target
int64 0
1
| func
stringlengths 7
484k
| func_no_comments
stringlengths 7
484k
| idx
int64 1
368k
|
---|---|---|---|
0 | TABLE_LIST* first_not_own_table()
{
return ( query_tables_own_last ? *query_tables_own_last : 0);
} | TABLE_LIST* first_not_own_table()
{
return ( query_tables_own_last ? *query_tables_own_last : 0);
} | 367,366 |
0 | bool add_key(Key::Keytype key_type, const LEX_CSTRING *key_name,
ha_key_alg algorithm, DDL_options_st ddl)
{
if (check_add_key(ddl) ||
!(last_key= new Key(key_type, key_name, algorithm, false, ddl)))
return true;
alter_info.key_list.push_back(last_key);
return false;
} | bool add_key(Key::Keytype key_type, const LEX_CSTRING *key_name,
ha_key_alg algorithm, DDL_options_st ddl)
{
if (check_add_key(ddl) ||
!(last_key= new Key(key_type, key_name, algorithm, false, ddl)))
return true;
alter_info.key_list.push_back(last_key);
return false;
} | 367,367 |
0 | bool LEX::sp_body_finalize_routine(THD *thd)
{
if (sphead->check_unresolved_goto())
return true;
sphead->set_stmt_end(thd);
sphead->restore_thd_mem_root(thd);
return false;
} | bool LEX::sp_body_finalize_routine(THD *thd)
{
if (sphead->check_unresolved_goto())
return true;
sphead->set_stmt_end(thd);
sphead->restore_thd_mem_root(thd);
return false;
} | 367,368 |
0 | void set_agg_func_used(bool val) { m_agg_func_used= val; } | void set_agg_func_used(bool val) { m_agg_func_used= val; } | 367,370 |
0 | void set_8bit(bool is_8bit) { m_is_8bit= is_8bit; } | void set_8bit(bool is_8bit) { m_is_8bit= is_8bit; } | 367,371 |
0 | sp_variable *LEX::sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name,
Item *value)
{
sp_variable *spvar= spcont->add_variable(thd, name);
spcont->declare_var_boundary(1);
spvar->field_def.field_name= spvar->name;
spvar->field_def.set_handler(&type_handler_longlong);
type_handler_longlong.Column_definition_prepare_stage2(&spvar->field_def,
NULL, HA_CAN_GEOMETRY);
if (!value && unlikely(!(value= new (thd->mem_root) Item_null(thd))))
return NULL;
spvar->default_value= value;
sp_instr_set *is= new (this->thd->mem_root)
sp_instr_set(sphead->instructions(),
spcont, &sp_rcontext_handler_local,
spvar->offset, value,
this, true);
if (unlikely(is == NULL || sphead->add_instr(is)))
return NULL;
spcont->declare_var_boundary(0);
return spvar;
} | sp_variable *LEX::sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name,
Item *value)
{
sp_variable *spvar= spcont->add_variable(thd, name);
spcont->declare_var_boundary(1);
spvar->field_def.field_name= spvar->name;
spvar->field_def.set_handler(&type_handler_longlong);
type_handler_longlong.Column_definition_prepare_stage2(&spvar->field_def,
NULL, HA_CAN_GEOMETRY);
if (!value && unlikely(!(value= new (thd->mem_root) Item_null(thd))))
return NULL;
spvar->default_value= value;
sp_instr_set *is= new (this->thd->mem_root)
sp_instr_set(sphead->instructions(),
spcont, &sp_rcontext_handler_local,
spvar->offset, value,
this, true);
if (unlikely(is == NULL || sphead->add_instr(is)))
return NULL;
spcont->declare_var_boundary(0);
return spvar;
} | 367,372 |
0 | inline bool is_prepared() { return prepared; } | inline bool is_prepared() { return prepared; } | 367,373 |
0 | SELECT_LEX *LEX::alloc_select(bool select)
{
SELECT_LEX *select_lex;
DBUG_ENTER("LEX::alloc_select");
if (!(select_lex= new (thd->mem_root) SELECT_LEX()))
DBUG_RETURN(NULL);
DBUG_PRINT("info", ("Allocate select: %p #%u statement lex: %p",
select_lex, thd->lex->stmt_lex->current_select_number,
thd->lex->stmt_lex));
/*
TODO: move following init to constructor when we get rid of builtin
select
*/
select_lex->select_number= ++thd->lex->stmt_lex->current_select_number;
select_lex->parent_lex= this; /* Used in init_query. */
select_lex->init_query();
if (select)
select_lex->init_select();
select_lex->nest_level_base= &this->unit;
select_lex->include_global((st_select_lex_node**)&all_selects_list);
