ["TeacherEnrollment", "TaEnrollment", "DesignerEnrollment"], } user_enrollments_response = requests.get( enrollments_url, data=json.dumps(payload), headers=json_headers ) user_enrollments = user_enrollments_response.json() if not user_enrollments or "errors" in user_enrollments: message = ( "You are not enrolled in this course as a Teacher, " "TA, or Designer." ) return render_template("error.html", message=message) return f(*args, **kwargs) return decorated_function def error(exception=None): return Response( render_template( "error.html", message=exception.get( "exception", "Please contact your System Administrator." ), ) ) @app.context_processor def add_google_analytics_id(): return dict(GOOGLE_ANALYTICS=config.GOOGLE_ANALYTICS) @app.route("/", methods=["POST", "GET"]) def index(): """ Default app index. """ return "Please contact your System Administrator." @app.route("/status", methods=["GET"]) def status(): # pragma: no cover """ Runs smoke tests and reports status """ try: job_queue_length = len(q.jobs) except ConnectionError: job_queue_length = -1 status = { "tool": "Quiz Extensions", "checks": { "index": False, "xml": False, "api_key": False, "redis": False, "db": False, "worker": False, }, "url": url_for("index", _external=True), "api_url": config.API_URL, "debug": app.debug, "xml_url": url_for("xml", _external=True), "job_queue": job_queue_length, } # Check index try: response = requests.get(url_for("index", _external=True), verify=False) status["checks"]["index"] = ( response.text == "Please contact your System Administrator." ) except Exception: logger.exception("Index check failed.") # Check xml try: response = requests.get(url_for("xml", _external=True), verify=False) status["checks"]["xml"] = "application/xml" in response.headers.get( "Content-Type" ) except Exception: logger.exception("XML check failed.") # Check API Key try: response = requests.get( "{}users/self".format(config.API_URL), headers={"Authorization": "Bearer " + config.API_KEY}, ) status["checks"]["api_key"] = response.status_code == 200 except Exception: logger.exception("API Key check failed.") # Check redis try: response = conn.echo("test") status["checks"]["redis"] = response == b"test" except ConnectionError: logger.exception("Redis connection failed.") # Check DB connection try: db.session.query(text("1")).all() status["checks"]["db"] = True except Exception: logger.exception("DB connection failed.") # Check RQ Worker status["checks"]["worker"] = ( call('ps aux | grep "rq worker" | grep "quizext" | grep -v grep', shell=True) == 0 ) # Overall health check - if all checks are True status["healthy"] = all(v is True for k, v in status["checks"].items()) return Response(json.dumps(status), mimetype="application/json") @app.route("/lti.xml", methods=["GET"]) def xml(): """ Returns the lti.xml file for the app. """ from urllib.parse import urlparse domain = urlparse(request.url_root).netloc return Response( render_template("lti.xml", tool_id=config.LTI_TOOL_ID, domain=domain), mimetype="application/xml", ) @app.route("/quiz/<course_id>/", methods=["GET"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def quiz(lti=lti, course_id=None): """ Main landing page for the app. Displays a page to the user that allows them to select students to moderate quizzes for. """ return render_template( "userselect.html", course_id=course_id, current_page_number=1 ) @app.route("/refresh/<course_id>/", methods=["POST"]) def refresh(course_id=None): """ Creates a new `refresh_background` job. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: flask.Response :returns: A JSON-formatted response containing a url for the started job. """ job = q.enqueue_call(func=refresh_background, args=(course_id,)) return Response( json.dumps({"refresh_job_url": url_for("job_status", job_key=job.get_id())}), mimetype="application/json", status=202, ) @app.route("/update/<course_id>/", methods=["POST"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def update(lti=lti, course_id=None): """ Creates a new `update_background` job. :param course_id: The Canvas ID of the Course. :type coruse_id: int :rtype: flask.Response :returns: A JSON-formatted response containing urls for the started jobs. """ refresh_job = q.enqueue_call(func=refresh_background, args=(course_id,)) update_job = q.enqueue_call( func=update_background, args=(course_id, request.get_json()), depends_on=refresh_job, ) return Response( json.dumps( { "refresh_job_url": url_for("job_status", job_key=refresh_job.get_id()), "update_job_url": url_for("job_status", job_key=update_job.get_id()), } ), mimetype="application/json", status=202, ) @app.route("/jobs/<job_key>/", methods=["GET"]) def job_status(job_key): try: job = Job.fetch(job_key, connection=conn) except NoSuchJobError: return Response( json.dumps( { "error": True, "status_msg": "{} is not a valid job key.".format(job_key), } ), mimetype="application/json", status=404, ) if job.is_finished: return Response(json.dumps(job.result), mimetype="application/json", status=200) elif job.is_failed: logger.error("Job {} failed.\n{}".format(job_key, job.exc_info)) return Response( json.dumps( { "error": True, "status_msg": "Job {} failed to complete.".format(job_key), } ), mimetype="application/json", status=500, ) else: return Response(json.dumps(job.meta), mimetype="application/json", status=202) def update_background(course_id, extension_dict): """ Update time on selected students' quizzes to a specified percentage. :param course_id: The Canvas ID of the Course to update in :type course_id: int :param extension_dict: A dictionary that includes the percent of time and a list of canvas user ids. Example: { 'percent': '300', 'user_ids': [ '0123456', '1234567', '9867543', '5555555' ] } :type extension_dict: dict """ job = get_current_job() update_job(job, 0, "Starting...", "started") with app.app_context(): if not extension_dict: update_job(job, 0, "Invalid Request", "failed", error=True) logger.warning("Invalid Request: {}".format(extension_dict)) return job.meta try: course_json = get_course(course_id) except requests.exceptions.HTTPError: update_job(job, 0, "Course not found.", "failed", error=True) logger.exception("Unable to find course #{}".format(course_id)) return job.meta course_name = course_json.get("name", "<UNNAMED COURSE>") user_ids = extension_dict.get("user_ids", []) percent = extension_dict.get("percent", None) if not percent: update_job(job, 0, "`percent` field required.", "failed", error=True) logger.warning( "Percent field not provided. Request: {}".format(extension_dict) ) return job.meta course, created = get_or_create(db.session, Course, canvas_id=course_id) course.course_name = course_name db.session.commit() for user_id in user_ids: try: canvas_user = get_user(course_id, user_id) sortable_name = canvas_user.get("sortable_name", "<MISSING NAME>") sis_id = canvas_user.get("sis_user_id") except requests.exceptions.HTTPError: # Unable to find user. Log and skip them. logger.warning( "Unable to find user #{} in course #{}".format(user_id, course_id) ) continue user, created = get_or_create(db.session, User, canvas_id=user_id) user.sortable_name = sortable_name user.sis_id = sis_id db.session.commit() # create/update extension extension, created = get_or_create( db.session, Extension, course_id=course.id, user_id=user.id ) extension.percent = percent db.session.commit() quizzes = get_quizzes(course_id) num_quizzes = len(quizzes) quiz_time_list = [] unchanged_quiz_time_list = [] if num_quizzes < 1: update_job( job, 0, "Sorry, there are no quizzes for this course.", "failed", error=True, ) logger.warning( "No quizzes found for course {}. Unable to update.".format(course_id) ) return job.meta for index, quiz in enumerate(quizzes): quiz_id = quiz.get("id", None) quiz_title = quiz.get("title", "[UNTITLED QUIZ]") comp_perc = int(((float(index)) / float(num_quizzes)) * 100) updating_str = "Updating quiz #{} - {} [{} of {}]" update_job( job, comp_perc, updating_str.format(quiz_id, quiz_title, index + 1, num_quizzes), "processing", error=False, ) extension_response = extend_quiz(course_id, quiz, percent, user_ids) if extension_response.get("success", False) is True: # add/update quiz quiz_obj, created = get_or_create( db.session, Quiz, canvas_id=quiz_id, course_id=course.id ) quiz_obj.title = quiz_title quiz_obj.time_limit = quiz.get("time_limit") db.session.commit() added_time = extension_response.get("added_time", None) if added_time is not None: quiz_time_list.append( {"title": quiz_title, "added_time": added_time} ) else: unchanged_quiz_time_list.append({"title": quiz_title}) else: update_job( job, comp_perc, extension_response.get("message", "An unknown error occured."), "failed", error=True, ) logger.error("Extension failed: {}".format(extension_response)) return job.meta msg_str = ( "Success! {} {} been updated for {} student(s) to have {}% time. " "{} {} no time limit and were left unchanged." ) message = msg_str.format( len(quiz_time_list), "quizzes have" if len(quiz_time_list) != 1 else "quiz has", len(user_ids), percent, len(unchanged_quiz_time_list), "quizzes have" if len(unchanged_quiz_time_list) != 1 else "quiz has", ) update_job(job, 100, message, "complete", error=False) job.meta["quiz_list"] = quiz_time_list job.meta["unchanged_list"] = unchanged_quiz_time_list job.save() return job.meta def refresh_background(course_id): """ Look up existing extensions and apply them to new quizzes. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: dict :returns: A dictionary containing two parts: - success `bool` False if there was an error, True otherwise. - message `str` A long description of success or failure. """ job = get_current_job() update_job(job, 0, "Starting...", "started") with app.app_context(): course, created = get_or_create(db.session, Course, canvas_id=course_id) try: course_name = get_course(course_id).get("name", "<UNNAMED COURSE>") course.course_name = course_name db.session.commit() except requests.exceptions.HTTPError: update_job(job, 0, "Course not found.", "failed", error=True) logger.exception("Unable to find course #{}".format(course_id)) return job.meta quizzes = missing_and_stale_quizzes(course_id) num_quizzes = len(quizzes) if num_quizzes < 1: update_job( job, 100, "Complete. No quizzes required updates.", "complete", error=False, ) return job.meta percent_user_map = defaultdict(list) inactive_list = [] update_job(job, 0, "Getting past extensions.", "processing", False) for extension in course.extensions: # If extension is inactive, ignore. if not extension.active: inactive_list.append(extension.user.sortable_name) logger.debug("Extension #{} is inactive.".format(extension.id)) continue user_canvas_id = ( User.query.filter_by(id=extension.user_id).first().canvas_id ) # Check if user is in course. If not, deactivate extension. try: canvas_user = get_user(course_id, user_canvas_id) # Skip user if not a student. Fixes an edge case where a # student that previously recieved an extension changes roles. enrolls = canvas_user.get("enrollments", []) type_list = [ e["type"] for e in enrolls if e["enrollment_state"] == "active" ] if not any(t == "StudentEnrollment" for t in type_list): logger.info( ( "User #{} was found in course #{}, but is not an " "active student. Deactivating extension #{}. Roles " "found: {}" ).format( user_canvas_id, course_id, extension.id, ", ".join(type_list) if len(enrolls) > 0 else None, ) ) extension.active = False db.session.commit() inactive_list.append(extension.user.sortable_name) continue except requests.exceptions.HTTPError: log_str = "User #{} not in course #{}. Deactivating extension #{}." logger.info(log_str.format(user_canvas_id, course_id, extension.id)) extension.active = False db.session.commit() inactive_list.append(extension.user.sortable_name) continue percent_user_map[extension.percent].append(user_canvas_id) if len(percent_user_map) < 1: msg_str = "No active extensions were found.<br>" if len(inactive_list) > 0: msg_str += " Extensions for the following students are inactive:<br>{}" msg_str = msg_str.format("<br>".join(inactive_list)) update_job(job, 100, msg_str, "complete", error=False) return job.meta for index, quiz in enumerate(quizzes): quiz_id = quiz.get("id", None) quiz_title = quiz.get("title", "[UNTITLED QUIZ]") comp_perc = int(((float(index)) / float(num_quizzes)) * 100) refreshing_str = "Refreshing quiz #{} - {} [{} of {}]" update_job( job, comp_perc, refreshing_str.format(quiz_id, quiz_title, index + 1, num_quizzes), "processing", error=False, ) for percent, user_list in percent_user_map.items(): extension_response = extend_quiz(course_id, quiz, percent, user_list) if extension_response.get("success", False) is True: # add/update quiz quiz_obj, created = get_or_create( db.session, Quiz, canvas_id=quiz_id, course_id=course.id ) quiz_obj.title = quiz_title quiz_obj.time_limit = quiz.get("time_limit") db.session.commit() else: error_message = "Some quizzes couldn't be updated. " error_message += extension_response.get("message", "") update_job(job, comp_perc, error_message, "failed", error=True) return job.meta msg = "{} quizzes have been updated.".format(len(quizzes)) update_job(job, 100, msg, "complete", error=False) return job.meta @app.route("/missing_and_stale_quizzes/<course_id>/", methods=["GET"]) def missing_and_stale_quizzes_check(course_id): """ Check if there are missing quizzes. :param course_id: The Canvas ID of the Course. :type course_id: int :rtype: str :returns: A JSON-formatted string representation of a boolean. "true" if there are missing quizzes, "false" if there are not. """ course = Course.query.filter_by(canvas_id=course_id).first() if course is None: # No record of this course. No need to update yet. return "false" num_extensions = Extension.query.filter_by(course_id=course.id).count() if num_extensions == 0: # There are no extensions for this course yet. No need to update. return "false" missing = len(missing_and_stale_quizzes(course_id, True)) > 0 return json.dumps(missing) @app.route("/filter/<course_id>/", methods=["GET"]) @check_valid_user @lti(error=error, request="session", role="staff", app=app) def filter(lti=lti, course_id=None): """ Display a filtered and paginated list of students in the course. :param course_id: :type: int :rtype: str :returns: A list of students in the course using the template user_list.html. """ query = request.args.get("query", "").lower() page = int(request.args.get("page", 1)) per_page = int(request.args.get("per_page", config.DEFAULT_PER_PAGE)) user_list, max_pages = search_students( course_id, per_page=per_page, page=page, search_term=query ) if not user_list or max_pages < 1: user_list = [] max_pages = 1 return render_template( "user_list.html", users=user_list, current_page_number=page, max_pages=max_pages ) @app.route("/launch", methods=["POST"]) @lti(error=error, request="initial", role="staff", app=app) def lti_tool(lti=lti): """ Bootstrapper for lti. """ course_id = request.values.get("custom_canvas_course_id") canvas_user_id = request.values.get("custom_canvas_user_id") canvas_domain = request.values.get("custom_canvas_api_domain") if canvas_domain not in config.ALLOWED_CANVAS_DOMAINS: msg = ( "<p>This tool is only available from the following domain(s):<br/>{}</p>" "<p>You attempted to access from this domain:<br/>{}</p>" ) return render_template( "error.html", message=msg.format(", ".join(config.ALLOWED_CANVAS_DOMAINS), canvas_domain), ) roles = request.values.get("roles", []) session["is_admin"] = "Administrator" in roles session["canvas_user_id"] = canvas_user_id session["lti_logged_in"] = True return redirect(url_for("quiz", course_id=course_id))
get_moon_j2000
Code to determine the apparent J2000 position for a given time and at a given position for the observatory. epoch needs to be a datetime or Time object. position is a list/tuple of X/Y/Z positions
from datetime import datetime from astropy.time import Time def read_tle_file(tlefile, **kwargs): """ Read in a TLE file and return the TLE that is closest to the date you want to propagate the orbit to. """ times = [] line1 = [] line2 = [] from os import path from datetime import datetime # Catch if the file can't be opened: try: f = open(tlefile, 'r') except FileNotFoundError: print("Unable to open: "+tlefile) ln=0 for line in f: # print(line) if (ln == 0): year= int(line[18:20]) day = int(line[20:23]) times.extend([datetime.strptime("{}:{}".format(year, day), "%y:%j")]) line1.extend([line.strip()]) ln=1 else: ln=0 line2.extend([line.strip()]) f.close() return times, line1, line2 def get_epoch_tle(epoch, tlefile): """ Find the TLE that is closest to the epoch you want to search. epoch is a datetime object, tlefile is the file you want to search through. """ times, line1, line2 = read_tle_file(tlefile) from datetime import datetime from astropy.time import Time # Allow astropy Time objects if type(epoch) is Time: epoch = epoch.datetime mindt = 100. min_ind = 0 for ind, t in enumerate(times): dt = abs((epoch -t).days) if dt < mindt: min_ind = ind mindt = dt good_line1 = line1[min_ind] good_line2 = line2[min_ind] return mindt, good_line1, good_line2 def convert_nustar_time(t, leap=5): ''' Converts MET seconds to a datetime object. Default is to subtract off 5 leap seconds. ''' import astropy.units as u mjdref = 55197*u.d met = (t - leap)* u.s + mjdref met_datetime = Time(met.to(u.d), format = 'mjd').datetime return met_datetime def get_nustar_location(checktime, line1, line2): ''' Code to determine the spacecraft location from the TLE. Inputs are a datetime object and the two lines of the TLE you want to use. Returns a tuple that has the X, Y, and Z geocentric coordinates (in km). ''' from sgp4.earth_gravity import wgs72 from sgp4.io import twoline2rv from astropy.coordinates import EarthLocation satellite = twoline2rv(line1, line2, wgs72) position, velocity = satellite.propagate( checktime.year, checktime.month, checktime.day, checktime.hour, checktime.minute, checktime.second) return position def eci2el(x,y,z,dt): """ Convert Earth-Centered Inertial (ECI) cartesian coordinates to ITRS for astropy EarthLocation object. Inputs : x = ECI X-coordinate y = ECI Y-coordinate z = ECI Z-coordinate dt = UTC time (datetime object) """ from astropy.coordinates import GCRS, ITRS, EarthLocation, CartesianRepresentation import astropy.units as u # convert datetime object to astropy time object tt=Time(dt,format='datetime') # Read the coordinates in the Geocentric Celestial Reference System gcrs = GCRS(CartesianRepresentation(x=x, y=y,z=z), obstime=tt) # Convert it to an Earth-fixed frame itrs = gcrs.transform_to(ITRS(obstime=tt)) el = EarthLocation.from_geocentric(itrs.x, itrs.y, itrs.z) return el # MASKED: get_moon_j2000 function (lines 138-173)
def get_moon_j2000(epoch, line1, line2, position = None): ''' Code to determine the apparent J2000 position for a given time and at a given position for the observatory. epoch needs to be a datetime or Time object. position is a list/tuple of X/Y/Z positions ''' from astropy.time import Time from astropy.coordinates import get_moon, EarthLocation import astropy.units as u import sys from datetime import datetime if type(epoch) is Time: epoch = epoch.datetime if position is None: position = get_nustar_location(epoch, line1, line2) # position in ECI coords t=Time(epoch) loc = eci2el(*position*u.km,t) moon_coords = get_moon(t,loc) # Get just the coordinates in degrees ra_moon, dec_moon = moon_coords.ra.degree * u.deg, moon_coords.dec.degree*u.deg return ra_moon, dec_moon
138
173
from datetime import datetime from astropy.time import Time def read_tle_file(tlefile, **kwargs): """ Read in a TLE file and return the TLE that is closest to the date you want to propagate the orbit to. """ times = [] line1 = [] line2 = [] from os import path from datetime import datetime # Catch if the file can't be opened: try: f = open(tlefile, 'r') except FileNotFoundError: print("Unable to open: "+tlefile) ln=0 for line in f: # print(line) if (ln == 0): year= int(line[18:20]) day = int(line[20:23]) times.extend([datetime.strptime("{}:{}".format(year, day), "%y:%j")]) line1.extend([line.strip()]) ln=1 else: ln=0 line2.extend([line.strip()]) f.close() return times, line1, line2 def get_epoch_tle(epoch, tlefile): """ Find the TLE that is closest to the epoch you want to search. epoch is a datetime object, tlefile is the file you want to search through. """ times, line1, line2 = read_tle_file(tlefile) from datetime import datetime from astropy.time import Time # Allow astropy Time objects if type(epoch) is Time: epoch = epoch.datetime mindt = 100. min_ind = 0 for ind, t in enumerate(times): dt = abs((epoch -t).days) if dt < mindt: min_ind = ind mindt = dt good_line1 = line1[min_ind] good_line2 = line2[min_ind] return mindt, good_line1, good_line2 def convert_nustar_time(t, leap=5): ''' Converts MET seconds to a datetime object. Default is to subtract off 5 leap seconds. ''' import astropy.units as u mjdref = 55197*u.d met = (t - leap)* u.s + mjdref met_datetime = Time(met.to(u.d), format = 'mjd').datetime return met_datetime def get_nustar_location(checktime, line1, line2): ''' Code to determine the spacecraft location from the TLE. Inputs are a datetime object and the two lines of the TLE you want to use. Returns a tuple that has the X, Y, and Z geocentric coordinates (in km). ''' from sgp4.earth_gravity import wgs72 from sgp4.io import twoline2rv from astropy.coordinates import EarthLocation satellite = twoline2rv(line1, line2, wgs72) position, velocity = satellite.propagate( checktime.year, checktime.month, checktime.day, checktime.hour, checktime.minute, checktime.second) return position def eci2el(x,y,z,dt): """ Convert Earth-Centered Inertial (ECI) cartesian coordinates to ITRS for astropy EarthLocation object. Inputs : x = ECI X-coordinate y = ECI Y-coordinate z = ECI Z-coordinate dt = UTC time (datetime object) """ from astropy.coordinates import GCRS, ITRS, EarthLocation, CartesianRepresentation import astropy.units as u # convert datetime object to astropy time object tt=Time(dt,format='datetime') # Read the coordinates in the Geocentric Celestial Reference System gcrs = GCRS(CartesianRepresentation(x=x, y=y,z=z), obstime=tt) # Convert it to an Earth-fixed frame itrs = gcrs.transform_to(ITRS(obstime=tt)) el = EarthLocation.from_geocentric(itrs.x, itrs.y, itrs.z) return el def get_moon_j2000(epoch, line1, line2, position = None): ''' Code to determine the apparent J2000 position for a given time and at a given position for the observatory. epoch needs to be a datetime or Time object. position is a list/tuple of X/Y/Z positions ''' from astropy.time import Time from astropy.coordinates import get_moon, EarthLocation import astropy.units as u import sys from datetime import datetime if type(epoch) is Time: epoch = epoch.datetime if position is None: position = get_nustar_location(epoch, line1, line2) # position in ECI coords t=Time(epoch) loc = eci2el(*position*u.km,t) moon_coords = get_moon(t,loc) # Get just the coordinates in degrees ra_moon, dec_moon = moon_coords.ra.degree * u.deg, moon_coords.dec.degree*u.deg return ra_moon, dec_moon
check_or_get_class
Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) # MASKED: check_or_get_class function (lines 146-175) def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_
146
175
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_class
Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ # MASKED: get_class function (lines 178-214) def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_
178
214
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
check_or_get_instance
Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ # MASKED: check_or_get_instance function (lines 217-253) def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret
217
253
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_instance
Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret # MASKED: get_instance function (lines 256-293) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs)
256
293
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
check_or_get_instance_with_redundant_kwargs
Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) # MASKED: check_or_get_instance_with_redundant_kwargs function (lines 296-334) def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret
296
334
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_instance_with_redundant_kwargs
Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret # MASKED: get_instance_with_redundant_kwargs function (lines 337-372) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs)
337
372
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_function
Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) # MASKED: get_function function (lines 375-408) def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn
375
408
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
call_function_with_redundant_kwargs
Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn # MASKED: call_function_with_redundant_kwargs function (lines 411-440) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs)
411
440
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_instance_kwargs
Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) # MASKED: get_instance_kwargs function (lines 443-467) def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_
443
467
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
strip_token
Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence'
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) # MASKED: strip_token function (lines 655-714) def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str
655
714
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
strip_eos
Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str # MASKED: strip_eos function (lines 717-761) _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str
717
761
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
strip_bos
Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos # MASKED: strip_bos function (lines 767-813) _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str
767
813
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
str_join
Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`.
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s # MASKED: str_join function (lines 883-910) def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_
883
910
# Copyright 2018 The Texar Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous Utility functions. """ from __future__ import absolute_import from __future__ import print_function from __future__ import division # pylint: disable=invalid-name, no-member, no-name-in-module, protected-access # pylint: disable=redefined-outer-name, too-many-arguments from typing import List, Union import inspect import funcsigs from pydoc import locate import copy import collections import numpy as np import tensorflow as tf from texar.tf.hyperparams import HParams from texar.tf.utils.dtypes import is_str, is_callable, compat_as_text, \ _maybe_list_to_array # pylint: disable=anomalous-backslash-in-string MAX_SEQ_LENGTH = np.iinfo(np.int32).max # Some modules cannot be imported directly, # e.g., `import tensorflow.train` fails. # Such modules are treated in a special way in utils like `get_class` as below. # _unimportable_modules = { # 'tensorflow.train', 'tensorflow.keras.regularizers' # } __all__ = [ "_inspect_getargspec", "get_args", "get_default_arg_values", "check_or_get_class", "get_class", "check_or_get_instance", "get_instance", "check_or_get_instance_with_redundant_kwargs", "get_instance_with_redundant_kwargs", "get_function", "call_function_with_redundant_kwargs", "get_instance_kwargs", "dict_patch", "dict_lookup", "dict_fetch", "dict_pop", "flatten_dict", "strip_token", "strip_eos", "strip_bos", "strip_special_tokens", "str_join", "map_ids_to_strs", "default_str", "uniquify_str", "ceildiv", "straight_through", "truncate_seq_pair", ] # TODO(zhiting): complete this def _expand_name(name): """Replaces common shorthands with respective full names. "tf.xxx" --> "tensorflow.xxx" "tx.xxx" --> "texar.tf.xxx" """ return name def _inspect_getargspec(fn): """Returns `inspect.getargspec(fn)` for Py2 and `inspect.getfullargspec(fn)` for Py3 """ try: return inspect.getfullargspec(fn) except AttributeError: try: return inspect.getargspec(fn) except TypeError: return inspect.getargspec(fn.__call__) def get_args(fn): """Gets the arguments of a function. Args: fn (callable): The function to inspect. Returns: list: A list of argument names (str) of the function. """ argspec = _inspect_getargspec(fn) args = argspec.args # Empty args can be because `fn` is decorated. Use `funcsigs.signature` # to re-do the inspect if len(args) == 0: args = funcsigs.signature(fn).parameters.keys() args = list(args) return args def get_default_arg_values(fn): """Gets the arguments and respective default values of a function. Only arguments with default values are included in the output dictionary. Args: fn (callable): The function to inspect. Returns: dict: A dictionary that maps argument names (str) to their default values. The dictionary is empty if no arguments have default values. """ argspec = _inspect_getargspec(fn) if argspec.defaults is None: return {} num_defaults = len(argspec.defaults) return dict(zip(argspec.args[-num_defaults:], argspec.defaults)) def check_or_get_class(class_or_name, module_path=None, superclass=None): """Returns the class and checks if the class inherits :attr:`superclass`. Args: class_or_name: Name or full path to the class, or the class itself. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if :attr:`class_or_name` is a string and the class cannot be located solely based on :attr:`class_or_name`. The first module in the list that contains the class is used. superclass (optional): A (list of) classes that the target class must inherit. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. TypeError: If class does not inherits :attr:`superclass`. """ class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_path) if superclass is not None: if not issubclass(class_, superclass): raise TypeError( "A subclass of {} is expected. Got: {}".format( superclass, class_)) return class_ def get_class(class_name, module_paths=None): """Returns the class based on class name. Args: class_name (str): Name or full path to the class. module_paths (list): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on `class_name`. The first module in the list that contains the class is used. Returns: The target class. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ class_ = locate(class_name) if (class_ is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: # Special treatment for unimportable modules by directly # accessing the class class_ = locate('.'.join([module_path, class_name])) if class_ is not None: break # else: # module = importlib.import_module(module_path) # if class_name in dir(module): # class_ = getattr(module, class_name) # break if class_ is None: raise ValueError( "Class not found in {}: {}".format(module_paths, class_name)) return class_ def check_or_get_instance(ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or full path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. Ignored if `ins_or_class_or_name` is a class instance. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) class of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance(class_or_name, kwargs, module_paths=None): """Creates a class instance. Args: class_or_name: A class, or its name or full path to a class to instantiate. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_or_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. """ # Locate the class class_ = class_or_name if is_str(class_): class_ = get_class(class_, module_paths) # Check validity of arguments class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key in kwargs.keys(): if key not in class_args: raise ValueError( "Invalid argument for class %s.%s: %s, valid args: %s" % (class_.__module__, class_.__name__, key, list(class_args))) return class_(**kwargs) def check_or_get_instance_with_redundant_kwargs( ins_or_class_or_name, kwargs, module_paths=None, classtype=None): """Returns a class instance and checks types. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: ins_or_class_or_name: Can be of 3 types: - A class to instantiate. - A string of the name or module path to a class to \ instantiate. - The class instance to check types. kwargs (dict): Keyword arguments for the class constructor. module_paths (list, optional): Paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. classtype (optional): A (list of) classes of which the instance must be an instantiation. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. ValueError: If :attr:`kwargs` contains arguments that are invalid for the class construction. TypeError: If the instance is not an instantiation of :attr:`classtype`. """ ret = ins_or_class_or_name if is_str(ret) or isinstance(ret, type): ret = get_instance_with_redundant_kwargs(ret, kwargs, module_paths) if classtype is not None: if not isinstance(ret, classtype): raise TypeError( "An instance of {} is expected. Got: {}".format(classtype, ret)) return ret def get_instance_with_redundant_kwargs( class_name, kwargs, module_paths=None): """Creates a class instance. Only those keyword arguments in :attr:`kwargs` that are included in the class construction method are used. Args: class_name (str): A class or its name or module path. kwargs (dict): A dictionary of arguments for the class constructor. It may include invalid arguments which will be ignored. module_paths (list of str): A list of paths to candidate modules to search for the class. This is used if the class cannot be located solely based on :attr:`class_name`. The first module in the list that contains the class is used. Returns: A class instance. Raises: ValueError: If class is not found based on :attr:`class_name` and :attr:`module_paths`. """ # Locate the class class_ = get_class(class_name, module_paths) # Select valid arguments selected_kwargs = {} class_args = set(get_args(class_.__init__)) if kwargs is None: kwargs = {} for key, value in kwargs.items(): if key in class_args: selected_kwargs[key] = value return class_(**selected_kwargs) def get_function(fn_or_name, module_paths=None): """Returns the function of specified name and module. Args: fn_or_name (str or callable): Name or full path to a function, or the function itself. module_paths (list, optional): A list of paths to candidate modules to search for the function. This is used only when the function cannot be located solely based on :attr:`fn_or_name`. The first module in the list that contains the function is used. Returns: A function. """ if is_callable(fn_or_name): return fn_or_name fn = locate(fn_or_name) if (fn is None) and (module_paths is not None): for module_path in module_paths: # if module_path in _unimportable_modules: fn = locate('.'.join([module_path, fn_or_name])) if fn is not None: break # module = importlib.import_module(module_path) # if fn_name in dir(module): # fn = getattr(module, fn_name) # break if fn is None: raise ValueError( "Method not found in {}: {}".format(module_paths, fn_or_name)) return fn def call_function_with_redundant_kwargs(fn, kwargs): """Calls a function and returns the results. Only those keyword arguments in :attr:`kwargs` that are included in the function's argument list are used to call the function. Args: fn (function): A callable. If :attr:`fn` is not a python function, :attr:`fn.__call__` is called. kwargs (dict): A `dict` of arguments for the callable. It may include invalid arguments which will be ignored. Returns: The returned results by calling :attr:`fn`. """ try: fn_args = set(get_args(fn)) except TypeError: fn_args = set(get_args(fn.__cal__)) if kwargs is None: kwargs = {} # Select valid arguments selected_kwargs = {} for key, value in kwargs.items(): if key in fn_args: selected_kwargs[key] = value return fn(**selected_kwargs) def get_instance_kwargs(kwargs, hparams): """Makes a dict of keyword arguments with the following structure: `kwargs_ = {'hparams': dict(hparams), **kwargs}`. This is typically used for constructing a module which takes a set of arguments as well as a argument named `hparams`. Args: kwargs (dict): A dict of keyword arguments. Can be `None`. hparams: A dict or an instance of :class:`~texar.tf.HParams` Can be `None`. Returns: A `dict` that contains the keyword arguments in :attr:`kwargs`, and an additional keyword argument named `hparams`. """ if hparams is None or isinstance(hparams, dict): kwargs_ = {'hparams': hparams} elif isinstance(hparams, HParams): kwargs_ = {'hparams': hparams.todict()} else: raise ValueError( '`hparams` must be a dict, an instance of HParams, or a `None`.') kwargs_.update(kwargs or {}) return kwargs_ def dict_patch(tgt_dict, src_dict): """Recursively patch :attr:`tgt_dict` by adding items from :attr:`src_dict` that do not exist in :attr:`tgt_dict`. If respective items in :attr:`src_dict` and :attr:`tgt_dict` are both `dict`, the :attr:`tgt_dict` item is patched recursively. Args: tgt_dict (dict): Target dictionary to patch. src_dict (dict): Source dictionary. Return: dict: The new :attr:`tgt_dict` that is patched. """ if src_dict is None: return tgt_dict for key, value in src_dict.items(): if key not in tgt_dict: tgt_dict[key] = copy.deepcopy(value) elif isinstance(value, dict) and isinstance(tgt_dict[key], dict): tgt_dict[key] = dict_patch(tgt_dict[key], value) return tgt_dict def dict_lookup(dict_, keys, default=None): """Looks up :attr:`keys` in the dict, returns the corresponding values. The :attr:`default` is used for keys not present in the dict. Args: dict_ (dict): A dictionary for lookup. keys: A numpy array or a (possibly nested) list of keys. default (optional): Value to be returned when a key is not in :attr:`dict_`. Error is raised if :attr:`default` is not given and key is not in the dict. Returns: A numpy array of values with the same structure as :attr:`keys`. Raises: TypeError: If key is not in :attr:`dict_` and :attr:`default` is `None`. """ return np.vectorize(lambda x: dict_.get(x, default))(keys) def dict_fetch(src_dict, tgt_dict_or_keys): """Fetches a sub dict of :attr:`src_dict` with the keys in :attr:`tgt_dict_or_keys`. Args: src_dict: A dict or instance of :class:`~texar.tf.HParams`. The source dict to fetch values from. tgt_dict_or_keys: A dict, instance of :class:`~texar.tf.HParams`, or a list (or a dict_keys) of keys to be included in the output dict. Returns: A new dict that is a subdict of :attr:`src_dict`. """ if src_dict is None: return src_dict if isinstance(tgt_dict_or_keys, HParams): tgt_dict_or_keys = tgt_dict_or_keys.todict() if isinstance(tgt_dict_or_keys, dict): tgt_dict_or_keys = tgt_dict_or_keys.keys() keys = list(tgt_dict_or_keys) if isinstance(src_dict, HParams): src_dict = src_dict.todict() return {k: src_dict[k] for k in keys if k in src_dict} def dict_pop(dict_, pop_keys, default=None): """Removes keys from a dict and returns their values. Args: dict_ (dict): A dictionary from which items are removed. pop_keys: A key or a list of keys to remove and return respective values or :attr:`default`. default (optional): Value to be returned when a key is not in :attr:`dict_`. The default value is `None`. Returns: A `dict` of the items removed from :attr:`dict_`. """ if not isinstance(pop_keys, (list, tuple)): pop_keys = [pop_keys] ret_dict = {key: dict_.pop(key, default) for key in pop_keys} return ret_dict def flatten_dict(dict_, parent_key="", sep="."): """Flattens