select_lex->context.resolve_in_select_list= TRUE;
DBUG_RETURN(select_lex);
} | SELECT_LEX *LEX::alloc_select(bool select)
{
SELECT_LEX *select_lex;
DBUG_ENTER("LEX::alloc_select");
if (!(select_lex= new (thd->mem_root) SELECT_LEX()))
DBUG_RETURN(NULL);
DBUG_PRINT("info", ("Allocate select: %p #%u statement lex: %p",
select_lex, thd->lex->stmt_lex->current_select_number,
thd->lex->stmt_lex));
select_lex->select_number= ++thd->lex->stmt_lex->current_select_number;
select_lex->parent_lex= this;
select_lex->init_query();
if (select)
select_lex->init_select();
select_lex->nest_level_base= &this->unit;
select_lex->include_global((st_select_lex_node**)&all_selects_list);
select_lex->context.resolve_in_select_list= TRUE;
DBUG_RETURN(select_lex);
} | 367,374 |
0 | bool LEX::sp_open_cursor(THD *thd, const LEX_CSTRING *name,
List<sp_assignment_lex> *parameters)
{
uint offset;
const sp_pcursor *pcursor;
uint param_count= parameters ? parameters->elements : 0;
return !(pcursor= spcont->find_cursor_with_error(name, &offset, false)) ||
pcursor->check_param_count_with_error(param_count) ||
sphead->add_open_cursor(thd, spcont, offset,
pcursor->param_context(), parameters);
} | bool LEX::sp_open_cursor(THD *thd, const LEX_CSTRING *name,
List<sp_assignment_lex> *parameters)
{
uint offset;
const sp_pcursor *pcursor;
uint param_count= parameters ? parameters->elements : 0;
return !(pcursor= spcont->find_cursor_with_error(name, &offset, false)) ||
pcursor->check_param_count_with_error(param_count) ||
sphead->add_open_cursor(thd, spcont, offset,
pcursor->param_context(), parameters);
} | 367,375 |
0 | static my_bool find_thread_callback(THD *thd, find_thread_callback_arg *arg)
{
if (arg->id == (arg->query_id ? thd->query_id : (longlong) thd->thread_id))
{
mysql_mutex_lock(&thd->LOCK_thd_kill); // Lock from delete
arg->thd= thd;
return 1;
}
return 0;
} | static my_bool find_thread_callback(THD *thd, find_thread_callback_arg *arg)
{
if (arg->id == (arg->query_id ? thd->query_id : (longlong) thd->thread_id))
{
mysql_mutex_lock(&thd->LOCK_thd_kill);
arg->thd= thd;
return 1;
}
return 0;
} | 367,376 |
0 | bool SELECT_LEX_UNIT::set_lock_to_the_last_select(Lex_select_lock l)
{
if (l.defined_lock)
{
SELECT_LEX *sel= first_select();
while (sel->next_select())
sel= sel->next_select();
if (sel->braces)
{
my_error(ER_WRONG_USAGE, MYF(0), "lock options",
"SELECT in brackets");
return TRUE;
}
l.set_to(sel);
}
return FALSE;
} | bool SELECT_LEX_UNIT::set_lock_to_the_last_select(Lex_select_lock l)
{
if (l.defined_lock)
{
SELECT_LEX *sel= first_select();
while (sel->next_select())
sel= sel->next_select();
if (sel->braces)
{
my_error(ER_WRONG_USAGE, MYF(0), "lock options",
"SELECT in brackets");
return TRUE;
}
l.set_to(sel);
}
return FALSE;
} | 367,377 |
0 | bool eof(int n)
{
return ((m_ptr + n) >= m_end_of_query);
} | bool eof(int n)
{
return ((m_ptr + n) >= m_end_of_query);
} | 367,378 |
0 | void set(const Lex_ident_sys_st &ident, Item *code, List<Item> *params)
{
DBUG_ASSERT(m_params.elements == 0);
m_name= ident;
m_code= code;
if (params)
m_params= *params;
} | void set(const Lex_ident_sys_st &ident, Item *code, List<Item> *params)
{
DBUG_ASSERT(m_params.elements == 0);
m_name= ident;
m_code= code;
if (params)
m_params= *params;
} | 367,379 |
0 | void set_query_tables_list(Query_tables_list *state)
{
*this= *state;
} | void set_query_tables_list(Query_tables_list *state)
{
*this= *state;
} | 367,380 |
0 | bool LEX::sp_exit_block(THD *thd, sp_label *lab)
{
/*
When jumping to a BEGIN-END block end, the target jump
points to the block hpop/cpop cleanup instructions,
so we should exclude the block context here.
When jumping to something else (i.e., SP_LAB_ITER),
there are no hpop/cpop at the jump destination,
so we should include the block context here for cleanup.