a nested dictionary. Namedtuples within the dictionary are converted to dicts. Adapted from: https://github.com/google/seq2seq/blob/master/seq2seq/models/model_base.py Args: dict_ (dict): The dictionary to flatten. parent_key (str): A prefix to prepend to each key. sep (str): Separator that intervenes between parent and child keys. E.g., if `sep` == '.', then `{ "a": { "b": 3 } }` is converted into `{ "a.b": 3 }`. Returns: A new flattened `dict`. """ items = [] for key, value in dict_.items(): key_ = parent_key + sep + key if parent_key else key if isinstance(value, collections.MutableMapping): items.extend(flatten_dict(value, key_, sep=sep).items()) elif isinstance(value, tuple) and hasattr(value, "_asdict"): dict_items = collections.OrderedDict(zip(value._fields, value)) items.extend(flatten_dict(dict_items, key_, sep=sep).items()) else: items.append((key_, value)) return dict(items) def default_str(str_, default_str): """Returns :attr:`str_` if it is not `None` or empty, otherwise returns :attr:`default_str`. Args: str_: A string. default_str: A string. Returns: Either :attr:`str_` or :attr:`default_str`. """ if str_ is not None and str_ != "": return str_ else: return default_str def uniquify_str(str_, str_set): """Uniquifies :attr:`str_` if :attr:`str_` is included in :attr:`str_set`. This is done by appending a number to :attr:`str_`. Returns :attr:`str_` directly if it is not included in :attr:`str_set`. Args: str_ (string): A string to uniquify. str_set (set, dict, or list): A collection of strings. The returned string is guaranteed to be different from the elements in the collection. Returns: The uniquified string. Returns :attr:`str_` directly if it is already unique. Example: .. code-block:: python print(uniquify_str('name', ['name', 'name_1'])) # 'name_2' """ if str_ not in str_set: return str_ else: for i in range(1, len(str_set) + 1): unique_str = str_ + "_%d" % i if unique_str not in str_set: return unique_str raise ValueError("Fails to uniquify string: " + str_) def _recur_split(s, dtype_as): """Splits (possibly nested list of) strings recursively. """ if is_str(s): return _maybe_list_to_array(s.split(), dtype_as) else: s_ = [_recur_split(si, dtype_as) for si in s] return _maybe_list_to_array(s_, s) def strip_token(str_, token, is_token_list=False, compat=True): """Returns a copy of strings with leading and trailing tokens removed. Note that besides :attr:`token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. token (str): The token to strip, e.g., the '<PAD>' token defined in :class:`~texar.tf.data.SpecialTokens`.PAD is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: The stripped strings of the same structure/shape as :attr:`str_`. Example: .. code-block:: python str_ = '<PAD> a sentence <PAD> <PAD> ' str_stripped = strip_token(str_, '<PAD>') # str_stripped == 'a sentence' str_ = ['<PAD>', 'a', 'sentence', '<PAD>', '<PAD>', '', ''] str_stripped = strip_token(str_, '<PAD>', is_token_list=True) # str_stripped == 'a sentence' """ def _recur_strip(s): if is_str(s): if token == "": return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).\ replace(' ' + token, '').replace(token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str def strip_eos(str_, eos_token='<EOS>', is_token_list=False, compat=True): """Remove the EOS token and all subsequent tokens. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. eos_token (str): The EOS token. Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): s_tokens = s.split() if eos_token in s_tokens: return ' '.join(s_tokens[:s_tokens.index(eos_token)]) else: return s else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_eos_ = strip_eos def strip_bos(str_, bos_token='<BOS>', is_token_list=False, compat=True): """Remove all leading BOS tokens. Note that besides :attr:`bos_token`, all leading and trailing whitespace characters are also removed. If :attr:`is_token_list` is False, then the function assumes tokens in :attr:`str_` are separated with whitespace character. Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. bos_token (str): The BOS token. Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same structure/shape as :attr:`str_`. """ def _recur_strip(s): if is_str(s): if bos_token == '': return ' '.join(s.strip().split()) else: return ' '.join(s.strip().split()).replace(bos_token + ' ', '') else: s_ = [_recur_strip(si) for si in s] return _maybe_list_to_array(s_, s) s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) strp_str = _recur_strip(s) if is_token_list: strp_str = _recur_split(strp_str, str_) return strp_str _strip_bos_ = strip_bos def strip_special_tokens(str_, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', is_token_list=False, compat=True): """Removes special tokens in strings, including: - Removes EOS and all subsequent tokens - Removes leading and and trailing PAD tokens - Removes leading BOS tokens Note that besides the special tokens, all leading and trailing whitespace characters are also removed. This is a joint function of :func:`strip_eos`, :func:`strip_pad`, and :func:`strip_bos` Args: str_: A `str`, or an `n`-D numpy array or (possibly nested) list of `str`. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. is_token_list (bool): Whether each sentence in :attr:`str_` is a list of tokens. If False, each sentence in :attr:`str_` is assumed to contain tokens separated with space character. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: Strings of the same shape of :attr:`str_` with special tokens stripped. """ s = str_ if compat: s = compat_as_text(s) if is_token_list: s = str_join(s, compat=False) if strip_eos is not None and strip_eos is not False: s = _strip_eos_(s, strip_eos, is_token_list=False, compat=False) if strip_pad is not None and strip_pad is not False: s = strip_token(s, strip_pad, is_token_list=False, compat=False) if strip_bos is not None and strip_bos is not False: s = _strip_bos_(s, strip_bos, is_token_list=False, compat=False) if is_token_list: s = _recur_split(s, str_) return s def str_join(tokens, sep=' ', compat=True): """Concats :attr:`tokens` along the last dimension with intervening occurrences of :attr:`sep`. Args: tokens: An `n`-D numpy array or (possibly nested) list of `str`. sep (str): The string intervening between the tokens. compat (bool): Whether to convert tokens into `unicode` (Python 2) or `str` (Python 3). Returns: An `(n-1)`-D numpy array (or list) of `str`. """ def _recur_join(s): if len(s) == 0: return '' elif is_str(s[0]): return sep.join(s) else: s_ = [_recur_join(si) for si in s] return _maybe_list_to_array(s_, s) if compat: tokens = compat_as_text(tokens) str_ = _recur_join(tokens) return str_ def map_ids_to_strs(ids, vocab, join=True, strip_pad='<PAD>', strip_bos='<BOS>', strip_eos='<EOS>', compat=True): """Transforms `int` indexes to strings by mapping ids to tokens, concatenating tokens into sentences, and stripping special tokens, etc. Args: ids: An n-D numpy array or (possibly nested) list of `int` indexes. vocab: An instance of :class:`~texar.tf.data.Vocab`. join (bool): Whether to concat along the last dimension of the the tokens into a string separated with a space character. strip_pad (str): The PAD token to strip from the strings (i.e., remove the leading and trailing PAD tokens of the strings). Default is '<PAD>' as defined in :class:`~texar.tf.data.SpecialTokens`.PAD. Set to `None` or `False` to disable the stripping. strip_bos (str): The BOS token to strip from the strings (i.e., remove the leading BOS tokens of the strings). Default is '<BOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.BOS. Set to `None` or `False` to disable the stripping. strip_eos (str): The EOS token to strip from the strings (i.e., remove the EOS tokens and all subsequent tokens of the strings). Default is '<EOS>' as defined in :class:`~texar.tf.data.SpecialTokens`.EOS. Set to `None` or `False` to disable the stripping. Returns: If :attr:`join` is True, returns a `(n-1)`-D numpy array (or list) of concatenated strings. If :attr:`join` is False, returns an `n`-D numpy array (or list) of str tokens. Example: .. code-block:: python text_ids = [[1, 9, 6, 2, 0, 0], [1, 28, 7, 8, 2, 0]] text = map_ids_to_strs(text_ids, data.vocab) # text == ['a sentence', 'parsed from ids'] text = map_ids_to_strs( text_ids, data.vocab, join=False, strip_pad=None, strip_bos=None, strip_eos=None) # text == [['<BOS>', 'a', 'sentence', '<EOS>', '<PAD>', '<PAD>'], # ['<BOS>', 'parsed', 'from', 'ids', '<EOS>', '<PAD>']] """ tokens = vocab.map_ids_to_tokens_py(ids) if isinstance(ids, (list, tuple)): tokens = tokens.tolist() if compat: tokens = compat_as_text(tokens) str_ = str_join(tokens, compat=False) str_ = strip_special_tokens( str_, strip_pad=strip_pad, strip_bos=strip_bos, strip_eos=strip_eos, compat=False) if join: return str_ else: return _recur_split(str_, ids) def ceildiv(a, b): """Divides with ceil. E.g., `5 / 2 = 2.5`, `ceildiv(5, 2) = 3`. Args: a (int): Dividend integer. b (int): Divisor integer. Returns: int: Ceil quotient. """ return -(-a // b) def straight_through(fw_tensor, bw_tensor): """Use a tensor in forward pass while backpropagating gradient to another. Args: fw_tensor: A tensor to be used in the forward pass. bw_tensor: A tensor to which gradient is backpropagated. Must have the same shape and type with :attr:`fw_tensor`. Returns: A tensor of the same shape and value with :attr:`fw_tensor` but will direct gradient to bw_tensor. """ return tf.stop_gradient(fw_tensor) + bw_tensor - tf.stop_gradient(bw_tensor) def truncate_seq_pair(tokens_a: Union[List[int], List[str]], tokens_b: Union[List[int], List[str]], max_length: int): r"""Truncates a sequence pair in place to the maximum length. This is a simple heuristic which will always truncate the longer sequence one token at a time. This makes more sense than truncating an equal percent of tokens from each, since if one sequence is very short then each token that's truncated likely contains more information than a longer sequence. Example: .. code-block:: python tokens_a = [1, 2, 3, 4, 5] tokens_b = [6, 7] truncate_seq_pair(tokens_a, tokens_b, 5) tokens_a # [1, 2, 3] tokens_b # [6, 7] Args: tokens_a: A list of tokens or token ids. tokens_b: A list of tokens or token ids. max_length: maximum sequence length. """ while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop()
get_schema
Information about a medication that is used to support knowledge. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). dosage: Dosage for the medication for the specific guidelines. indicationCodeableConcept: Indication for use that apply to the specific administration guidelines. indicationReference: Indication for use that apply to the specific administration guidelines. patientCharacteristics: Characteristics of the patient that are relevant to the administration guidelines (for example, height, weight, gender, etc.).
from typing import Union, List, Optional from pyspark.sql.types import StructType, StructField, StringType, ArrayType, DataType # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class MedicationKnowledge_AdministrationGuidelinesSchema: """ Information about a medication that is used to support knowledge. """ # noinspection PyDefaultArgument # MASKED: get_schema function (lines 14-267)
@staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = None, extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, use_date_for: Optional[List[str]] = None, parent_path: Optional[str] = "", ) -> Union[StructType, DataType]: """ Information about a medication that is used to support knowledge. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). dosage: Dosage for the medication for the specific guidelines. indicationCodeableConcept: Indication for use that apply to the specific administration guidelines. indicationReference: Indication for use that apply to the specific administration guidelines. patientCharacteristics: Characteristics of the patient that are relevant to the administration guidelines (for example, height, weight, gender, etc.). """ if extension_fields is None: extension_fields = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", "valueReference", "valueCodeableConcept", "valueAddress", ] from spark_fhir_schemas.r4.complex_types.extension import ExtensionSchema from spark_fhir_schemas.r4.complex_types.medicationknowledge_dosage import ( MedicationKnowledge_DosageSchema, ) from spark_fhir_schemas.r4.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.r4.complex_types.reference import ReferenceSchema from spark_fhir_schemas.r4.complex_types.medicationknowledge_patientcharacteristics import ( MedicationKnowledge_PatientCharacteristicsSchema, ) if ( max_recursion_limit and nesting_list.count("MedicationKnowledge_AdministrationGuidelines") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + [ "MedicationKnowledge_AdministrationGuidelines" ] my_parent_path = ( parent_path + ".medicationknowledge_administrationguidelines" if parent_path else "medicationknowledge_administrationguidelines" ) schema = StructType( [ # Unique id for the element within a resource (for internal references). This # may be any string value that does not contain spaces. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the element. To make the use of extensions safe and manageable, # there is a strict set of governance applied to the definition and use of # extensions. Though any implementer can define an extension, there is a set of # requirements that SHALL be met as part of the definition of the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # May be used to represent additional information that is not part of the basic # definition of the element and that modifies the understanding of the element # in which it is contained and/or the understanding of the containing element's # descendants. Usually modifier elements provide negation or qualification. To # make the use of extensions safe and manageable, there is a strict set of # governance applied to the definition and use of extensions. Though any # implementer can define an extension, there is a set of requirements that SHALL # be met as part of the definition of the extension. Applications processing a # resource are required to check for modifier extensions. # # Modifier extensions SHALL NOT change the meaning of any elements on Resource # or DomainResource (including cannot change the meaning of modifierExtension # itself). StructField( "modifierExtension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Dosage for the medication for the specific guidelines. StructField( "dosage", ArrayType( MedicationKnowledge_DosageSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Indication for use that apply to the specific administration guidelines. StructField( "indicationCodeableConcept", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indication for use that apply to the specific administration guidelines. StructField( "indicationReference", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Characteristics of the patient that are relevant to the administration # guidelines (for example, height, weight, gender, etc.). StructField( "patientCharacteristics", ArrayType( MedicationKnowledge_PatientCharacteristicsSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
14
267
from typing import Union, List, Optional from pyspark.sql.types import StructType, StructField, StringType, ArrayType, DataType # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class MedicationKnowledge_AdministrationGuidelinesSchema: """ Information about a medication that is used to support knowledge. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = None, extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, use_date_for: Optional[List[str]] = None, parent_path: Optional[str] = "", ) -> Union[StructType, DataType]: """ Information about a medication that is used to support knowledge. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). dosage: Dosage for the medication for the specific guidelines. indicationCodeableConcept: Indication for use that apply to the specific administration guidelines. indicationReference: Indication for use that apply to the specific administration guidelines. patientCharacteristics: Characteristics of the patient that are relevant to the administration guidelines (for example, height, weight, gender, etc.). """ if extension_fields is None: extension_fields = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", "valueReference", "valueCodeableConcept", "valueAddress", ] from spark_fhir_schemas.r4.complex_types.extension import ExtensionSchema from spark_fhir_schemas.r4.complex_types.medicationknowledge_dosage import ( MedicationKnowledge_DosageSchema, ) from spark_fhir_schemas.r4.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.r4.complex_types.reference import ReferenceSchema from spark_fhir_schemas.r4.complex_types.medicationknowledge_patientcharacteristics import ( MedicationKnowledge_PatientCharacteristicsSchema, ) if ( max_recursion_limit and nesting_list.count("MedicationKnowledge_AdministrationGuidelines") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + [ "MedicationKnowledge_AdministrationGuidelines" ] my_parent_path = ( parent_path + ".medicationknowledge_administrationguidelines" if parent_path else "medicationknowledge_administrationguidelines" ) schema = StructType( [ # Unique id for the element within a resource (for internal references). This # may be any string value that does not contain spaces. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the element. To make the use of extensions safe and manageable, # there is a strict set of governance applied to the definition and use of # extensions. Though any implementer can define an extension, there is a set of # requirements that SHALL be met as part of the definition of the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # May be used to represent additional information that is not part of the basic # definition of the element and that modifies the understanding of the element # in which it is contained and/or the understanding of the containing element's # descendants. Usually modifier elements provide negation or qualification. To # make the use of extensions safe and manageable, there is a strict set of # governance applied to the definition and use of extensions. Though any # implementer can define an extension, there is a set of requirements that SHALL # be met as part of the definition of the extension. Applications processing a # resource are required to check for modifier extensions. # # Modifier extensions SHALL NOT change the meaning of any elements on Resource # or DomainResource (including cannot change the meaning of modifierExtension # itself). StructField( "modifierExtension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Dosage for the medication for the specific guidelines. StructField( "dosage", ArrayType( MedicationKnowledge_DosageSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), # Indication for use that apply to the specific administration guidelines. StructField( "indicationCodeableConcept", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Indication for use that apply to the specific administration guidelines. StructField( "indicationReference", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # Characteristics of the patient that are relevant to the administration # guidelines (for example, height, weight, gender, etc.). StructField( "patientCharacteristics", ArrayType( MedicationKnowledge_PatientCharacteristicsSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
__init__
The set of arguments for constructing a FeatureGroup resource. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]] tags: An array of key-value pair to apply to this resource.
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['FeatureGroupArgs', 'FeatureGroup'] @pulumi.input_type class FeatureGroupArgs: # MASKED: __init__ function (lines 18-52) @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Input[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @event_time_feature_name.setter def event_time_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "event_time_feature_name", value) @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @feature_definitions.setter def feature_definitions(self, value: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]): pulumi.set(self, "feature_definitions", value) @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Input[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @record_identifier_feature_name.setter def record_identifier_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "record_identifier_feature_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @feature_group_name.setter def feature_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "feature_group_name", value) @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]: return pulumi.get(self, "offline_store_config") @offline_store_config.setter def offline_store_config(self, value: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]): pulumi.set(self, "offline_store_config", value) @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]: return pulumi.get(self, "online_store_config") @online_store_config.setter def online_store_config(self, value: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]): pulumi.set(self, "online_store_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]): pulumi.set(self, "tags", value) class FeatureGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]] tags: An array of key-value pair to apply to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: FeatureGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param FeatureGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FeatureGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = description if event_time_feature_name is None and not opts.urn: raise TypeError("Missing required property 'event_time_feature_name'") __props__.__dict__["event_time_feature_name"] = event_time_feature_name if feature_definitions is None and not opts.urn: raise TypeError("Missing required property 'feature_definitions'") __props__.__dict__["feature_definitions"] = feature_definitions __props__.__dict__["feature_group_name"] = feature_group_name __props__.__dict__["offline_store_config"] = offline_store_config __props__.__dict__["online_store_config"] = online_store_config if record_identifier_feature_name is None and not opts.urn: raise TypeError("Missing required property 'record_identifier_feature_name'") __props__.__dict__["record_identifier_feature_name"] = record_identifier_feature_name __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags super(FeatureGroup, __self__).__init__( 'aws-native:sagemaker:FeatureGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'FeatureGroup': """ Get an existing FeatureGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = None __props__.__dict__["event_time_feature_name"] = None __props__.__dict__["feature_definitions"] = None __props__.__dict__["feature_group_name"] = None __props__.__dict__["offline_store_config"] = None __props__.__dict__["online_store_config"] = None __props__.__dict__["record_identifier_feature_name"] = None __props__.__dict__["role_arn"] = None __props__.__dict__["tags"] = None return FeatureGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Output[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Output[Sequence['outputs.FeatureGroupFeatureDefinition']]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> pulumi.Output[str]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> pulumi.Output[Optional['outputs.OfflineStoreConfigProperties']]: return pulumi.get(self, "offline_store_config") @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> pulumi.Output[Optional['outputs.OnlineStoreConfigProperties']]: return pulumi.get(self, "online_store_config") @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Output[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[Optional[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.FeatureGroupTag']]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags")
def __init__(__self__, *, event_time_feature_name: pulumi.Input[str], feature_definitions: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]], record_identifier_feature_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']] = None, online_store_config: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]] = None): """ The set of arguments for constructing a FeatureGroup resource. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]] tags: An array of key-value pair to apply to this resource. """ pulumi.set(__self__, "event_time_feature_name", event_time_feature_name) pulumi.set(__self__, "feature_definitions", feature_definitions) pulumi.set(__self__, "record_identifier_feature_name", record_identifier_feature_name) if description is not None: pulumi.set(__self__, "description", description) if feature_group_name is not None: pulumi.set(__self__, "feature_group_name", feature_group_name) if offline_store_config is not None: pulumi.set(__self__, "offline_store_config", offline_store_config) if online_store_config is not None: pulumi.set(__self__, "online_store_config", online_store_config) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) if tags is not None: pulumi.set(__self__, "tags", tags)
18
52
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['FeatureGroupArgs', 'FeatureGroup'] @pulumi.input_type class FeatureGroupArgs: def __init__(__self__, *, event_time_feature_name: pulumi.Input[str], feature_definitions: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]], record_identifier_feature_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']] = None, online_store_config: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]] = None): """ The set of arguments for constructing a FeatureGroup resource. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]] tags: An array of key-value pair to apply to this resource. """ pulumi.set(__self__, "event_time_feature_name", event_time_feature_name) pulumi.set(__self__, "feature_definitions", feature_definitions) pulumi.set(__self__, "record_identifier_feature_name", record_identifier_feature_name) if description is not None: pulumi.set(__self__, "description", description) if feature_group_name is not None: pulumi.set(__self__, "feature_group_name", feature_group_name) if offline_store_config is not None: pulumi.set(__self__, "offline_store_config", offline_store_config) if online_store_config is not None: pulumi.set(__self__, "online_store_config", online_store_config) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Input[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @event_time_feature_name.setter def event_time_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "event_time_feature_name", value) @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @feature_definitions.setter def feature_definitions(self, value: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]): pulumi.set(self, "feature_definitions", value) @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Input[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @record_identifier_feature_name.setter def record_identifier_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "record_identifier_feature_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @feature_group_name.setter def feature_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "feature_group_name", value) @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]: return pulumi.get(self, "offline_store_config") @offline_store_config.setter def offline_store_config(self, value: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]): pulumi.set(self, "offline_store_config", value) @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]: return pulumi.get(self, "online_store_config") @online_store_config.setter def online_store_config(self, value: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]): pulumi.set(self, "online_store_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]): pulumi.set(self, "tags", value) class FeatureGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]] tags: An array of key-value pair to apply to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: FeatureGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param FeatureGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FeatureGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = description if event_time_feature_name is None and not opts.urn: raise TypeError("Missing required property 'event_time_feature_name'") __props__.__dict__["event_time_feature_name"] = event_time_feature_name if feature_definitions is None and not opts.urn: raise TypeError("Missing required property 'feature_definitions'") __props__.__dict__["feature_definitions"] = feature_definitions __props__.__dict__["feature_group_name"] = feature_group_name __props__.__dict__["offline_store_config"] = offline_store_config __props__.__dict__["online_store_config"] = online_store_config if record_identifier_feature_name is None and not opts.urn: raise TypeError("Missing required property 'record_identifier_feature_name'") __props__.__dict__["record_identifier_feature_name"] = record_identifier_feature_name __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags super(FeatureGroup, __self__).__init__( 'aws-native:sagemaker:FeatureGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'FeatureGroup': """ Get an existing FeatureGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = None __props__.__dict__["event_time_feature_name"] = None __props__.__dict__["feature_definitions"] = None __props__.__dict__["feature_group_name"] = None __props__.__dict__["offline_store_config"] = None __props__.__dict__["online_store_config"] = None __props__.__dict__["record_identifier_feature_name"] = None __props__.__dict__["role_arn"] = None __props__.__dict__["tags"] = None return FeatureGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Output[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Output[Sequence['outputs.FeatureGroupFeatureDefinition']]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> pulumi.Output[str]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> pulumi.Output[Optional['outputs.OfflineStoreConfigProperties']]: return pulumi.get(self, "offline_store_config") @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> pulumi.Output[Optional['outputs.OnlineStoreConfigProperties']]: return pulumi.get(self, "online_store_config") @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Output[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[Optional[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.FeatureGroupTag']]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags")
get
Get an existing FeatureGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource.
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['FeatureGroupArgs', 'FeatureGroup'] @pulumi.input_type class FeatureGroupArgs: def __init__(__self__, *, event_time_feature_name: pulumi.Input[str], feature_definitions: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]], record_identifier_feature_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']] = None, online_store_config: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]] = None): """ The set of arguments for constructing a FeatureGroup resource. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]] tags: An array of key-value pair to apply to this resource. """ pulumi.set(__self__, "event_time_feature_name", event_time_feature_name) pulumi.set(__self__, "feature_definitions", feature_definitions) pulumi.set(__self__, "record_identifier_feature_name", record_identifier_feature_name) if description is not None: pulumi.set(__self__, "description", description) if feature_group_name is not None: pulumi.set(__self__, "feature_group_name", feature_group_name) if offline_store_config is not None: pulumi.set(__self__, "offline_store_config", offline_store_config) if online_store_config is not None: pulumi.set(__self__, "online_store_config", online_store_config) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Input[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @event_time_feature_name.setter def event_time_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "event_time_feature_name", value) @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @feature_definitions.setter def feature_definitions(self, value: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]): pulumi.set(self, "feature_definitions", value) @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Input[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @record_identifier_feature_name.setter def record_identifier_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "record_identifier_feature_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @feature_group_name.setter def feature_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "feature_group_name", value) @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]: return pulumi.get(self, "offline_store_config") @offline_store_config.setter def offline_store_config(self, value: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]): pulumi.set(self, "offline_store_config", value) @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]: return pulumi.get(self, "online_store_config") @online_store_config.setter def online_store_config(self, value: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]): pulumi.set(self, "online_store_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]): pulumi.set(self, "tags", value) class FeatureGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]] tags: An array of key-value pair to apply to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: FeatureGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param FeatureGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FeatureGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = description if event_time_feature_name is None and not opts.urn: raise TypeError("Missing required property 'event_time_feature_name'") __props__.__dict__["event_time_feature_name"] = event_time_feature_name if feature_definitions is None and not opts.urn: raise TypeError("Missing required property 'feature_definitions'") __props__.__dict__["feature_definitions"] = feature_definitions __props__.__dict__["feature_group_name"] = feature_group_name __props__.__dict__["offline_store_config"] = offline_store_config __props__.__dict__["online_store_config"] = online_store_config if record_identifier_feature_name is None and not opts.urn: raise TypeError("Missing required property 'record_identifier_feature_name'") __props__.__dict__["record_identifier_feature_name"] = record_identifier_feature_name __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags super(FeatureGroup, __self__).__init__( 'aws-native:sagemaker:FeatureGroup', resource_name, __props__, opts) # MASKED: get function (lines 251-276) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Output[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Output[Sequence['outputs.FeatureGroupFeatureDefinition']]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> pulumi.Output[str]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> pulumi.Output[Optional['outputs.OfflineStoreConfigProperties']]: return pulumi.get(self, "offline_store_config") @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> pulumi.Output[Optional['outputs.OnlineStoreConfigProperties']]: return pulumi.get(self, "online_store_config") @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Output[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[Optional[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.FeatureGroupTag']]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags")
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'FeatureGroup': """ Get an existing FeatureGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = None __props__.__dict__["event_time_feature_name"] = None __props__.__dict__["feature_definitions"] = None __props__.__dict__["feature_group_name"] = None __props__.__dict__["offline_store_config"] = None __props__.__dict__["online_store_config"] = None __props__.__dict__["record_identifier_feature_name"] = None __props__.__dict__["role_arn"] = None __props__.__dict__["tags"] = None return FeatureGroup(resource_name, opts=opts, __props__=__props__)
251
276