*/
bool exclusive= (lab->type == sp_label::BEGIN);
return sp_change_context(thd, lab->ctx, exclusive) ||
sphead->add_instr_jump_forward_with_backpatch(thd, spcont, lab);
} | bool LEX::sp_exit_block(THD *thd, sp_label *lab)
{
bool exclusive= (lab->type == sp_label::BEGIN);
return sp_change_context(thd, lab->ctx, exclusive) ||
sphead->add_instr_jump_forward_with_backpatch(thd, spcont, lab);
} | 367,381 |
0 | sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name)
{
sp_name *res;
LEX_CSTRING db;
if (unlikely(check_routine_name(name)) ||
unlikely(copy_db_to(&db)) ||
unlikely((!(res= new (thd->mem_root) sp_name(&db, name, false)))))
return NULL;
return res;
} | sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name)
{
sp_name *res;
LEX_CSTRING db;
if (unlikely(check_routine_name(name)) ||
unlikely(copy_db_to(&db)) ||
unlikely((!(res= new (thd->mem_root) sp_name(&db, name, false)))))
return NULL;
return res;
} | 367,385 |
0 | void LEX::restore_values_list_state()
{
many_values= current_select->save_many_values;
insert_list= current_select->save_insert_list;
} | void LEX::restore_values_list_state()
{
many_values= current_select->save_many_values;
insert_list= current_select->save_insert_list;
} | 367,386 |
0 | bool LEX::sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &loop)
{
sp_instr_cfetch *instr=
new (thd->mem_root) sp_instr_cfetch(sphead->instructions(),
spcont, loop.m_cursor_offset, false);
if (unlikely(instr == NULL) || unlikely(sphead->add_instr(instr)))
return true;
instr->add_to_varlist(loop.m_index);
// Generate a jump to the beginning of the loop
return sp_while_loop_finalize(thd);
} | bool LEX::sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &loop)
{
sp_instr_cfetch *instr=
new (thd->mem_root) sp_instr_cfetch(sphead->instructions(),
spcont, loop.m_cursor_offset, false);
if (unlikely(instr == NULL) || unlikely(sphead->add_instr(instr)))
return true;
instr->add_to_varlist(loop.m_index);
return sp_while_loop_finalize(thd);
} | 367,388 |
0 | void cut_next() { next= NULL; } | void cut_next() { next= NULL; } | 367,389 |
0 | bool LEX::add_alter_view(THD *thd, uint16 algorithm,
enum_view_suid suid,
Table_ident *table_ident)
{
if (unlikely(sphead))
{
my_error(ER_SP_BADSTATEMENT, MYF(0), "ALTER VIEW");
return true;
}
if (unlikely(!(create_view= new (thd->mem_root)
Create_view_info(VIEW_ALTER, algorithm, suid))))
return true;
return create_or_alter_view_finalize(thd, table_ident);
} | bool LEX::add_alter_view(THD *thd, uint16 algorithm,
enum_view_suid suid,
Table_ident *table_ident)
{
if (unlikely(sphead))
{
my_error(ER_SP_BADSTATEMENT, MYF(0), "ALTER VIEW");
return true;
}
if (unlikely(!(create_view= new (thd->mem_root)
Create_view_info(VIEW_ALTER, algorithm, suid))))
return true;
return create_or_alter_view_finalize(thd, table_ident);
} | 367,390 |
0 | inline void set_stmt_unsafe(enum_binlog_stmt_unsafe unsafe_type) {
DBUG_ENTER("set_stmt_unsafe");
DBUG_ASSERT(unsafe_type >= 0 && unsafe_type < BINLOG_STMT_UNSAFE_COUNT);
binlog_stmt_flags|= (1U << unsafe_type);
DBUG_VOID_RETURN;
} | inline void set_stmt_unsafe(enum_binlog_stmt_unsafe unsafe_type) {
DBUG_ENTER("set_stmt_unsafe");
DBUG_ASSERT(unsafe_type >= 0 && unsafe_type < BINLOG_STMT_UNSAFE_COUNT);
binlog_stmt_flags|= (1U << unsafe_type);
DBUG_VOID_RETURN;
} | 367,392 |
0 | void st_select_lex_node::fast_exclude()
{
if (link_prev)
{
if ((*link_prev= link_next))
link_next->link_prev= link_prev;
}
// Remove slave structure
for (; slave; slave= slave->next)
slave->fast_exclude();
} | void st_select_lex_node::fast_exclude()
{
if (link_prev)
{
if ((*link_prev= link_next))
link_next->link_prev= link_prev;
}
for (; slave; slave= slave->next)
slave->fast_exclude();
} | 367,393 |
0 | Item *LEX::create_item_ident_field(THD *thd, const char *db,
const char *table,
const Lex_ident_sys_st *name)
{
if (check_expr_allows_fields_or_error(thd, name->str))
return NULL;
if (current_select->parsing_place != IN_HAVING ||
current_select->get_in_sum_expr() > 0)
return new (thd->mem_root) Item_field(thd, current_context(),
db, table, name);
return new (thd->mem_root) Item_ref(thd, current_context(),
db, table, name);
} | Item *LEX::create_item_ident_field(THD *thd, const char *db,
const char *table,
const Lex_ident_sys_st *name)
{
if (check_expr_allows_fields_or_error(thd, name->str))
return NULL;
if (current_select->parsing_place != IN_HAVING ||
current_select->get_in_sum_expr() > 0)
return new (thd->mem_root) Item_field(thd, current_context(),