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['FeatureGroupArgs', 'FeatureGroup'] @pulumi.input_type class FeatureGroupArgs: def __init__(__self__, *, event_time_feature_name: pulumi.Input[str], feature_definitions: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]], record_identifier_feature_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']] = None, online_store_config: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]] = None): """ The set of arguments for constructing a FeatureGroup resource. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]] tags: An array of key-value pair to apply to this resource. """ pulumi.set(__self__, "event_time_feature_name", event_time_feature_name) pulumi.set(__self__, "feature_definitions", feature_definitions) pulumi.set(__self__, "record_identifier_feature_name", record_identifier_feature_name) if description is not None: pulumi.set(__self__, "description", description) if feature_group_name is not None: pulumi.set(__self__, "feature_group_name", feature_group_name) if offline_store_config is not None: pulumi.set(__self__, "offline_store_config", offline_store_config) if online_store_config is not None: pulumi.set(__self__, "online_store_config", online_store_config) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Input[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @event_time_feature_name.setter def event_time_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "event_time_feature_name", value) @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @feature_definitions.setter def feature_definitions(self, value: pulumi.Input[Sequence[pulumi.Input['FeatureGroupFeatureDefinitionArgs']]]): pulumi.set(self, "feature_definitions", value) @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Input[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @record_identifier_feature_name.setter def record_identifier_feature_name(self, value: pulumi.Input[str]): pulumi.set(self, "record_identifier_feature_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @feature_group_name.setter def feature_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "feature_group_name", value) @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]: return pulumi.get(self, "offline_store_config") @offline_store_config.setter def offline_store_config(self, value: Optional[pulumi.Input['OfflineStoreConfigPropertiesArgs']]): pulumi.set(self, "offline_store_config", value) @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]: return pulumi.get(self, "online_store_config") @online_store_config.setter def online_store_config(self, value: Optional[pulumi.Input['OnlineStoreConfigPropertiesArgs']]): pulumi.set(self, "online_store_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['FeatureGroupTagArgs']]]]): pulumi.set(self, "tags", value) class FeatureGroup(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: Description about the FeatureGroup. :param pulumi.Input[str] event_time_feature_name: The Event Time Feature Name. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]] feature_definitions: An Array of Feature Definition :param pulumi.Input[str] feature_group_name: The Name of the FeatureGroup. :param pulumi.Input[str] record_identifier_feature_name: The Record Identifier Feature Name. :param pulumi.Input[str] role_arn: Role Arn :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]] tags: An array of key-value pair to apply to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: FeatureGroupArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource Type definition for AWS::SageMaker::FeatureGroup :param str resource_name: The name of the resource. :param FeatureGroupArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FeatureGroupArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, event_time_feature_name: Optional[pulumi.Input[str]] = None, feature_definitions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupFeatureDefinitionArgs']]]]] = None, feature_group_name: Optional[pulumi.Input[str]] = None, offline_store_config: Optional[pulumi.Input[pulumi.InputType['OfflineStoreConfigPropertiesArgs']]] = None, online_store_config: Optional[pulumi.Input[pulumi.InputType['OnlineStoreConfigPropertiesArgs']]] = None, record_identifier_feature_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['FeatureGroupTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = description if event_time_feature_name is None and not opts.urn: raise TypeError("Missing required property 'event_time_feature_name'") __props__.__dict__["event_time_feature_name"] = event_time_feature_name if feature_definitions is None and not opts.urn: raise TypeError("Missing required property 'feature_definitions'") __props__.__dict__["feature_definitions"] = feature_definitions __props__.__dict__["feature_group_name"] = feature_group_name __props__.__dict__["offline_store_config"] = offline_store_config __props__.__dict__["online_store_config"] = online_store_config if record_identifier_feature_name is None and not opts.urn: raise TypeError("Missing required property 'record_identifier_feature_name'") __props__.__dict__["record_identifier_feature_name"] = record_identifier_feature_name __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags super(FeatureGroup, __self__).__init__( 'aws-native:sagemaker:FeatureGroup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'FeatureGroup': """ Get an existing FeatureGroup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = FeatureGroupArgs.__new__(FeatureGroupArgs) __props__.__dict__["description"] = None __props__.__dict__["event_time_feature_name"] = None __props__.__dict__["feature_definitions"] = None __props__.__dict__["feature_group_name"] = None __props__.__dict__["offline_store_config"] = None __props__.__dict__["online_store_config"] = None __props__.__dict__["record_identifier_feature_name"] = None __props__.__dict__["role_arn"] = None __props__.__dict__["tags"] = None return FeatureGroup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description about the FeatureGroup. """ return pulumi.get(self, "description") @property @pulumi.getter(name="eventTimeFeatureName") def event_time_feature_name(self) -> pulumi.Output[str]: """ The Event Time Feature Name. """ return pulumi.get(self, "event_time_feature_name") @property @pulumi.getter(name="featureDefinitions") def feature_definitions(self) -> pulumi.Output[Sequence['outputs.FeatureGroupFeatureDefinition']]: """ An Array of Feature Definition """ return pulumi.get(self, "feature_definitions") @property @pulumi.getter(name="featureGroupName") def feature_group_name(self) -> pulumi.Output[str]: """ The Name of the FeatureGroup. """ return pulumi.get(self, "feature_group_name") @property @pulumi.getter(name="offlineStoreConfig") def offline_store_config(self) -> pulumi.Output[Optional['outputs.OfflineStoreConfigProperties']]: return pulumi.get(self, "offline_store_config") @property @pulumi.getter(name="onlineStoreConfig") def online_store_config(self) -> pulumi.Output[Optional['outputs.OnlineStoreConfigProperties']]: return pulumi.get(self, "online_store_config") @property @pulumi.getter(name="recordIdentifierFeatureName") def record_identifier_feature_name(self) -> pulumi.Output[str]: """ The Record Identifier Feature Name. """ return pulumi.get(self, "record_identifier_feature_name") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[Optional[str]]: """ Role Arn """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.FeatureGroupTag']]]: """ An array of key-value pair to apply to this resource. """ return pulumi.get(self, "tags")
_parse_dsn
Method parses dsn Args: dsn (str): dsn Returns: bool: True Raises: exception: Exception
# -*- coding: utf-8 -*- """DBO MSSQL driver .. module:: lib.database.dbo.drivers.mssql.driver :platform: Unix :synopsis: DBO MSSQL driver .. moduleauthor:: Petr Rašek <[email protected]> """ try: import pymssql except ImportError: raise NotImplementedError('MSSQL client is not supported for PyPy') from hydratk.lib.database.dbo import dbodriver class DBODriver(dbodriver.DBODriver): """Class DBODriver """ _host = None _port = 1433 _dbname = None _driver_options = { 'timeout': 5.0, 'detect_types': 0, # available “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE” 'isolation_level': None, 'check_same_thread': None, 'factory': 'Connection', 'cached_statements': 100 } # MASKED: _parse_dsn function (lines 36-66) def _apply_driver_options(self, driver_options): """Method sets driver options Args: driver_option (dict): driver options Returns: void """ for optname, optval in driver_options.items(): if optname in self._driver_options: self._driver_options[optname] = optval def connect(self): """Method connects to database Args: none Returns: void """ self._dbcon = pymssql.connect( server=self._host, port=self._port, database=self._dbname, user=self._username, password=self._password) self.result_as_dict(self._result_as_dict) def close(self): """Method disconnects from database Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.close() else: raise dbodriver.DBODriverException('Not connected') def commit(self): """Method commits transaction Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.commit() else: raise dbodriver.DBODriverException('Not connected') def error_code(self): pass def error_info(self): pass def qexec(self): pass def get_attribute(self): pass def in_transaction(self): pass def last_insert_id(self): pass def prepare(self): pass def query(self): pass def execute(self, sql, *parameters): """Method executes query Args: sql (str): SQL query parameters (args): query parameters Returns: obj: cursor """ self._cursor.execute(sql, tuple(parameters)) return self._cursor def quote(self): pass def rollback(self): """Method rollbacks transaction Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.rollback() else: raise dbodriver.DBODriverException('Not connected') def set_attribute(self): pass def __getitem__(self, name): """Method gets item Args: name (str): item name Returns: obj: item value """ if hasattr(pymssql, name): return getattr(pymssql, name) def __getattr__(self, name): """Method gets attribute Args: name (str): attribute name Returns: obj: attribute value """ if type(self._dbcon).__name__.lower() == 'connection': if hasattr(self._dbcon, name): return getattr(self._dbcon, name) if hasattr(pymssql, name): return getattr(pymssql, name) def table_exists(self, table_name): """Method checks if table exists Args: table_name (str): table Returns: bool: result """ if table_name is not None and table_name != '': query = "SELECT count(*) found FROM information_schema.tables WHERE table_catalog=%s AND table_type='BASE TABLE' and table_name=%s" self._cursor.execute(query, (self._dbname, table_name)) recs = self._cursor.fetchall() result = True if (recs[0]['found'] == 1) else False return result def database_exists(self): pass def remove_database(self): pass def erase_database(self): pass def result_as_dict(self, state): """Method enables query result in dictionary form Args: state (bool): enable dictionary Returns: void Raises: error: TypeError """ if state in (True, False): self._result_as_dict = state if state == True: self._cursor = self._dbcon.cursor(as_dict=True) else: self._cursor = self._dbcon.cursor() else: raise TypeError('Boolean value expected')
def _parse_dsn(self, dsn): """Method parses dsn Args: dsn (str): dsn Returns: bool: True Raises: exception: Exception """ dsn_opt = dsn.split(':')[1] dsn_opt_tokens = dsn_opt.split(';') for dsn_opt_token in dsn_opt_tokens: # print(dsn_opt_token) opt = dsn_opt_token.split('=') if opt[0] == 'host': self._host = opt[1] if opt[0] == 'port': self._port = int(opt[1]) if opt[0] == 'database': self._dbname = opt[1] if opt[0] == 'user': self._username = opt[1] if opt[0] == 'password': self._password = opt[1] return True
36
66
# -*- coding: utf-8 -*- """DBO MSSQL driver .. module:: lib.database.dbo.drivers.mssql.driver :platform: Unix :synopsis: DBO MSSQL driver .. moduleauthor:: Petr Rašek <[email protected]> """ try: import pymssql except ImportError: raise NotImplementedError('MSSQL client is not supported for PyPy') from hydratk.lib.database.dbo import dbodriver class DBODriver(dbodriver.DBODriver): """Class DBODriver """ _host = None _port = 1433 _dbname = None _driver_options = { 'timeout': 5.0, 'detect_types': 0, # available “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE” 'isolation_level': None, 'check_same_thread': None, 'factory': 'Connection', 'cached_statements': 100 } def _parse_dsn(self, dsn): """Method parses dsn Args: dsn (str): dsn Returns: bool: True Raises: exception: Exception """ dsn_opt = dsn.split(':')[1] dsn_opt_tokens = dsn_opt.split(';') for dsn_opt_token in dsn_opt_tokens: # print(dsn_opt_token) opt = dsn_opt_token.split('=') if opt[0] == 'host': self._host = opt[1] if opt[0] == 'port': self._port = int(opt[1]) if opt[0] == 'database': self._dbname = opt[1] if opt[0] == 'user': self._username = opt[1] if opt[0] == 'password': self._password = opt[1] return True def _apply_driver_options(self, driver_options): """Method sets driver options Args: driver_option (dict): driver options Returns: void """ for optname, optval in driver_options.items(): if optname in self._driver_options: self._driver_options[optname] = optval def connect(self): """Method connects to database Args: none Returns: void """ self._dbcon = pymssql.connect( server=self._host, port=self._port, database=self._dbname, user=self._username, password=self._password) self.result_as_dict(self._result_as_dict) def close(self): """Method disconnects from database Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.close() else: raise dbodriver.DBODriverException('Not connected') def commit(self): """Method commits transaction Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.commit() else: raise dbodriver.DBODriverException('Not connected') def error_code(self): pass def error_info(self): pass def qexec(self): pass def get_attribute(self): pass def in_transaction(self): pass def last_insert_id(self): pass def prepare(self): pass def query(self): pass def execute(self, sql, *parameters): """Method executes query Args: sql (str): SQL query parameters (args): query parameters Returns: obj: cursor """ self._cursor.execute(sql, tuple(parameters)) return self._cursor def quote(self): pass def rollback(self): """Method rollbacks transaction Args: none Returns: void Raises: exception: DBODriverException """ if type(self._dbcon).__name__.lower() == 'connection': self._dbcon.rollback() else: raise dbodriver.DBODriverException('Not connected') def set_attribute(self): pass def __getitem__(self, name): """Method gets item Args: name (str): item name Returns: obj: item value """ if hasattr(pymssql, name): return getattr(pymssql, name) def __getattr__(self, name): """Method gets attribute Args: name (str): attribute name Returns: obj: attribute value """ if type(self._dbcon).__name__.lower() == 'connection': if hasattr(self._dbcon, name): return getattr(self._dbcon, name) if hasattr(pymssql, name): return getattr(pymssql, name) def table_exists(self, table_name): """Method checks if table exists Args: table_name (str): table Returns: bool: result """ if table_name is not None and table_name != '': query = "SELECT count(*) found FROM information_schema.tables WHERE table_catalog=%s AND table_type='BASE TABLE' and table_name=%s" self._cursor.execute(query, (self._dbname, table_name)) recs = self._cursor.fetchall() result = True if (recs[0]['found'] == 1) else False return result def database_exists(self): pass def remove_database(self): pass def erase_database(self): pass def result_as_dict(self, state): """Method enables query result in dictionary form Args: state (bool): enable dictionary Returns: void Raises: error: TypeError """ if state in (True, False): self._result_as_dict = state if state == True: self._cursor = self._dbcon.cursor(as_dict=True) else: self._cursor = self._dbcon.cursor() else: raise TypeError('Boolean value expected')
calc_is_correct
gt_bboxes: (N, 4) np.array in xywh format pred_bboxes: (N, 5) np.array in conf+xywh format
import sys import cv2 import os from ast import literal_eval from pathlib import Path import shutil import logging import random import pickle import yaml import subprocess from PIL import Image from glob import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import animation, rc plt.rcParams['figure.figsize'] = 30, 30 np.set_printoptions(precision=3, suppress=True) rc('animation', html='jshtml') import torch from augmentations import get_albu_transforms IMAGE_DIR = '~/Kaggle/data/tensorflow-great-barrier-reef/train_images' def load_image(video_id, video_frame, image_dir): img_path = f'{image_dir}/video_{video_id}/{video_frame}.jpg' assert os.path.exists(img_path), f'{img_path} does not exist.' img = cv2.imread(img_path) return img def decode_annotations(annotaitons_str): """decode annotations in string to list of dict""" return literal_eval(annotaitons_str) def load_image_with_annotations(video_id, video_frame, image_dir, annotaitons_str): img = load_image(video_id, video_frame, image_dir) annotations = decode_annotations(annotaitons_str) if len(annotations) > 0: for ann in annotations: cv2.rectangle(img, (ann['x'], ann['y']), (ann['x'] + ann['width'], ann['y'] + ann['height']), (255, 0, 0), thickness=2,) return img def draw_predictions(img, pred_bboxes): img = img.copy() if len(pred_bboxes) > 0: for bbox in pred_bboxes: conf = bbox[0] x, y, w, h = bbox[1:].round().astype(int) cv2.rectangle(img, (x, y),(x+w, y+h),(0, 255, 255), thickness=2,) cv2.putText(img, f"{conf:.2}",(x, max(0, y-5)), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0, 0, 255), thickness=1, ) return img def plot_img(df, idx, image_dir, pred_bboxes=None): row = df.iloc[idx] video_id = row.video_id video_frame = row.video_frame annotations_str = row.annotations img = load_image_with_annotations(video_id, video_frame, image_dir, annotations_str) if pred_bboxes and len(pred_bboxes) > 0: pred_bboxes = pred_bboxes[pred_bboxes[:,0].argsort()[::-1]] # sort by conf img = draw_predictions(img, pred_bboxes) plt.imshow(img[:, :, ::-1]) def calc_iou(bboxes1, bboxes2, bbox_mode='xywh'): assert len(bboxes1.shape) == 2 and bboxes1.shape[1] == 4 assert len(bboxes2.shape) == 2 and bboxes2.shape[1] == 4 bboxes1 = bboxes1.copy() bboxes2 = bboxes2.copy() if bbox_mode == 'xywh': bboxes1[:, 2:] += bboxes1[:, :2] bboxes2[:, 2:] += bboxes2[:, :2] x11, y11, x12, y12 = np.split(bboxes1, 4, axis=1) x21, y21, x22, y22 = np.split(bboxes2, 4, axis=1) xA = np.maximum(x11, np.transpose(x21)) yA = np.maximum(y11, np.transpose(y21)) xB = np.minimum(x12, np.transpose(x22)) yB = np.minimum(y12, np.transpose(y22)) interArea = np.maximum((xB - xA + 1e-9), 0) * np.maximum((yB - yA + 1e-9), 0) boxAArea = (x12 - x11 + 1e-9) * (y12 - y11 + 1e-9) boxBArea = (x22 - x21 + 1e-9) * (y22 - y21 + 1e-9) iou = interArea / (boxAArea + np.transpose(boxBArea) - interArea) return iou def f_beta(tp, fp, fn, beta=2): if tp == 0: return 0 return (1+beta**2)*tp / ((1+beta**2)*tp + beta**2*fn+fp) def calc_is_correct_at_iou_th(gt_bboxes, pred_bboxes, iou_th, verbose=False): gt_bboxes = gt_bboxes.copy() pred_bboxes = pred_bboxes.copy() tp = 0 fp = 0 for k, pred_bbox in enumerate(pred_bboxes): # fixed in ver.7 if len(gt_bboxes) == 0: fp += len(pred_bboxes) - k # fix in ver.7 break ious = calc_iou(gt_bboxes, pred_bbox[None, 1:]) max_iou = ious.max() if max_iou >= iou_th: tp += 1 gt_bboxes = np.delete(gt_bboxes, ious.argmax(), axis=0) else: fp += 1 fn = len(gt_bboxes) return tp, fp, fn # MASKED: calc_is_correct function (lines 125-149) def calc_f2_score(gt_bboxes_list, pred_bboxes_list, verbose=False): """ gt_bboxes_list: list of (N, 4) np.array in xywh format pred_bboxes_list: list of (N, 5) np.array in conf+xywh format """ #f2s = [] f2_dict = {'f2':0, "P":0, "R": 0} all_tps = [list([0] * 11) for _ in range(len(gt_bboxes_list))] all_fps = [list([0] * 11) for _ in range(len(gt_bboxes_list))] all_fns = [list([0] * 11) for _ in range(len(gt_bboxes_list))] for k, iou_th in enumerate(np.arange(0.3, 0.85, 0.05)): tps, fps, fns = 0, 0, 0 for i, (gt_bboxes, pred_bboxes) in enumerate(zip(gt_bboxes_list, pred_bboxes_list)): tp, fp, fn = calc_is_correct(gt_bboxes, pred_bboxes, iou_th) tps += tp fps += fp fns += fn all_tps[i][k] = tp all_fps[i][k] = fp all_fns[i][k] = fn if verbose: num_gt = len(gt_bboxes) num_pred = len(pred_bboxes) print(f'num_gt:{num_gt:<3} num_pred:{num_pred:<3} tp:{tp:<3} fp:{fp:<3} fn:{fn:<3}') f2 = f_beta(tps, fps, fns, beta=2) precision = f_beta(tps, fps, fns, beta=0) recall = f_beta(tps, fps, fns, beta=100) f2_dict["f2_" + str(round(iou_th,3))] = f2 f2_dict["P_" + str(round(iou_th,3))] = precision f2_dict["R_" + str(round(iou_th,3))] = recall f2_dict['f2'] += f2 / 11 f2_dict['P'] += precision / 11 f2_dict['R'] += recall / 11 f2_dict["tps"] = all_tps f2_dict["fps"] = all_fps f2_dict["fns"] = all_fns return f2_dict def print_f2_dict(d): print("Overall f2: {:.3f}, precision {:.3f}, recall {:.3f}".format(d['f2'], d['precision'], d['recall'])) for k, iou_th in enumerate(np.arange(0.3, 0.85, 0.05)): print(f"IOU {iou_th:.2f}:", end=" ") print("f2: {:.3f}, precision {:.3f}, recall {:.3f}".format(d["f2_" + str(round(iou_th,3))], d["precision_" + str(round(iou_th,3))], d["recall_" + str(round(iou_th,3))])) def get_path(row, params, infer=False): row['old_image_path'] = params['root_dir'] / f'train_images/video_{row.video_id}/{row.video_frame}.jpg' if infer: row['image_path'] = row["old_image_path"] else: row['image_path'] = params['image_dir'] / f'video_{row.video_id}_{row.video_frame}.jpg' row['label_path'] = params['label_dir'] / f'video_{row.video_id}_{row.video_frame}.txt' return row def make_copy(path, params): # TODO: fix split issue data = str(path).split('/') filename = data[-1] video_id = data[-2] new_path = params["image_dir"] / f'{video_id}_{filename}' shutil.copy(path, new_path) return # https://www.kaggle.com/awsaf49/great-barrier-reef-yolov5-train def voc2yolo(image_height, image_width, bboxes): """ voc => [x1, y1, x2, y1] yolo => [xmid, ymid, w, h] (normalized) """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int bboxes[..., [0, 2]] = bboxes[..., [0, 2]]/ image_width bboxes[..., [1, 3]] = bboxes[..., [1, 3]]/ image_height w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] bboxes[..., 0] = bboxes[..., 0] + w/2 bboxes[..., 1] = bboxes[..., 1] + h/2 bboxes[..., 2] = w bboxes[..., 3] = h return bboxes def yolo2voc(image_height, image_width, bboxes): """ yolo => [xmid, ymid, w, h] (normalized) voc => [x1, y1, x2, y1] """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int bboxes[..., [0, 2]] = bboxes[..., [0, 2]]* image_width bboxes[..., [1, 3]] = bboxes[..., [1, 3]]* image_height bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2 bboxes[..., [2, 3]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]] return bboxes def coco2yolo(image_height, image_width, bboxes): """ coco => [xmin, ymin, w, h] yolo => [xmid, ymid, w, h] (normalized) """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int # normolizinig bboxes[..., [0, 2]]= bboxes[..., [0, 2]]/ image_width bboxes[..., [1, 3]]= bboxes[..., [1, 3]]/ image_height # converstion (xmin, ymin) => (xmid, ymid) bboxes[..., [0, 1]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]]/2 return bboxes def yolo2coco(image_height, image_width, bboxes): """ yolo => [xmid, ymid, w, h] (normalized) coco => [xmin, ymin, w, h] """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int # denormalizing bboxes[..., [0, 2]]= bboxes[..., [0, 2]]* image_width bboxes[..., [1, 3]]= bboxes[..., [1, 3]]* image_height # converstion (xmid, ymid) => (xmin, ymin) bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2 return bboxes def voc2coco(bboxes, image_height=720, image_width=1280): bboxes = voc2yolo(image_height, image_width, bboxes) bboxes = yolo2coco(image_height, image_width, bboxes) return bboxes def load_image(image_path): return cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def draw_bboxes(img, bboxes, classes, colors = None, show_classes = None, bbox_format = 'yolo', class_name = False, line_thickness = 1): image = img.copy() show_classes = classes if show_classes is None else show_classes colors = (0, 255 ,0) if colors is None else colors if bbox_format == 'yolo': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] color = colors[idx] if cls in show_classes: x1 = round(float(bbox[0])*image.shape[1]) y1 = round(float(bbox[1])*image.shape[0]) w = round(float(bbox[2])*image.shape[1]/2) #w/2 h = round(float(bbox[3])*image.shape[0]/2) voc_bbox = (x1-w, y1-h, x1+w, y1+h) plot_one_box(voc_bbox, image, color = color, label = cls if class_name else str(get_label(cls)), line_thickness = line_thickness) elif bbox_format == 'coco': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] color = colors[idx] if cls in show_classes: x1 = int(round(bbox[0])) y1 = int(round(bbox[1])) w = int(round(bbox[2])) h = int(round(bbox[3])) voc_bbox = (x1, y1, x1+w, y1+h) plot_one_box(voc_bbox, image, color = color, label = cls, line_thickness = line_thickness) elif bbox_format == 'voc_pascal': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] cls_id = class_ids[idx] color = colors[cls_id] if type(colors) is list else colors if cls in show_classes: x1 = int(round(bbox[0])) y1 = int(round(bbox[1])) x2 = int(round(bbox[2])) y2 = int(round(bbox[3])) voc_bbox = (x1, y1, x2, y2) plot_one_box(voc_bbox, image, color = color, label = cls if class_name else str(cls_id), line_thickness = line_thickness) else: raise ValueError('wrong bbox format') return image def get_bbox(annots): bboxes = [list(annot.values()) for annot in annots] return bboxes def get_imgsize(row): row['width'], row['height'] = imagesize.get(row['image_path']) return row # https://www.kaggle.com/diegoalejogm/great-barrier-reefs-eda-with-animations def create_animation(ims): fig = plt.figure(figsize=(16, 12)) plt.axis('off') im = plt.imshow(ims[0]) def animate_func(i): im.set_array(ims[i]) return [im] return animation.FuncAnimation(fig, animate_func, frames = len(ims), interval = 1000//12) # https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep # https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py def py_cpu_softnms(dets, sc, Nt=0.3, sigma=0.5, thresh=0.001, method=2): """ py_cpu_softnms :param dets: boexs 坐标矩阵 format [y1, x1, y2, x2] :param sc: 每个 boxes 对应的分数 :param Nt: iou 交叠门限 :param sigma: 使用 gaussian 函数的方差 :param thresh: 最后的分数门限 :param method: 使用的方法 :return: 留下的 boxes 的 index """ # indexes concatenate boxes with the last column N = dets.shape[0] indexes = np.array([np.arange(N)]) dets = np.concatenate((dets, indexes.T), axis=1) # the order of boxes coordinate is [y1,x1,y2,x2] y1 = dets[:, 0] x1 = dets[:, 1] y2 = dets[:, 2] x2 = dets[:, 3] scores = sc areas = (x2 - x1 + 1) * (y2 - y1 + 1) for i in range(N): # intermediate parameters for later parameters exchange tBD = dets[i, :].copy() tscore = scores[i].copy() tarea = areas[i].copy() pos = i + 1 # if i != N-1: maxscore = np.max(scores[pos:], axis=0) maxpos = np.argmax(scores[pos:], axis=0) else: maxscore = scores[-1] maxpos = 0 if tscore < maxscore: dets[i, :] = dets[maxpos + i + 1, :] dets[maxpos + i + 1, :] = tBD tBD = dets[i, :] scores[i] = scores[maxpos + i + 1] scores[maxpos + i + 1] = tscore tscore = scores[i] areas[i] = areas[maxpos + i + 1] areas[maxpos + i + 1] = tarea tarea = areas[i] # IoU calculate xx1 = np.maximum(dets[i, 1], dets[pos:, 1]) yy1 = np.maximum(dets[i, 0], dets[pos:, 0]) xx2 = np.minimum(dets[i, 3], dets[pos:, 3]) yy2 = np.minimum(dets[i, 2], dets[pos:, 2]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[pos:] - inter) # Three methods: 1.linear 2.gaussian 3.original NMS if method == 1: # linear weight = np.ones(ovr.shape) weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt] elif method == 2: # gaussian weight = np.exp(-(ovr * ovr) / sigma) else: # original NMS weight = np.ones(ovr.shape) weight[ovr > Nt] = 0 scores[pos:] = weight * scores[pos:] # select the boxes and keep the corresponding indexes inds = dets[:, 4][scores > thresh] keep = inds.astype(int) return keep def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True def create_logger(filename, filemode='a'): # better logging file - output the in terminal as well file_handler = logging.FileHandler(filename=filename, mode=filemode) stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] formatter = "%(asctime)s %(levelname)s: %(message)s" datefmt = "%m/%d/%Y %I:%M:%S %p" logging.basicConfig(format=formatter, datefmt=datefmt, level=logging.DEBUG, handlers=handlers) return def save_pickle(obj, folder_path): pickle.dump(obj, open(folder_path, 'wb'), pickle.HIGHEST_PROTOCOL) def load_pickle(folder_path): return pickle.load(open(folder_path, 'rb')) def save_yaml(obj, folder_path): obj2 = obj.copy() for key, value in obj2.items(): if isinstance(value, Path): obj2[key] = str(value.resolve()) else: obj2[key] = value with open(folder_path, 'w') as file: yaml.dump(obj2, file) def load_yaml(folder_path): with open(folder_path) as file: data = yaml.load(file, Loader=yaml.FullLoader) return data def load_model(params): try: model = torch.hub.load(params['repo'], 'custom', path=params['ckpt_path'], source='local', force_reload=True) # local repo except: print("torch.hub.load failed, try torch.load") model = torch.load(params['ckpt_path']) model.conf = params['conf'] # NMS confidence threshold model.iou = params['iou'] # NMS IoU threshold model.classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for persons, cats and dogs model.multi_label = False # NMS multiple labels per box model.max_det = 50 # maximum number of detections per image return model def predict(model, img, size=768, augment=False, use_sahi=False): if use_sahi: from sahi.predict import get_sliced_prediction results = get_sliced_prediction( img, model, slice_height = 512, slice_width = 512, overlap_height_ratio = 0.2, overlap_width_ratio = 0.2 ) preds = results.object_prediction_list bboxes = np.array([pred.bbox.to_voc_bbox() for pred in preds]) else: results = model(img, size=size, augment=augment) # custom inference size preds = results.pandas().xyxy[0] bboxes = preds[['xmin','ymin','xmax','ymax']].values if len(bboxes): height, width = img.shape[:2] bboxes = voc2coco(bboxes,height,width).astype(int) if use_sahi: confs = np.array([pred.score.value for pred in preds]) else: confs = preds.confidence.values return bboxes, confs else: return np.array([]),[] def format_prediction(bboxes, confs): annot = '' if len(bboxes)>0: for idx in range(len(bboxes)): xmin, ymin, w, h = bboxes[idx] conf = confs[idx] annot += f'{conf} {xmin} {ymin} {w} {h}' annot +=' ' annot = annot.strip(' ') return annot def show_img(img, bboxes, confs, colors, bbox_format='yolo'): labels = [str(round(conf,2)) for conf in confs] img = draw_bboxes(img = img, bboxes = bboxes, classes = labels, class_name = True, colors = colors, bbox_format = bbox_format, line_thickness = 2) return Image.fromarray(img) def write_hyp(params): with open(params["hyp_file"], mode="w") as f: for key, val in params["hyp_param"].items(): f.write(f"{key}: {val}\n") def class2dict(f): return dict((name, getattr(f, name)) for name in dir(f) if not name.startswith('__')) def upload(params): data_version = "-".join(params["exp_name"].split("_")) if os.path.exists(params["output_dir"] / "wandb"): shutil.move(str(params["output_dir"] / "wandb"), str(params["output_dir"].parent / f"{params['exp_name']}_wandb/") ) with open(params["output_dir"] / "dataset-metadata.json", "w") as f: f.write("{\n") f.write(f""" "title": "{data_version}",\n""") f.write(f""" "id": "vincentwang25/{data_version}",\n""") f.write(""" "licenses": [\n""") f.write(""" {\n""") f.write(""" "name": "CC0-1.0"\n""") f.write(""" }\n""") f.write(""" ]\n""") f.write("""}""") subprocess.call(["kaggle", "datasets", "create", "-p", str(params["output_dir"]), "-r", "zip"]) def coco(df): annotion_id = 0 images = [] annotations = [] categories = [{'id': 0, 'name': 'cots'}] for i, row in df.iterrows(): images.append({ "id": i, "file_name": f"video_{row['video_id']}_{row['video_frame']}.jpg", "height": 720, "width": 1280, }) for bbox in row['annotations']: annotations.append({ "id": annotion_id, "image_id": i, "category_id": 0, "bbox": list(bbox.values()), "area": bbox['width'] * bbox['height'], "segmentation": [], "iscrowd": 0 }) annotion_id += 1 json_file = {'categories':categories, 'images':images, 'annotations':annotations} return json_file def mmcfg_from_param(params): from mmcv import Config # model cfg = Config.fromfile(params['hyp_param']['base_file']) cfg.work_dir = str(params['output_dir']) cfg.seed = 2022 cfg.gpu_ids = range(2) cfg.load_from = params['hyp_param']['load_from'] if params['hyp_param']['model_type'] == 'faster_rcnn': cfg.model.roi_head.bbox_head.num_classes = 1 cfg.model.roi_head.bbox_head.loss_bbox.type = params['hyp_param']['loss_fnc'] cfg.model.rpn_head.loss_bbox.type = params['hyp_param']['loss_fnc'] if params['hyp_param']['loss_fnc'] == "GIoULoss": cfg.model.roi_head.bbox_head.reg_decoded_bbox = True cfg.model.rpn_head.reg_decoded_bbox = True cfg.model.train_cfg.rpn_proposal.nms.type = params['hyp_param']['nms'] cfg.model.test_cfg.rpn.nms.type = params['hyp_param']['nms'] cfg.model.test_cfg.rcnn.nms.type = params['hyp_param']['nms'] cfg.model.train_cfg.rcnn.sampler.type = params['hyp_param']['sampler'] elif params['hyp_param']['model_type'] == 'swin': pass # already changed elif params['hyp_param']['model_type'] == 'vfnet': cfg.model.bbox_head.num_classes = 1 if params['hyp_param'].get("optimizer", cfg.optimizer.type) == "AdamW": cfg.optimizer = dict( type="AdamW", lr=params['hyp_param'].get("lr", cfg.optimizer.lr), weight_decay=params['hyp_param'].get( "weight_decay", cfg.optimizer.weight_decay ), ) else: cfg.optimizer.lr = params['hyp_param'].get("lr", cfg.optimizer.lr) cfg.optimizer.weight_decay = params['hyp_param'].get( "weight_decay", cfg.optimizer.weight_decay) cfg.lr_config = dict( policy='CosineAnnealing', by_epoch=False, warmup='linear', warmup_iters= 1000, warmup_ratio= 1/10, min_lr=1e-07) # data cfg = add_data_pipeline(cfg, params) cfg.runner.max_epochs = params['epochs'] cfg.evaluation.start = 1 cfg.evaluation.interval = 1 cfg.evaluation.save_best='auto' cfg.evaluation.metric ='bbox' cfg.checkpoint_config.interval = -1 cfg.log_config.interval = 500 cfg.log_config.with_step = True cfg.log_config.by_epoch = True cfg.log_config.hooks =[dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook')] cfg.workflow = [('train',1)] logging.info(str(cfg)) return cfg def add_data_pipeline(cfg, params): cfg.dataset_type = 'COCODataset' cfg.classes = ('cots',) cfg.data_root = str(params['data_path'].resolve()) params['aug_param']['img_scale'] = (params['img_size'], params['img_size']) cfg.img_scale = params['aug_param']['img_scale'] cfg.dataset_type = 'CocoDataset' cfg.filter_empty_gt = False cfg.data.filter_empty_gt = False cfg.data.train.type = cfg.dataset_type cfg.data.train.classes = cfg.classes cfg.data.train.ann_file = str(params["cfg_dir"] / 'annotations_train.json') cfg.data.train.img_prefix = cfg.data_root + '/images/' cfg.data.train.filter_empty_gt = False cfg.data.test.type = cfg.dataset_type cfg.data.test.classes = cfg.classes cfg.data.test.ann_file = str(params["cfg_dir"] / 'annotations_valid.json') cfg.data.test.img_prefix = cfg.data_root + '/images/' cfg.data.test.filter_empty_gt = False cfg.data.val.type = cfg.dataset_type cfg.data.val.classes = cfg.classes cfg.data.val.ann_file = str(params["cfg_dir"] / 'annotations_valid.json') cfg.data.val.img_prefix = cfg.data_root + '/images/' cfg.data.val.filter_empty_gt = False cfg.data.samples_per_gpu = params['batch'] // len(cfg.gpu_ids) cfg.data.workers_per_gpu = params['workers'] // len(cfg.gpu_ids) # train pipeline albu_train_transforms = get_albu_transforms(params['aug_param'], is_train=True) if params['aug_param']['use_mixup'] or params['aug_param']['use_mosaic']: train_pipeline = [] else: train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True)] if params['aug_param']['use_mosaic']: train_pipeline.append(dict(type='Mosaic', img_scale=cfg.img_scale, pad_val=114.0)) else: train_pipeline.append(dict(type='Resize', img_scale=cfg.img_scale, keep_ratio=False)) train_pipeline = train_pipeline +[ dict(type='Pad', size_divisor=32), dict( type='Albu', transforms=albu_train_transforms, bbox_params=dict( type='BboxParams', format='pascal_voc', label_fields=['gt_labels'], min_visibility=0.0, filter_lost_elements=True), keymap={ 'img': 'image', 'gt_bboxes': 'bboxes' }, update_pad_shape=False, skip_img_without_anno=False )] if params['aug_param']['use_mixup']: train_pipeline.append(dict(type='MixUp', img_scale=cfg.img_scale, ratio_range=(0.8, 1.6), pad_val=114.0)) train_pipeline = train_pipeline +\ [ dict(type='Normalize', **cfg.img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg')), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=cfg.img_scale, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[cfg.img_scale], flip=[False], transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Pad', size_divisor=32), dict(type='RandomFlip', direction='horizontal'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] cfg.train_pipeline = train_pipeline cfg.val_pipeline = val_pipeline cfg.test_pipeline = test_pipeline if params['aug_param']['use_mixup'] or params['aug_param']['use_mosaic']: cfg.train_dataset = dict( type='MultiImageMixDataset', dataset=dict( type=cfg.dataset_type, classes=cfg.classes, ann_file=str(params["cfg_dir"] / 'annotations_train.json'), img_prefix=cfg.data_root + '/images/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], filter_empty_gt=False, ), pipeline=cfg.train_pipeline ) cfg.data.train = cfg.train_dataset else: cfg.data.train.pipeline = cfg.train_pipeline cfg.data.val.pipeline = cfg.val_pipeline cfg.data.test.pipeline = cfg.test_pipeline return cfg def find_ckp(output_dir): return glob(output_dir / "best*.pth")[0]
def calc_is_correct(gt_bboxes, pred_bboxes, iou_th=0.5): """ gt_bboxes: (N, 4) np.array in xywh format pred_bboxes: (N, 5) np.array in conf+xywh format """ if len(gt_bboxes) == 0 and len(pred_bboxes) == 0: tps, fps, fns = 0, 0, 0 return tps, fps, fns elif len(gt_bboxes) == 0: tps, fps, fns = 0, len(pred_bboxes), 0 return tps, fps, fns elif len(pred_bboxes) == 0: tps, fps, fns = 0, 0, len(gt_bboxes) return tps, fps, fns pred_bboxes = pred_bboxes[pred_bboxes[:,0].argsort()[::-1]] # sort by conf tps, fps, fns = 0, 0, 0 tp, fp, fn = calc_is_correct_at_iou_th(gt_bboxes, pred_bboxes, iou_th) tps += tp fps += fp fns += fn return tps, fps, fns
125
149
import sys import cv2 import os from ast import literal_eval from pathlib import Path import shutil import logging import random import pickle import yaml import subprocess from PIL import Image from glob import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import animation, rc plt.rcParams['figure.figsize'] = 30, 30 np.set_printoptions(precision=3, suppress=True) rc('animation', html='jshtml') import torch from augmentations import get_albu_transforms IMAGE_DIR = '~/Kaggle/data/tensorflow-great-barrier-reef/train_images' def load_image(video_id, video_frame, image_dir): img_path = f'{image_dir}/video_{video_id}/{video_frame}.jpg' assert os.path.exists(img_path), f'{img_path} does not exist.' img = cv2.imread(img_path) return img def decode_annotations(annotaitons_str): """decode annotations in string to list of dict""" return literal_eval(annotaitons_str) def load_image_with_annotations(video_id, video_frame, image_dir, annotaitons_str): img = load_image(video_id, video_frame, image_dir) annotations = decode_annotations(annotaitons_str) if len(annotations) > 0: for ann in annotations: cv2.rectangle(img, (ann['x'], ann['y']), (ann['x'] + ann['width'], ann['y'] + ann['height']), (255, 0, 0), thickness=2,) return img def draw_predictions(img, pred_bboxes): img = img.copy() if len(pred_bboxes) > 0: for bbox in pred_bboxes: conf = bbox[0] x, y, w, h = bbox[1:].round().astype(int) cv2.rectangle(img, (x, y),(x+w, y+h),(0, 255, 255), thickness=2,) cv2.putText(img, f"{conf:.2}",(x, max(0, y-5)), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0, 0, 255), thickness=1, ) return img def plot_img(df, idx, image_dir, pred_bboxes=None): row = df.iloc[idx] video_id = row.video_id video_frame = row.video_frame annotations_str = row.annotations img = load_image_with_annotations(video_id, video_frame, image_dir, annotations_str) if pred_bboxes and len(pred_bboxes) > 0: pred_bboxes = pred_bboxes[pred_bboxes[:,0].argsort()[::-1]] # sort by conf img = draw_predictions(img, pred_bboxes) plt.imshow(img[:, :, ::-1]) def calc_iou(bboxes1, bboxes2, bbox_mode='xywh'): assert len(bboxes1.shape) == 2 and bboxes1.shape[1] == 4 assert len(bboxes2.shape) == 2 and bboxes2.shape[1] == 4 bboxes1 = bboxes1.copy() bboxes2 = bboxes2.copy() if bbox_mode == 'xywh': bboxes1[:, 2:] += bboxes1[:, :2] bboxes2[:, 2:] += bboxes2[:, :2] x11, y11, x12, y12 = np.split(bboxes1, 4, axis=1) x21, y21, x22, y22 = np.split(bboxes2, 4, axis=1) xA = np.maximum(x11, np.transpose(x21)) yA = np.maximum(y11, np.transpose(y21)) xB = np.minimum(x12, np.transpose(x22)) yB = np.minimum(y12, np.transpose(y22)) interArea = np.maximum((xB - xA + 1e-9), 0) * np.maximum((yB - yA + 1e-9), 0) boxAArea = (x12 - x11 + 1e-9) * (y12 - y11 + 1e-9) boxBArea = (x22 - x21 + 1e-9) * (y22 - y21 + 1e-9) iou = interArea / (boxAArea + np.transpose(boxBArea) - interArea) return iou def f_beta(tp, fp, fn, beta=2): if tp == 0: return 0 return (1+beta**2)*tp / ((1+beta**2)*tp + beta**2*fn+fp) def calc_is_correct_at_iou_th(gt_bboxes, pred_bboxes, iou_th, verbose=False): gt_bboxes = gt_bboxes.copy() pred_bboxes = pred_bboxes.copy() tp = 0 fp = 0 for k, pred_bbox in enumerate(pred_bboxes): # fixed in ver.7 if len(gt_bboxes) == 0: fp += len(pred_bboxes) - k # fix in ver.7 break ious = calc_iou(gt_bboxes, pred_bbox[None, 