db, table, name);
return new (thd->mem_root) Item_ref(thd, current_context(),
db, table, name);
} | 367,394 |
0 | bool uses_stored_routines() const
{ return sroutines_list.elements != 0; } | bool uses_stored_routines() const
{ return sroutines_list.elements != 0; } | 367,397 |
0 | bool LEX::stmt_create_stored_function_start(const DDL_options_st &options,
enum_sp_aggregate_type agg_type,
const sp_name *spname)
{
if (stmt_create_function_start(options) ||
unlikely(!make_sp_head_no_recursive(thd, spname,
&sp_handler_function, agg_type)))
return true;
return false;
} | bool LEX::stmt_create_stored_function_start(const DDL_options_st &options,
enum_sp_aggregate_type agg_type,
const sp_name *spname)
{
if (stmt_create_function_start(options) ||
unlikely(!make_sp_head_no_recursive(thd, spname,
&sp_handler_function, agg_type)))
return true;
return false;
} | 367,399 |
0 | bool LEX::insert_select_hack(SELECT_LEX *sel)
{
DBUG_ENTER("LEX::insert_select_hack");
DBUG_ASSERT(first_select_lex() == &builtin_select);
DBUG_ASSERT(sel != NULL);
DBUG_ASSERT(builtin_select.first_inner_unit() == NULL);
if (builtin_select.link_prev)
{
if ((*builtin_select.link_prev= builtin_select.link_next))
((st_select_lex *)builtin_select.link_next)->link_prev=
builtin_select.link_prev;
builtin_select.link_prev= NULL; // indicator of removal
}
if (set_main_unit(sel->master_unit()))
return true;
DBUG_ASSERT(builtin_select.table_list.elements == 1);
TABLE_LIST *insert_table= builtin_select.table_list.first;
if (!(insert_table->next_local= sel->table_list.first))
{
sel->table_list.next= &insert_table->next_local;
}
sel->table_list.first= insert_table;
sel->table_list.elements++;
insert_table->select_lex= sel;
sel->context.first_name_resolution_table= insert_table;
builtin_select.context= sel->context;
change_item_list_context(&field_list, &sel->context);
if (sel->tvc && !sel->next_select() &&
(sql_command == SQLCOM_INSERT_SELECT ||
sql_command == SQLCOM_REPLACE_SELECT))
{
DBUG_PRINT("info", ("'Usual' INSERT detected"));
many_values= sel->tvc->lists_of_values;
sel->options= sel->tvc->select_options;
sel->tvc= NULL;
if (sql_command == SQLCOM_INSERT_SELECT)
sql_command= SQLCOM_INSERT;
else
sql_command= SQLCOM_REPLACE;
}
for (SELECT_LEX *sel= all_selects_list;
sel;
sel= sel->next_select_in_list())
{
if (sel->select_number != 1)
sel->select_number--;
};
DBUG_RETURN(FALSE);
} | bool LEX::insert_select_hack(SELECT_LEX *sel)
{
DBUG_ENTER("LEX::insert_select_hack");
DBUG_ASSERT(first_select_lex() == &builtin_select);
DBUG_ASSERT(sel != NULL);
DBUG_ASSERT(builtin_select.first_inner_unit() == NULL);
if (builtin_select.link_prev)
{
if ((*builtin_select.link_prev= builtin_select.link_next))
((st_select_lex *)builtin_select.link_next)->link_prev=
builtin_select.link_prev;
builtin_select.link_prev= NULL;
}
if (set_main_unit(sel->master_unit()))
return true;
DBUG_ASSERT(builtin_select.table_list.elements == 1);
TABLE_LIST *insert_table= builtin_select.table_list.first;
if (!(insert_table->next_local= sel->table_list.first))
{
sel->table_list.next= &insert_table->next_local;
}
sel->table_list.first= insert_table;
sel->table_list.elements++;
insert_table->select_lex= sel;
sel->context.first_name_resolution_table= insert_table;
builtin_select.context= sel->context;
change_item_list_context(&field_list, &sel->context);
if (sel->tvc && !sel->next_select() &&
(sql_command == SQLCOM_INSERT_SELECT ||
sql_command == SQLCOM_REPLACE_SELECT))
{
DBUG_PRINT("info", ("'Usual' INSERT detected"));
many_values= sel->tvc->lists_of_values;
sel->options= sel->tvc->select_options;
sel->tvc= NULL;
if (sql_command == SQLCOM_INSERT_SELECT)
sql_command= SQLCOM_INSERT;
else
sql_command= SQLCOM_REPLACE;
}
for (SELECT_LEX *sel= all_selects_list;
sel;
sel= sel->next_select_in_list())
{
if (sel->select_number != 1)
sel->select_number--;
};
DBUG_RETURN(FALSE);
} | 367,400 |
0 | void set(const st_sp_chistics &other) { *this= other; } | void set(const st_sp_chistics &other) { *this= other; } | 367,401 |
0 | void SELECT_LEX::mark_const_derived(bool empty)
{
TABLE_LIST *derived= master_unit()->derived;
/* join == NULL in DELETE ... RETURNING */
if (!(join && join->thd->lex->describe) && derived)
{
if (!empty)
increase_derived_records(1);
if (!master_unit()->is_unit_op() && !derived->is_merged_derived() &&
!(join && join->with_two_phase_optimization))
derived->fill_me= TRUE;
}
} | void SELECT_LEX::mark_const_derived(bool empty)
{
TABLE_LIST *derived= master_unit()->derived;
if (!(join && join->thd->lex->describe) && derived)
{
if (!empty)
increase_derived_records(1);
if (!master_unit()->is_unit_op() && !derived->is_merged_derived() &&
!(join && join->with_two_phase_optimization))
derived->fill_me= TRUE;
}
} | 367,402 |
0 | LEX::sp_add_for_loop_cursor_variable(THD *thd,
const LEX_CSTRING *name,
const sp_pcursor *pcursor,
uint coffset,
sp_assignment_lex *param_lex,
Item_args *parameters)
{
sp_variable *spvar= spcont->add_variable(thd, name);
if (!spvar)
return NULL;
spcont->declare_var_boundary(1);
sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name);
if (unlikely(!(spvar->default_value= new (thd->mem_root) Item_null(thd))))
return NULL;
spvar->field_def.set_cursor_rowtype_ref(coffset);
if (unlikely(sphead->add_for_loop_open_cursor(thd, spcont, spvar, pcursor,
coffset,
param_lex, parameters)))
return NULL;
spcont->declare_var_boundary(0);
return spvar;
} | LEX::sp_add_for_loop_cursor_variable(THD *thd,
const LEX_CSTRING *name,
const sp_pcursor *pcursor,
uint coffset,
sp_assignment_lex *param_lex,
Item_args *parameters)
{
sp_variable *spvar= spcont->add_variable(thd, name);
if (!spvar)
return NULL;
spcont->declare_var_boundary(1);
sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name);
if (unlikely(!(spvar->default_value= new (thd->mem_root) Item_null(thd))))
return NULL;
spvar->field_def.set_cursor_rowtype_ref(coffset);
if (unlikely(sphead->add_for_loop_open_cursor(thd, spcont, spvar, pcursor,
coffset,
param_lex, parameters)))
return NULL;
spcont->declare_var_boundary(0);
return spvar;
} | 367,404 |
0 | inline bool is_stmt_row_injection() const {
return binlog_stmt_flags &
(1U << (BINLOG_STMT_UNSAFE_COUNT + BINLOG_STMT_TYPE_ROW_INJECTION));
} | inline bool is_stmt_row_injection() const {
return binlog_stmt_flags &
(1U << (BINLOG_STMT_UNSAFE_COUNT + BINLOG_STMT_TYPE_ROW_INJECTION));
} | 367,405 |
0 | LEX::sp_variable_declarations_vartype_finalize(THD *thd, int nvars,
const LEX_CSTRING &ref,
Item *default_value)
{
sp_variable *t;
if (!spcont || !(t= spcont->find_variable(&ref, false)))
{
my_error(ER_SP_UNDECLARED_VAR, MYF(0), ref.str);
return true;
}
if (t->field_def.is_cursor_rowtype_ref())
{
uint offset= t->field_def.cursor_rowtype_offset();
return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars,
offset,
default_value);
}
if (t->field_def.is_column_type_ref())
{
Qualified_column_ident *tmp= t->field_def.column_type_ref();
return sp_variable_declarations_column_type_finalize(thd, nvars, tmp,
default_value);
}
if (t->field_def.is_table_rowtype_ref())
{
const Table_ident *tmp= t->field_def.table_rowtype_ref();
return sp_variable_declarations_table_rowtype_finalize(thd, nvars,
tmp->db,
tmp->table,
default_value);
}
// A reference to a scalar or a row variable with an explicit data type
return sp_variable_declarations_copy_type_finalize(thd, nvars,
t->field_def,
t->field_def.
row_field_definitions(),
default_value);
} | LEX::sp_variable_declarations_vartype_finalize(THD *thd, int nvars,
const LEX_CSTRING &ref,
Item *default_value)
{
sp_variable *t;
if (!spcont || !(t= spcont->find_variable(&ref, false)))
{
my_error(ER_SP_UNDECLARED_VAR, MYF(0), ref.str);
return true;
}
if (t->field_def.is_cursor_rowtype_ref())
{
uint offset= t->field_def.cursor_rowtype_offset();
return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars,
offset,
default_value);
}
if (t->field_def.is_column_type_ref())
{
Qualified_column_ident *tmp= t->field_def.column_type_ref();
return sp_variable_declarations_column_type_finalize(thd, nvars, tmp,
default_value);
}
if (t->field_def.is_table_rowtype_ref())
{
const Table_ident *tmp= t->field_def.table_rowtype_ref();
return sp_variable_declarations_table_rowtype_finalize(thd, nvars,
tmp->db,
tmp->table,
default_value);
}
return sp_variable_declarations_copy_type_finalize(thd, nvars,
t->field_def,
t->field_def.
row_field_definitions(),
default_value);
} | 367,407 |
0 | bool check_host_name(LEX_CSTRING *str)
{
const char *name= str->str;
const char *end= str->str + str->length;
if (check_string_byte_length(str, ER_HOSTNAME, HOSTNAME_LENGTH))
return TRUE;
while (name != end)
{
if (*name == '@')
{
my_printf_error(ER_UNKNOWN_ERROR,
"Malformed hostname (illegal symbol: '%c')", MYF(0),
*name);
return TRUE;
}
name++;
}
return FALSE;
} | bool check_host_name(LEX_CSTRING *str)
{
const char *name= str->str;
const char *end= str->str + str->length;
if (check_string_byte_length(str, ER_HOSTNAME, HOSTNAME_LENGTH))
return TRUE;