1:]) max_iou = ious.max() if max_iou >= iou_th: tp += 1 gt_bboxes = np.delete(gt_bboxes, ious.argmax(), axis=0) else: fp += 1 fn = len(gt_bboxes) return tp, fp, fn def calc_is_correct(gt_bboxes, pred_bboxes, iou_th=0.5): """ gt_bboxes: (N, 4) np.array in xywh format pred_bboxes: (N, 5) np.array in conf+xywh format """ if len(gt_bboxes) == 0 and len(pred_bboxes) == 0: tps, fps, fns = 0, 0, 0 return tps, fps, fns elif len(gt_bboxes) == 0: tps, fps, fns = 0, len(pred_bboxes), 0 return tps, fps, fns elif len(pred_bboxes) == 0: tps, fps, fns = 0, 0, len(gt_bboxes) return tps, fps, fns pred_bboxes = pred_bboxes[pred_bboxes[:,0].argsort()[::-1]] # sort by conf tps, fps, fns = 0, 0, 0 tp, fp, fn = calc_is_correct_at_iou_th(gt_bboxes, pred_bboxes, iou_th) tps += tp fps += fp fns += fn return tps, fps, fns def calc_f2_score(gt_bboxes_list, pred_bboxes_list, verbose=False): """ gt_bboxes_list: list of (N, 4) np.array in xywh format pred_bboxes_list: list of (N, 5) np.array in conf+xywh format """ #f2s = [] f2_dict = {'f2':0, "P":0, "R": 0} all_tps = [list([0] * 11) for _ in range(len(gt_bboxes_list))] all_fps = [list([0] * 11) for _ in range(len(gt_bboxes_list))] all_fns = [list([0] * 11) for _ in range(len(gt_bboxes_list))] for k, iou_th in enumerate(np.arange(0.3, 0.85, 0.05)): tps, fps, fns = 0, 0, 0 for i, (gt_bboxes, pred_bboxes) in enumerate(zip(gt_bboxes_list, pred_bboxes_list)): tp, fp, fn = calc_is_correct(gt_bboxes, pred_bboxes, iou_th) tps += tp fps += fp fns += fn all_tps[i][k] = tp all_fps[i][k] = fp all_fns[i][k] = fn if verbose: num_gt = len(gt_bboxes) num_pred = len(pred_bboxes) print(f'num_gt:{num_gt:<3} num_pred:{num_pred:<3} tp:{tp:<3} fp:{fp:<3} fn:{fn:<3}') f2 = f_beta(tps, fps, fns, beta=2) precision = f_beta(tps, fps, fns, beta=0) recall = f_beta(tps, fps, fns, beta=100) f2_dict["f2_" + str(round(iou_th,3))] = f2 f2_dict["P_" + str(round(iou_th,3))] = precision f2_dict["R_" + str(round(iou_th,3))] = recall f2_dict['f2'] += f2 / 11 f2_dict['P'] += precision / 11 f2_dict['R'] += recall / 11 f2_dict["tps"] = all_tps f2_dict["fps"] = all_fps f2_dict["fns"] = all_fns return f2_dict def print_f2_dict(d): print("Overall f2: {:.3f}, precision {:.3f}, recall {:.3f}".format(d['f2'], d['precision'], d['recall'])) for k, iou_th in enumerate(np.arange(0.3, 0.85, 0.05)): print(f"IOU {iou_th:.2f}:", end=" ") print("f2: {:.3f}, precision {:.3f}, recall {:.3f}".format(d["f2_" + str(round(iou_th,3))], d["precision_" + str(round(iou_th,3))], d["recall_" + str(round(iou_th,3))])) def get_path(row, params, infer=False): row['old_image_path'] = params['root_dir'] / f'train_images/video_{row.video_id}/{row.video_frame}.jpg' if infer: row['image_path'] = row["old_image_path"] else: row['image_path'] = params['image_dir'] / f'video_{row.video_id}_{row.video_frame}.jpg' row['label_path'] = params['label_dir'] / f'video_{row.video_id}_{row.video_frame}.txt' return row def make_copy(path, params): # TODO: fix split issue data = str(path).split('/') filename = data[-1] video_id = data[-2] new_path = params["image_dir"] / f'{video_id}_{filename}' shutil.copy(path, new_path) return # https://www.kaggle.com/awsaf49/great-barrier-reef-yolov5-train def voc2yolo(image_height, image_width, bboxes): """ voc => [x1, y1, x2, y1] yolo => [xmid, ymid, w, h] (normalized) """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int bboxes[..., [0, 2]] = bboxes[..., [0, 2]]/ image_width bboxes[..., [1, 3]] = bboxes[..., [1, 3]]/ image_height w = bboxes[..., 2] - bboxes[..., 0] h = bboxes[..., 3] - bboxes[..., 1] bboxes[..., 0] = bboxes[..., 0] + w/2 bboxes[..., 1] = bboxes[..., 1] + h/2 bboxes[..., 2] = w bboxes[..., 3] = h return bboxes def yolo2voc(image_height, image_width, bboxes): """ yolo => [xmid, ymid, w, h] (normalized) voc => [x1, y1, x2, y1] """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int bboxes[..., [0, 2]] = bboxes[..., [0, 2]]* image_width bboxes[..., [1, 3]] = bboxes[..., [1, 3]]* image_height bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2 bboxes[..., [2, 3]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]] return bboxes def coco2yolo(image_height, image_width, bboxes): """ coco => [xmin, ymin, w, h] yolo => [xmid, ymid, w, h] (normalized) """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int # normolizinig bboxes[..., [0, 2]]= bboxes[..., [0, 2]]/ image_width bboxes[..., [1, 3]]= bboxes[..., [1, 3]]/ image_height # converstion (xmin, ymin) => (xmid, ymid) bboxes[..., [0, 1]] = bboxes[..., [0, 1]] + bboxes[..., [2, 3]]/2 return bboxes def yolo2coco(image_height, image_width, bboxes): """ yolo => [xmid, ymid, w, h] (normalized) coco => [xmin, ymin, w, h] """ bboxes = bboxes.copy().astype(float) # otherwise all value will be 0 as voc_pascal dtype is np.int # denormalizing bboxes[..., [0, 2]]= bboxes[..., [0, 2]]* image_width bboxes[..., [1, 3]]= bboxes[..., [1, 3]]* image_height # converstion (xmid, ymid) => (xmin, ymin) bboxes[..., [0, 1]] = bboxes[..., [0, 1]] - bboxes[..., [2, 3]]/2 return bboxes def voc2coco(bboxes, image_height=720, image_width=1280): bboxes = voc2yolo(image_height, image_width, bboxes) bboxes = yolo2coco(image_height, image_width, bboxes) return bboxes def load_image(image_path): return cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def draw_bboxes(img, bboxes, classes, colors = None, show_classes = None, bbox_format = 'yolo', class_name = False, line_thickness = 1): image = img.copy() show_classes = classes if show_classes is None else show_classes colors = (0, 255 ,0) if colors is None else colors if bbox_format == 'yolo': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] color = colors[idx] if cls in show_classes: x1 = round(float(bbox[0])*image.shape[1]) y1 = round(float(bbox[1])*image.shape[0]) w = round(float(bbox[2])*image.shape[1]/2) #w/2 h = round(float(bbox[3])*image.shape[0]/2) voc_bbox = (x1-w, y1-h, x1+w, y1+h) plot_one_box(voc_bbox, image, color = color, label = cls if class_name else str(get_label(cls)), line_thickness = line_thickness) elif bbox_format == 'coco': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] color = colors[idx] if cls in show_classes: x1 = int(round(bbox[0])) y1 = int(round(bbox[1])) w = int(round(bbox[2])) h = int(round(bbox[3])) voc_bbox = (x1, y1, x1+w, y1+h) plot_one_box(voc_bbox, image, color = color, label = cls, line_thickness = line_thickness) elif bbox_format == 'voc_pascal': for idx in range(len(bboxes)): bbox = bboxes[idx] cls = classes[idx] cls_id = class_ids[idx] color = colors[cls_id] if type(colors) is list else colors if cls in show_classes: x1 = int(round(bbox[0])) y1 = int(round(bbox[1])) x2 = int(round(bbox[2])) y2 = int(round(bbox[3])) voc_bbox = (x1, y1, x2, y2) plot_one_box(voc_bbox, image, color = color, label = cls if class_name else str(cls_id), line_thickness = line_thickness) else: raise ValueError('wrong bbox format') return image def get_bbox(annots): bboxes = [list(annot.values()) for annot in annots] return bboxes def get_imgsize(row): row['width'], row['height'] = imagesize.get(row['image_path']) return row # https://www.kaggle.com/diegoalejogm/great-barrier-reefs-eda-with-animations def create_animation(ims): fig = plt.figure(figsize=(16, 12)) plt.axis('off') im = plt.imshow(ims[0]) def animate_func(i): im.set_array(ims[i]) return [im] return animation.FuncAnimation(fig, animate_func, frames = len(ims), interval = 1000//12) # https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py def nms(dets, thresh): x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep # https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py def py_cpu_softnms(dets, sc, Nt=0.3, sigma=0.5, thresh=0.001, method=2): """ py_cpu_softnms :param dets: boexs 坐标矩阵 format [y1, x1, y2, x2] :param sc: 每个 boxes 对应的分数 :param Nt: iou 交叠门限 :param sigma: 使用 gaussian 函数的方差 :param thresh: 最后的分数门限 :param method: 使用的方法 :return: 留下的 boxes 的 index """ # indexes concatenate boxes with the last column N = dets.shape[0] indexes = np.array([np.arange(N)]) dets = np.concatenate((dets, indexes.T), axis=1) # the order of boxes coordinate is [y1,x1,y2,x2] y1 = dets[:, 0] x1 = dets[:, 1] y2 = dets[:, 2] x2 = dets[:, 3] scores = sc areas = (x2 - x1 + 1) * (y2 - y1 + 1) for i in range(N): # intermediate parameters for later parameters exchange tBD = dets[i, :].copy() tscore = scores[i].copy() tarea = areas[i].copy() pos = i + 1 # if i != N-1: maxscore = np.max(scores[pos:], axis=0) maxpos = np.argmax(scores[pos:], axis=0) else: maxscore = scores[-1] maxpos = 0 if tscore < maxscore: dets[i, :] = dets[maxpos + i + 1, :] dets[maxpos + i + 1, :] = tBD tBD = dets[i, :] scores[i] = scores[maxpos + i + 1] scores[maxpos + i + 1] = tscore tscore = scores[i] areas[i] = areas[maxpos + i + 1] areas[maxpos + i + 1] = tarea tarea = areas[i] # IoU calculate xx1 = np.maximum(dets[i, 1], dets[pos:, 1]) yy1 = np.maximum(dets[i, 0], dets[pos:, 0]) xx2 = np.minimum(dets[i, 3], dets[pos:, 3]) yy2 = np.minimum(dets[i, 2], dets[pos:, 2]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[pos:] - inter) # Three methods: 1.linear 2.gaussian 3.original NMS if method == 1: # linear weight = np.ones(ovr.shape) weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt] elif method == 2: # gaussian weight = np.exp(-(ovr * ovr) / sigma) else: # original NMS weight = np.ones(ovr.shape) weight[ovr > Nt] = 0 scores[pos:] = weight * scores[pos:] # select the boxes and keep the corresponding indexes inds = dets[:, 4][scores > thresh] keep = inds.astype(int) return keep def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True def create_logger(filename, filemode='a'): # better logging file - output the in terminal as well file_handler = logging.FileHandler(filename=filename, mode=filemode) stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] formatter = "%(asctime)s %(levelname)s: %(message)s" datefmt = "%m/%d/%Y %I:%M:%S %p" logging.basicConfig(format=formatter, datefmt=datefmt, level=logging.DEBUG, handlers=handlers) return def save_pickle(obj, folder_path): pickle.dump(obj, open(folder_path, 'wb'), pickle.HIGHEST_PROTOCOL) def load_pickle(folder_path): return pickle.load(open(folder_path, 'rb')) def save_yaml(obj, folder_path): obj2 = obj.copy() for key, value in obj2.items(): if isinstance(value, Path): obj2[key] = str(value.resolve()) else: obj2[key] = value with open(folder_path, 'w') as file: yaml.dump(obj2, file) def load_yaml(folder_path): with open(folder_path) as file: data = yaml.load(file, Loader=yaml.FullLoader) return data def load_model(params): try: model = torch.hub.load(params['repo'], 'custom', path=params['ckpt_path'], source='local', force_reload=True) # local repo except: print("torch.hub.load failed, try torch.load") model = torch.load(params['ckpt_path']) model.conf = params['conf'] # NMS confidence threshold model.iou = params['iou'] # NMS IoU threshold model.classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for persons, cats and dogs model.multi_label = False # NMS multiple labels per box model.max_det = 50 # maximum number of detections per image return model def predict(model, img, size=768, augment=False, use_sahi=False): if use_sahi: from sahi.predict import get_sliced_prediction results = get_sliced_prediction( img, model, slice_height = 512, slice_width = 512, overlap_height_ratio = 0.2, overlap_width_ratio = 0.2 ) preds = results.object_prediction_list bboxes = np.array([pred.bbox.to_voc_bbox() for pred in preds]) else: results = model(img, size=size, augment=augment) # custom inference size preds = results.pandas().xyxy[0] bboxes = preds[['xmin','ymin','xmax','ymax']].values if len(bboxes): height, width = img.shape[:2] bboxes = voc2coco(bboxes,height,width).astype(int) if use_sahi: confs = np.array([pred.score.value for pred in preds]) else: confs = preds.confidence.values return bboxes, confs else: return np.array([]),[] def format_prediction(bboxes, confs): annot = '' if len(bboxes)>0: for idx in range(len(bboxes)): xmin, ymin, w, h = bboxes[idx] conf = confs[idx] annot += f'{conf} {xmin} {ymin} {w} {h}' annot +=' ' annot = annot.strip(' ') return annot def show_img(img, bboxes, confs, colors, bbox_format='yolo'): labels = [str(round(conf,2)) for conf in confs] img = draw_bboxes(img = img, bboxes = bboxes, classes = labels, class_name = True, colors = colors, bbox_format = bbox_format, line_thickness = 2) return Image.fromarray(img) def write_hyp(params): with open(params["hyp_file"], mode="w") as f: for key, val in params["hyp_param"].items(): f.write(f"{key}: {val}\n") def class2dict(f): return dict((name, getattr(f, name)) for name in dir(f) if not name.startswith('__')) def upload(params): data_version = "-".join(params["exp_name"].split("_")) if os.path.exists(params["output_dir"] / "wandb"): shutil.move(str(params["output_dir"] / "wandb"), str(params["output_dir"].parent / f"{params['exp_name']}_wandb/") ) with open(params["output_dir"] / "dataset-metadata.json", "w") as f: f.write("{\n") f.write(f""" "title": "{data_version}",\n""") f.write(f""" "id": "vincentwang25/{data_version}",\n""") f.write(""" "licenses": [\n""") f.write(""" {\n""") f.write(""" "name": "CC0-1.0"\n""") f.write(""" }\n""") f.write(""" ]\n""") f.write("""}""") subprocess.call(["kaggle", "datasets", "create", "-p", str(params["output_dir"]), "-r", "zip"]) def coco(df): annotion_id = 0 images = [] annotations = [] categories = [{'id': 0, 'name': 'cots'}] for i, row in df.iterrows(): images.append({ "id": i, "file_name": f"video_{row['video_id']}_{row['video_frame']}.jpg", "height": 720, "width": 1280, }) for bbox in row['annotations']: annotations.append({ "id": annotion_id, "image_id": i, "category_id": 0, "bbox": list(bbox.values()), "area": bbox['width'] * bbox['height'], "segmentation": [], "iscrowd": 0 }) annotion_id += 1 json_file = {'categories':categories, 'images':images, 'annotations':annotations} return json_file def mmcfg_from_param(params): from mmcv import Config # model cfg = Config.fromfile(params['hyp_param']['base_file']) cfg.work_dir = str(params['output_dir']) cfg.seed = 2022 cfg.gpu_ids = range(2) cfg.load_from = params['hyp_param']['load_from'] if params['hyp_param']['model_type'] == 'faster_rcnn': cfg.model.roi_head.bbox_head.num_classes = 1 cfg.model.roi_head.bbox_head.loss_bbox.type = params['hyp_param']['loss_fnc'] cfg.model.rpn_head.loss_bbox.type = params['hyp_param']['loss_fnc'] if params['hyp_param']['loss_fnc'] == "GIoULoss": cfg.model.roi_head.bbox_head.reg_decoded_bbox = True cfg.model.rpn_head.reg_decoded_bbox = True cfg.model.train_cfg.rpn_proposal.nms.type = params['hyp_param']['nms'] cfg.model.test_cfg.rpn.nms.type = params['hyp_param']['nms'] cfg.model.test_cfg.rcnn.nms.type = params['hyp_param']['nms'] cfg.model.train_cfg.rcnn.sampler.type = params['hyp_param']['sampler'] elif params['hyp_param']['model_type'] == 'swin': pass # already changed elif params['hyp_param']['model_type'] == 'vfnet': cfg.model.bbox_head.num_classes = 1 if params['hyp_param'].get("optimizer", cfg.optimizer.type) == "AdamW": cfg.optimizer = dict( type="AdamW", lr=params['hyp_param'].get("lr", cfg.optimizer.lr), weight_decay=params['hyp_param'].get( "weight_decay", cfg.optimizer.weight_decay ), ) else: cfg.optimizer.lr = params['hyp_param'].get("lr", cfg.optimizer.lr) cfg.optimizer.weight_decay = params['hyp_param'].get( "weight_decay", cfg.optimizer.weight_decay) cfg.lr_config = dict( policy='CosineAnnealing', by_epoch=False, warmup='linear', warmup_iters= 1000, warmup_ratio= 1/10, min_lr=1e-07) # data cfg = add_data_pipeline(cfg, params) cfg.runner.max_epochs = params['epochs'] cfg.evaluation.start = 1 cfg.evaluation.interval = 1 cfg.evaluation.save_best='auto' cfg.evaluation.metric ='bbox' cfg.checkpoint_config.interval = -1 cfg.log_config.interval = 500 cfg.log_config.with_step = True cfg.log_config.by_epoch = True cfg.log_config.hooks =[dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook')] cfg.workflow = [('train',1)] logging.info(str(cfg)) return cfg def add_data_pipeline(cfg, params): cfg.dataset_type = 'COCODataset' cfg.classes = ('cots',) cfg.data_root = str(params['data_path'].resolve()) params['aug_param']['img_scale'] = (params['img_size'], params['img_size']) cfg.img_scale = params['aug_param']['img_scale'] cfg.dataset_type = 'CocoDataset' cfg.filter_empty_gt = False cfg.data.filter_empty_gt = False cfg.data.train.type = cfg.dataset_type cfg.data.train.classes = cfg.classes cfg.data.train.ann_file = str(params["cfg_dir"] / 'annotations_train.json') cfg.data.train.img_prefix = cfg.data_root + '/images/' cfg.data.train.filter_empty_gt = False cfg.data.test.type = cfg.dataset_type cfg.data.test.classes = cfg.classes cfg.data.test.ann_file = str(params["cfg_dir"] / 'annotations_valid.json') cfg.data.test.img_prefix = cfg.data_root + '/images/' cfg.data.test.filter_empty_gt = False cfg.data.val.type = cfg.dataset_type cfg.data.val.classes = cfg.classes cfg.data.val.ann_file = str(params["cfg_dir"] / 'annotations_valid.json') cfg.data.val.img_prefix = cfg.data_root + '/images/' cfg.data.val.filter_empty_gt = False cfg.data.samples_per_gpu = params['batch'] // len(cfg.gpu_ids) cfg.data.workers_per_gpu = params['workers'] // len(cfg.gpu_ids) # train pipeline albu_train_transforms = get_albu_transforms(params['aug_param'], is_train=True) if params['aug_param']['use_mixup'] or params['aug_param']['use_mosaic']: train_pipeline = [] else: train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True)] if params['aug_param']['use_mosaic']: train_pipeline.append(dict(type='Mosaic', img_scale=cfg.img_scale, pad_val=114.0)) else: train_pipeline.append(dict(type='Resize', img_scale=cfg.img_scale, keep_ratio=False)) train_pipeline = train_pipeline +[ dict(type='Pad', size_divisor=32), dict( type='Albu', transforms=albu_train_transforms, bbox_params=dict( type='BboxParams', format='pascal_voc', label_fields=['gt_labels'], min_visibility=0.0, filter_lost_elements=True), keymap={ 'img': 'image', 'gt_bboxes': 'bboxes' }, update_pad_shape=False, skip_img_without_anno=False )] if params['aug_param']['use_mixup']: train_pipeline.append(dict(type='MixUp', img_scale=cfg.img_scale, ratio_range=(0.8, 1.6), pad_val=114.0)) train_pipeline = train_pipeline +\ [ dict(type='Normalize', **cfg.img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg')), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=cfg.img_scale, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[cfg.img_scale], flip=[False], transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Pad', size_divisor=32), dict(type='RandomFlip', direction='horizontal'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] cfg.train_pipeline = train_pipeline cfg.val_pipeline = val_pipeline cfg.test_pipeline = test_pipeline if params['aug_param']['use_mixup'] or params['aug_param']['use_mosaic']: cfg.train_dataset = dict( type='MultiImageMixDataset', dataset=dict( type=cfg.dataset_type, classes=cfg.classes, ann_file=str(params["cfg_dir"] / 'annotations_train.json'), img_prefix=cfg.data_root + '/images/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], filter_empty_gt=False, ), pipeline=cfg.train_pipeline ) cfg.data.train = cfg.train_dataset else: cfg.data.train.pipeline = cfg.train_pipeline cfg.data.val.pipeline = cfg.val_pipeline cfg.data.test.pipeline = cfg.test_pipeline return cfg def find_ckp(output_dir): return glob(output_dir / "best*.pth")[0]
GetChromeProxyRequestHeaderValue
Get a specific Chrome-Proxy request header value. Returns: The value for a specific Chrome-Proxy request header value for a given key. Returns None if no such key is present.