while (name != end)
{
if (*name == '@')
{
my_printf_error(ER_UNKNOWN_ERROR,
"Malformed hostname (illegal symbol: '%c')", MYF(0),
*name);
return TRUE;
}
name++;
}
return FALSE;
} | 367,408 |
0 | void yyUnget()
{
m_ptr--;
if (m_echo)
m_cpp_ptr--;
} | void yyUnget()
{
m_ptr--;
if (m_echo)
m_cpp_ptr--;
} | 367,409 |
0 | static int pptp_echo_rply(struct pptp_conn_t *conn)
{
struct pptp_echo_rply *msg = (struct pptp_echo_rply *)conn->in_buf;
if (conf_verbose)
log_ppp_debug("recv [PPTP Echo-Reply <Identifier %x>]\n", msg->identifier);
conn->echo_sent = 0;
return 0;
} | static int pptp_echo_rply(struct pptp_conn_t *conn)
{
struct pptp_echo_rply *msg = (struct pptp_echo_rply *)conn->in_buf;
if (conf_verbose)
log_ppp_debug("recv [PPTP Echo-Reply <Identifier %x>]\n", msg->identifier);
conn->echo_sent = 0;
return 0;
} | 367,410 |
0 | static int send_pptp_stop_ctrl_conn_rply(struct pptp_conn_t *conn, int reason, int err_code)
{
struct pptp_stop_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_STOP_CTRL_CONN_RPLY),
.reason_result = hton8(reason),
.error_code = hton8(err_code),
};
if (conf_verbose)
log_ppp_info2("send [PPTP Stop-Ctrl-Conn-Reply <Result %i> <Error %i>]\n", msg.reason_result, msg.error_code);
return post_msg(conn, &msg, sizeof(msg));
} | static int send_pptp_stop_ctrl_conn_rply(struct pptp_conn_t *conn, int reason, int err_code)
{
struct pptp_stop_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_STOP_CTRL_CONN_RPLY),
.reason_result = hton8(reason),
.error_code = hton8(err_code),
};
if (conf_verbose)
log_ppp_info2("send [PPTP Stop-Ctrl-Conn-Reply <Result %i> <Error %i>]\n", msg.reason_result, msg.error_code);
return post_msg(conn, &msg, sizeof(msg));
} | 367,411 |
0 | static int post_msg(struct pptp_conn_t *conn, void *buf, int size)
{
int n;
if (conn->out_size) {
log_error("pptp: buffer is not empty\n");
return -1;
}
again:
n=write(conn->hnd.fd, buf, size);
if (n < 0) {
if (errno == EINTR)
goto again;
else if (errno == EAGAIN)
n = 0;
else {
if (errno != EPIPE) {
if (conf_verbose)
log_ppp_info2("pptp: write: %s\n", strerror(errno));
}
return -1;
}
}
if ( n<size ) {
memcpy(conn->out_buf, (uint8_t *)buf + n, size - n);
triton_md_enable_handler(&conn->hnd, MD_MODE_WRITE);
}
return 0;
} | static int post_msg(struct pptp_conn_t *conn, void *buf, int size)
{
int n;
if (conn->out_size) {
log_error("pptp: buffer is not empty\n");
return -1;
}
again:
n=write(conn->hnd.fd, buf, size);
if (n < 0) {
if (errno == EINTR)
goto again;
else if (errno == EAGAIN)
n = 0;
else {
if (errno != EPIPE) {
if (conf_verbose)
log_ppp_info2("pptp: write: %s\n", strerror(errno));
}
return -1;
}
}
if ( n<size ) {
memcpy(conn->out_buf, (uint8_t *)buf + n, size - n);
triton_md_enable_handler(&conn->hnd, MD_MODE_WRITE);
}
return 0;
} | 367,412 |
0 | static void pptp_serv_close(struct triton_context_t *ctx)
{
struct pptp_serv_t *s=container_of(ctx,typeof(*s),ctx);
triton_md_unregister_handler(&s->hnd, 1);
triton_context_unregister(ctx);
} | static void pptp_serv_close(struct triton_context_t *ctx)
{
struct pptp_serv_t *s=container_of(ctx,typeof(*s),ctx);
triton_md_unregister_handler(&s->hnd, 1);
triton_context_unregister(ctx);
} | 367,415 |
0 | static int send_pptp_stop_ctrl_conn_rqst(struct pptp_conn_t *conn, int reason)
{
struct pptp_stop_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_STOP_CTRL_CONN_RQST),
.reason_result = hton8(reason),
};
if (conf_verbose)
log_ppp_info2("send [PPTP Stop-Ctrl-Conn-Request <Reason %i>]\n", reason);
return post_msg(conn, &msg, sizeof(msg));
} | static int send_pptp_stop_ctrl_conn_rqst(struct pptp_conn_t *conn, int reason)
{
struct pptp_stop_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_STOP_CTRL_CONN_RQST),
.reason_result = hton8(reason),
};
if (conf_verbose)
log_ppp_info2("send [PPTP Stop-Ctrl-Conn-Request <Reason %i>]\n", reason);
return post_msg(conn, &msg, sizeof(msg));
} | 367,416 |
0 | static void pptp_init(void)
{
struct sockaddr_in addr;
char *opt;
int fd;
fd = socket(AF_PPPOX, SOCK_STREAM, PX_PROTO_PPTP);
if (fd >= 0)
close(fd);
else if (system("modprobe -q pptp"))
log_warn("failed to load pptp kernel module\n");
serv.hnd.fd = socket(PF_INET, SOCK_STREAM, 0);
if (serv.hnd.fd < 0) {
log_emerg("pptp: failed to create server socket: %s\n", strerror(errno));
return;
}
fcntl(serv.hnd.fd, F_SETFD, fcntl(serv.hnd.fd, F_GETFD) | FD_CLOEXEC);
addr.sin_family = AF_INET;
opt = conf_get_opt("pptp", "bind");
if (opt)
addr.sin_addr.s_addr = inet_addr(opt);
else
addr.sin_addr.s_addr = htonl(INADDR_ANY);
opt = conf_get_opt("pptp", "port");
if (opt && atoi(opt) > 0)
addr.sin_port = htons(atoi(opt));
else
addr.sin_port = htons(PPTP_PORT);
setsockopt(serv.hnd.fd, SOL_SOCKET, SO_REUSEADDR, &serv.hnd.fd, 4);
if (bind (serv.hnd.fd, (struct sockaddr *) &addr, sizeof (addr)) < 0) {
log_emerg("pptp: failed to bind socket: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
if (listen (serv.hnd.fd, 100) < 0) {
log_emerg("pptp: failed to listen socket: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
if (fcntl(serv.hnd.fd, F_SETFL, O_NONBLOCK)) {
log_emerg("pptp: failed to set nonblocking mode: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
conn_pool = mempool_create(sizeof(struct pptp_conn_t));
load_config();
triton_context_register(&serv.ctx, NULL);
triton_md_register_handler(&serv.ctx, &serv.hnd);
triton_md_enable_handler(&serv.hnd, MD_MODE_READ);
triton_context_wakeup(&serv.ctx);
cli_register_simple_cmd2(show_stat_exec, NULL, 2, "show", "stat");
triton_event_register_handler(EV_CONFIG_RELOAD, (triton_event_func)load_config);
} | static void pptp_init(void)
{
struct sockaddr_in addr;
char *opt;
int fd;
fd = socket(AF_PPPOX, SOCK_STREAM, PX_PROTO_PPTP);
if (fd >= 0)
close(fd);
else if (system("modprobe -q pptp"))
log_warn("failed to load pptp kernel module\n");
serv.hnd.fd = socket(PF_INET, SOCK_STREAM, 0);
if (serv.hnd.fd < 0) {
log_emerg("pptp: failed to create server socket: %s\n", strerror(errno));
return;
}
fcntl(serv.hnd.fd, F_SETFD, fcntl(serv.hnd.fd, F_GETFD) | FD_CLOEXEC);
addr.sin_family = AF_INET;
opt = conf_get_opt("pptp", "bind");
if (opt)
addr.sin_addr.s_addr = inet_addr(opt);
else
addr.sin_addr.s_addr = htonl(INADDR_ANY);
opt = conf_get_opt("pptp", "port");
if (opt && atoi(opt) > 0)
addr.sin_port = htons(atoi(opt));
else
addr.sin_port = htons(PPTP_PORT);
setsockopt(serv.hnd.fd, SOL_SOCKET, SO_REUSEADDR, &serv.hnd.fd, 4);
if (bind (serv.hnd.fd, (struct sockaddr *) &addr, sizeof (addr)) < 0) {
log_emerg("pptp: failed to bind socket: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
if (listen (serv.hnd.fd, 100) < 0) {
log_emerg("pptp: failed to listen socket: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
if (fcntl(serv.hnd.fd, F_SETFL, O_NONBLOCK)) {
log_emerg("pptp: failed to set nonblocking mode: %s\n", strerror(errno));
close(serv.hnd.fd);
return;
}
conn_pool = mempool_create(sizeof(struct pptp_conn_t));
load_config();
triton_context_register(&serv.ctx, NULL);
triton_md_register_handler(&serv.ctx, &serv.hnd);
triton_md_enable_handler(&serv.hnd, MD_MODE_READ);
triton_context_wakeup(&serv.ctx);
cli_register_simple_cmd2(show_stat_exec, NULL, 2, "show", "stat");
triton_event_register_handler(EV_CONFIG_RELOAD, (triton_event_func)load_config);
} | 367,418 |
0 | static int send_pptp_start_ctrl_conn_rply(struct pptp_conn_t *conn, int res_code, int err_code)
{
struct pptp_start_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_START_CTRL_CONN_RPLY),
.version = htons(PPTP_VERSION),
.result_code = res_code,
.error_code = err_code,
.framing_cap = htonl(PPTP_FRAME_ANY),
.bearer_cap = htonl(PPTP_BEARER_ANY),
.max_channels = htons(1),
.firmware_rev = htons(PPTP_FIRMWARE_VERSION),
};
memset(msg.hostname, 0, sizeof(msg.hostname));
strcpy((char*)msg.hostname, PPTP_HOSTNAME);
memset(msg.vendor, 0, sizeof(msg.vendor));
strcpy((char*)msg.vendor, PPTP_VENDOR);
if (conf_verbose)
log_ppp_info2("send [PPTP Start-Ctrl-Conn-Reply <Version %i> <Result %i> <Error %i> <Framing %x> <Bearer %x> <Max-Chan %i>]\n", msg.version, msg.result_code, msg.error_code, ntohl(msg.framing_cap), ntohl(msg.bearer_cap), ntohs(msg.max_channels));
return post_msg(conn, &msg, sizeof(msg));
} | static int send_pptp_start_ctrl_conn_rply(struct pptp_conn_t *conn, int res_code, int err_code)
{
struct pptp_start_ctrl_conn msg = {
.header = PPTP_HEADER_CTRL(PPTP_START_CTRL_CONN_RPLY),
.version = htons(PPTP_VERSION),
.result_code = res_code,
.error_code = err_code,
.framing_cap = htonl(PPTP_FRAME_ANY),
.bearer_cap = htonl(PPTP_BEARER_ANY),
.max_channels = htons(1),
.firmware_rev = htons(PPTP_FIRMWARE_VERSION),
};
memset(msg.hostname, 0, sizeof(msg.hostname));
strcpy((char*)msg.hostname, PPTP_HOSTNAME);
memset(msg.vendor, 0, sizeof(msg.vendor));
strcpy((char*)msg.vendor, PPTP_VENDOR);
if (conf_verbose)
log_ppp_info2("send [PPTP Start-Ctrl-Conn-Reply <Version %i> <Result %i> <Error %i> <Framing %x> <Bearer %x> <Max-Chan %i>]\n", msg.version, msg.result_code, msg.error_code, ntohl(msg.framing_cap), ntohl(msg.bearer_cap), ntohs(msg.max_channels));