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import time from common import network_metrics from telemetry.page import page_test from telemetry.value import scalar CHROME_PROXY_VIA_HEADER = 'Chrome-Compression-Proxy' class ChromeProxyMetricException(page_test.MeasurementFailure): pass class ChromeProxyResponse(network_metrics.HTTPResponse): """ Represents an HTTP response from a timeline event.""" def __init__(self, event): super(ChromeProxyResponse, self).__init__(event) def ShouldHaveChromeProxyViaHeader(self): resp = self.response # Ignore https and data url if resp.url.startswith('https') or resp.url.startswith('data:'): return False # Ignore 304 Not Modified and cache hit. if resp.status == 304 or resp.served_from_cache: return False # Ignore invalid responses that don't have any header. Log a warning. if not resp.headers: logging.warning('response for %s does not any have header ' '(refer=%s, status=%s)', resp.url, resp.GetHeader('Referer'), resp.status) return False return True def HasResponseHeader(self, key, value): response_header = self.response.GetHeader(key) if not response_header: return False values = [v.strip() for v in response_header.split(',')] return any(v == value for v in values) def HasRequestHeader(self, key, value): if key not in self.response.request_headers: return False request_header = self.response.request_headers[key] values = [v.strip() for v in request_header.split(',')] return any(v == value for v in values) def HasChromeProxyViaHeader(self): via_header = self.response.GetHeader('Via') if not via_header: return False vias = [v.strip(' ') for v in via_header.split(',')] # The Via header is valid if it has a 4-character version prefix followed by # the proxy name, for example, "1.1 Chrome-Compression-Proxy". return any(v[4:] == CHROME_PROXY_VIA_HEADER for v in vias) def HasExtraViaHeader(self, extra_header): return self.HasResponseHeader('Via', extra_header) def IsValidByViaHeader(self): return (not self.ShouldHaveChromeProxyViaHeader() or self.HasChromeProxyViaHeader()) # MASKED: GetChromeProxyRequestHeaderValue function (lines 71-87) def GetChromeProxyClientType(self): """Get the client type directive from the Chrome-Proxy request header. Returns: The client type directive from the Chrome-Proxy request header for the request that lead to this response. For example, if the request header "Chrome-Proxy: c=android" is present, then this method would return "android". Returns None if no client type directive is present. """ return self.GetChromeProxyRequestHeaderValue('c') def HasChromeProxyLoFiRequest(self): return self.HasRequestHeader('Chrome-Proxy', "q=low") def HasChromeProxyLoFiResponse(self): return self.HasResponseHeader('Chrome-Proxy', "q=low") def HasChromeProxyPassThroughRequest(self): return self.HasRequestHeader('Chrome-Proxy', "pass-through")
def GetChromeProxyRequestHeaderValue(self, key): """Get a specific Chrome-Proxy request header value. Returns: The value for a specific Chrome-Proxy request header value for a given key. Returns None if no such key is present. """ if 'Chrome-Proxy' not in self.response.request_headers: return None chrome_proxy_request_header = self.response.request_headers['Chrome-Proxy'] values = [v.strip() for v in chrome_proxy_request_header.split(',')] for value in values: kvp = value.split('=', 1) if len(kvp) == 2 and kvp[0].strip() == key: return kvp[1].strip() return None
71
87
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import time from common import network_metrics from telemetry.page import page_test from telemetry.value import scalar CHROME_PROXY_VIA_HEADER = 'Chrome-Compression-Proxy' class ChromeProxyMetricException(page_test.MeasurementFailure): pass class ChromeProxyResponse(network_metrics.HTTPResponse): """ Represents an HTTP response from a timeline event.""" def __init__(self, event): super(ChromeProxyResponse, self).__init__(event) def ShouldHaveChromeProxyViaHeader(self): resp = self.response # Ignore https and data url if resp.url.startswith('https') or resp.url.startswith('data:'): return False # Ignore 304 Not Modified and cache hit. if resp.status == 304 or resp.served_from_cache: return False # Ignore invalid responses that don't have any header. Log a warning. if not resp.headers: logging.warning('response for %s does not any have header ' '(refer=%s, status=%s)', resp.url, resp.GetHeader('Referer'), resp.status) return False return True def HasResponseHeader(self, key, value): response_header = self.response.GetHeader(key) if not response_header: return False values = [v.strip() for v in response_header.split(',')] return any(v == value for v in values) def HasRequestHeader(self, key, value): if key not in self.response.request_headers: return False request_header = self.response.request_headers[key] values = [v.strip() for v in request_header.split(',')] return any(v == value for v in values) def HasChromeProxyViaHeader(self): via_header = self.response.GetHeader('Via') if not via_header: return False vias = [v.strip(' ') for v in via_header.split(',')] # The Via header is valid if it has a 4-character version prefix followed by # the proxy name, for example, "1.1 Chrome-Compression-Proxy". return any(v[4:] == CHROME_PROXY_VIA_HEADER for v in vias) def HasExtraViaHeader(self, extra_header): return self.HasResponseHeader('Via', extra_header) def IsValidByViaHeader(self): return (not self.ShouldHaveChromeProxyViaHeader() or self.HasChromeProxyViaHeader()) def GetChromeProxyRequestHeaderValue(self, key): """Get a specific Chrome-Proxy request header value. Returns: The value for a specific Chrome-Proxy request header value for a given key. Returns None if no such key is present. """ if 'Chrome-Proxy' not in self.response.request_headers: return None chrome_proxy_request_header = self.response.request_headers['Chrome-Proxy'] values = [v.strip() for v in chrome_proxy_request_header.split(',')] for value in values: kvp = value.split('=', 1) if len(kvp) == 2 and kvp[0].strip() == key: return kvp[1].strip() return None def GetChromeProxyClientType(self): """Get the client type directive from the Chrome-Proxy request header. Returns: The client type directive from the Chrome-Proxy request header for the request that lead to this response. For example, if the request header "Chrome-Proxy: c=android" is present, then this method would return "android". Returns None if no client type directive is present. """ return self.GetChromeProxyRequestHeaderValue('c') def HasChromeProxyLoFiRequest(self): return self.HasRequestHeader('Chrome-Proxy', "q=low") def HasChromeProxyLoFiResponse(self): return self.HasResponseHeader('Chrome-Proxy', "q=low") def HasChromeProxyPassThroughRequest(self): return self.HasRequestHeader('Chrome-Proxy', "pass-through")
get
Get an existing PrivateEndpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource.
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['PrivateEndpointArgs', 'PrivateEndpoint'] @pulumi.input_type class PrivateEndpointArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]] = None, subnet: Optional[pulumi.Input['SubnetArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a PrivateEndpoint resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]] manual_private_link_service_connections: A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]] private_link_service_connections: A grouping of information about the connection to the remote resource. :param pulumi.Input['SubnetArgs'] subnet: The ID of the subnet from which the private IP will be allocated. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if manual_private_link_service_connections is not None: pulumi.set(__self__, "manual_private_link_service_connections", manual_private_link_service_connections) if private_endpoint_name is not None: pulumi.set(__self__, "private_endpoint_name", private_endpoint_name) if private_link_service_connections is not None: pulumi.set(__self__, "private_link_service_connections", private_link_service_connections) if subnet is not None: pulumi.set(__self__, "subnet", subnet) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="manualPrivateLinkServiceConnections") def manual_private_link_service_connections(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]: """ A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. """ return pulumi.get(self, "manual_private_link_service_connections") @manual_private_link_service_connections.setter def manual_private_link_service_connections(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]): pulumi.set(self, "manual_private_link_service_connections", value) @property @pulumi.getter(name="privateEndpointName") def private_endpoint_name(self) -> Optional[pulumi.Input[str]]: """ The name of the private endpoint. """ return pulumi.get(self, "private_endpoint_name") @private_endpoint_name.setter def private_endpoint_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_endpoint_name", value) @property @pulumi.getter(name="privateLinkServiceConnections") def private_link_service_connections(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]: """ A grouping of information about the connection to the remote resource. """ return pulumi.get(self, "private_link_service_connections") @private_link_service_connections.setter def private_link_service_connections(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]): pulumi.set(self, "private_link_service_connections", value) @property @pulumi.getter def subnet(self) -> Optional[pulumi.Input['SubnetArgs']]: """ The ID of the subnet from which the private IP will be allocated. """ return pulumi.get(self, "subnet") @subnet.setter def subnet(self, value: Optional[pulumi.Input['SubnetArgs']]): pulumi.set(self, "subnet", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class PrivateEndpoint(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, subnet: Optional[pulumi.Input[pulumi.InputType['SubnetArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Private endpoint resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]] manual_private_link_service_connections: A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]] private_link_service_connections: A grouping of information about the connection to the remote resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[pulumi.InputType['SubnetArgs']] subnet: The ID of the subnet from which the private IP will be allocated. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: PrivateEndpointArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Private endpoint resource. :param str resource_name: The name of the resource. :param PrivateEndpointArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PrivateEndpointArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, subnet: Optional[pulumi.Input[pulumi.InputType['SubnetArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PrivateEndpointArgs.__new__(PrivateEndpointArgs) __props__.__dict__["id"] = id __props__.__dict__["location"] = location __props__.__dict__["manual_private_link_service_connections"] = manual_private_link_service_connections __props__.__dict__["private_endpoint_name"] = private_endpoint_name __props__.__dict__["private_link_service_connections"] = private_link_service_connections if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["subnet"] = subnet __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interfaces"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20190901:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20180801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20180801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181001:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181001:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190401:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190401:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190601:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190601:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190701:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190701:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20191101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20191101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20191201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20191201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200301:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200301:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200401:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200401:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200501:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200501:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200601:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200601:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200701:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200701:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20201101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20201101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20210201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20210201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20210301:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20210301:PrivateEndpoint")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateEndpoint, __self__).__init__( 'azure-native:network/v20190901:PrivateEndpoint', resource_name, __props__, opts) # MASKED: get function (lines 246-272) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="manualPrivateLinkServiceConnections") def manual_private_link_service_connections(self) -> pulumi.Output[Optional[Sequence['outputs.PrivateLinkServiceConnectionResponse']]]: """ A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. """ return pulumi.get(self, "manual_private_link_service_connections") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaces") def network_interfaces(self) -> pulumi.Output[Sequence['outputs.NetworkInterfaceResponse']]: """ An array of references to the network interfaces created for this private endpoint. """ return pulumi.get(self, "network_interfaces") @property @pulumi.getter(name="privateLinkServiceConnections") def private_link_service_connections(self) -> pulumi.Output[Optional[Sequence['outputs.PrivateLinkServiceConnectionResponse']]]: """ A grouping of information about the connection to the remote resource. """ return pulumi.get(self, "private_link_service_connections") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the private endpoint resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def subnet(self) -> pulumi.Output[Optional['outputs.SubnetResponse']]: """ The ID of the subnet from which the private IP will be allocated. """ return pulumi.get(self, "subnet") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
@staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateEndpoint': """ Get an existing PrivateEndpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateEndpointArgs.__new__(PrivateEndpointArgs) __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["manual_private_link_service_connections"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interfaces"] = None __props__.__dict__["private_link_service_connections"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["subnet"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return PrivateEndpoint(resource_name, opts=opts, __props__=__props__)
246
272
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['PrivateEndpointArgs', 'PrivateEndpoint'] @pulumi.input_type class PrivateEndpointArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]] = None, subnet: Optional[pulumi.Input['SubnetArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a PrivateEndpoint resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]] manual_private_link_service_connections: A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]] private_link_service_connections: A grouping of information about the connection to the remote resource. :param pulumi.Input['SubnetArgs'] subnet: The ID of the subnet from which the private IP will be allocated. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if manual_private_link_service_connections is not None: pulumi.set(__self__, "manual_private_link_service_connections", manual_private_link_service_connections) if private_endpoint_name is not None: pulumi.set(__self__, "private_endpoint_name", private_endpoint_name) if private_link_service_connections is not None: pulumi.set(__self__, "private_link_service_connections", private_link_service_connections) if subnet is not None: pulumi.set(__self__, "subnet", subnet) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="manualPrivateLinkServiceConnections") def manual_private_link_service_connections(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]: """ A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. """ return pulumi.get(self, "manual_private_link_service_connections") @manual_private_link_service_connections.setter def manual_private_link_service_connections(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]): pulumi.set(self, "manual_private_link_service_connections", value) @property @pulumi.getter(name="privateEndpointName") def private_endpoint_name(self) -> Optional[pulumi.Input[str]]: """ The name of the private endpoint. """ return pulumi.get(self, "private_endpoint_name") @private_endpoint_name.setter def private_endpoint_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_endpoint_name", value) @property @pulumi.getter(name="privateLinkServiceConnections") def private_link_service_connections(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]: """ A grouping of information about the connection to the remote resource. """ return pulumi.get(self, "private_link_service_connections") @private_link_service_connections.setter def private_link_service_connections(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PrivateLinkServiceConnectionArgs']]]]): pulumi.set(self, "private_link_service_connections", value) @property @pulumi.getter def subnet(self) -> Optional[pulumi.Input['SubnetArgs']]: """ The ID of the subnet from which the private IP will be allocated. """ return pulumi.get(self, "subnet") @subnet.setter def subnet(self, value: Optional[pulumi.Input['SubnetArgs']]): pulumi.set(self, "subnet", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class PrivateEndpoint(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, subnet: Optional[pulumi.Input[pulumi.InputType['SubnetArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Private endpoint resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]] manual_private_link_service_connections: A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. :param pulumi.Input[str] private_endpoint_name: The name of the private endpoint. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]] private_link_service_connections: A grouping of information about the connection to the remote resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[pulumi.InputType['SubnetArgs']] subnet: The ID of the subnet from which the private IP will be allocated. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: PrivateEndpointArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Private endpoint resource. :param str resource_name: The name of the resource. :param PrivateEndpointArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PrivateEndpointArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, manual_private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, private_endpoint_name: Optional[pulumi.Input[str]] = None, private_link_service_connections: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, subnet: Optional[pulumi.Input[pulumi.InputType['SubnetArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PrivateEndpointArgs.__new__(PrivateEndpointArgs) __props__.__dict__["id"] = id __props__.__dict__["location"] = location __props__.__dict__["manual_private_link_service_connections"] = manual_private_link_service_connections __props__.__dict__["private_endpoint_name"] = private_endpoint_name __props__.__dict__["private_link_service_connections"] = private_link_service_connections if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["subnet"] = subnet __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interfaces"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20190901:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20180801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20180801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181001:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181001:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20181201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20181201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190401:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190401:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190601:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190601:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190701:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190701:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20190801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20190801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20191101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20191101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20191201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20191201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200301:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200301:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200401:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200401:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200501:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200501:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200601:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200601:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200701:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200701:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20200801:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20200801:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20201101:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20201101:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20210201:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20210201:PrivateEndpoint"), pulumi.Alias(type_="azure-native:network/v20210301:PrivateEndpoint"), pulumi.Alias(type_="azure-nextgen:network/v20210301:PrivateEndpoint")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PrivateEndpoint, __self__).__init__( 'azure-native:network/v20190901:PrivateEndpoint', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PrivateEndpoint': """ Get an existing PrivateEndpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PrivateEndpointArgs.__new__(PrivateEndpointArgs) __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["manual_private_link_service_connections"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interfaces"] = None __props__.__dict__["private_link_service_connections"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["subnet"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return PrivateEndpoint(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="manualPrivateLinkServiceConnections") def manual_private_link_service_connections(self) -> pulumi.Output[Optional[Sequence['outputs.PrivateLinkServiceConnectionResponse']]]: """ A grouping of information about the connection to the remote resource. Used when the network admin does not have access to approve connections to the remote resource. """ return pulumi.get(self, "manual_private_link_service_connections") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaces") def network_interfaces(self) -> pulumi.Output[Sequence['outputs.NetworkInterfaceResponse']]: """ An array of references to the network interfaces created for this private endpoint. """ return pulumi.get(self, "network_interfaces") @property @pulumi.getter(name="privateLinkServiceConnections") def private_link_service_connections(self) -> pulumi.Output[Optional[Sequence['outputs.PrivateLinkServiceConnectionResponse']]]: """ A grouping of information about the connection to the remote resource. """ return pulumi.get(self, "private_link_service_connections") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the private endpoint resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def subnet(self) -> pulumi.Output[Optional['outputs.SubnetResponse']]: """ The ID of the subnet from which the private IP will be allocated. """ return pulumi.get(self, "subnet") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")