return post_msg(conn, &msg, sizeof(msg));
} | 367,419 |
0 | static int pptp_stop_ctrl_conn_rply(struct pptp_conn_t *conn)
{
struct pptp_stop_ctrl_conn *msg = (struct pptp_stop_ctrl_conn*)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Stop-Ctrl-Conn-Reply <Result %i> <Error %i>]\n", msg->reason_result, msg->error_code);
return -1;
} | static int pptp_stop_ctrl_conn_rply(struct pptp_conn_t *conn)
{
struct pptp_stop_ctrl_conn *msg = (struct pptp_stop_ctrl_conn*)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Stop-Ctrl-Conn-Reply <Result %i> <Error %i>]\n", msg->reason_result, msg->error_code);
return -1;
} | 367,420 |
0 | static int pptp_out_call_rqst(struct pptp_conn_t *conn)
{
struct pptp_out_call_rqst *msg = (struct pptp_out_call_rqst *)conn->in_buf;
struct sockaddr_pppox src_addr, dst_addr;
struct sockaddr_in addr;
socklen_t addrlen;
int pptp_sock;
if (conf_verbose)
log_ppp_info2("recv [PPTP Outgoing-Call-Request <Call-ID %x> <Call-Serial %x> <Min-BPS %i> <Max-BPS %i> <Bearer %x> <Framing %x> <Window-Size %i> <Delay %i>]\n", ntohs(msg->call_id), ntohs(msg->call_sernum), ntohl(msg->bps_min), ntohl(msg->bps_max), ntohl(msg->bearer), ntohl(msg->framing), ntohs(msg->recv_size), ntohs(msg->delay));
if (conn->state != STATE_ESTB) {
log_ppp_warn("unexpected PPTP_OUT_CALL_RQST\n");
if (send_pptp_out_call_rply(conn, msg, 0, PPTP_CALL_RES_GE, PPTP_GE_NOCONN))
return -1;
return 0;
}
memset(&src_addr, 0, sizeof(src_addr));
src_addr.sa_family = AF_PPPOX;
src_addr.sa_protocol = PX_PROTO_PPTP;
src_addr.sa_addr.pptp.call_id = 0;
addrlen = sizeof(addr);
getsockname(conn->hnd.fd, (struct sockaddr*)&addr, &addrlen);
src_addr.sa_addr.pptp.sin_addr = addr.sin_addr;
memset(&dst_addr, 0, sizeof(dst_addr));
dst_addr.sa_family = AF_PPPOX;
dst_addr.sa_protocol = PX_PROTO_PPTP;
dst_addr.sa_addr.pptp.call_id = htons(msg->call_id);
addrlen = sizeof(addr);
getpeername(conn->hnd.fd, (struct sockaddr*)&addr, &addrlen);
dst_addr.sa_addr.pptp.sin_addr = addr.sin_addr;
pptp_sock = socket(AF_PPPOX, SOCK_STREAM, PX_PROTO_PPTP);
if (pptp_sock < 0) {
log_ppp_error("failed to create PPTP socket (%s)\n", strerror(errno));
return -1;
}
fcntl(pptp_sock, F_SETFD, fcntl(pptp_sock, F_GETFD) | FD_CLOEXEC);
if (bind(pptp_sock, (struct sockaddr*)&src_addr, sizeof(src_addr))) {
log_ppp_error("failed to bind PPTP socket (%s)\n", strerror(errno));
close(pptp_sock);
return -1;
}
addrlen = sizeof(src_addr);
getsockname(pptp_sock, (struct sockaddr*)&src_addr, &addrlen);
if (connect(pptp_sock, (struct sockaddr*)&dst_addr, sizeof(dst_addr))) {
log_ppp_error("failed to connect PPTP socket (%s)\n", strerror(errno));
close(pptp_sock);
return -1;
}
if (send_pptp_out_call_rply(conn, msg, src_addr.sa_addr.pptp.call_id, PPTP_CALL_RES_OK, 0))
return -1;
conn->call_id = src_addr.sa_addr.pptp.call_id;
conn->peer_call_id = msg->call_id;
conn->ppp.fd = pptp_sock;
conn->ppp.ses.chan_name = _strdup(inet_ntoa(dst_addr.sa_addr.pptp.sin_addr));
triton_event_fire(EV_CTRL_STARTED, &conn->ppp.ses);
if (establish_ppp(&conn->ppp)) {
close(pptp_sock);
//if (send_pptp_stop_ctrl_conn_rqst(conn, 0, 0))
conn->state = STATE_FIN;
return -1;
}
conn->state = STATE_PPP;
__sync_sub_and_fetch(&stat_starting, 1);
__sync_add_and_fetch(&stat_active, 1);
if (conn->timeout_timer.tpd)
triton_timer_del(&conn->timeout_timer);
if (conf_echo_interval) {
conn->echo_timer.period = conf_echo_interval * 1000;
triton_timer_add(&conn->ctx, &conn->echo_timer, 0);
}
return 0;
} | static int pptp_out_call_rqst(struct pptp_conn_t *conn)
{
struct pptp_out_call_rqst *msg = (struct pptp_out_call_rqst *)conn->in_buf;
struct sockaddr_pppox src_addr, dst_addr;
struct sockaddr_in addr;
socklen_t addrlen;
int pptp_sock;
if (conf_verbose)
log_ppp_info2("recv [PPTP Outgoing-Call-Request <Call-ID %x> <Call-Serial %x> <Min-BPS %i> <Max-BPS %i> <Bearer %x> <Framing %x> <Window-Size %i> <Delay %i>]\n", ntohs(msg->call_id), ntohs(msg->call_sernum), ntohl(msg->bps_min), ntohl(msg->bps_max), ntohl(msg->bearer), ntohl(msg->framing), ntohs(msg->recv_size), ntohs(msg->delay));
if (conn->state != STATE_ESTB) {
log_ppp_warn("unexpected PPTP_OUT_CALL_RQST\n");
if (send_pptp_out_call_rply(conn, msg, 0, PPTP_CALL_RES_GE, PPTP_GE_NOCONN))
return -1;
return 0;
}
memset(&src_addr, 0, sizeof(src_addr));
src_addr.sa_family = AF_PPPOX;
src_addr.sa_protocol = PX_PROTO_PPTP;
src_addr.sa_addr.pptp.call_id = 0;
addrlen = sizeof(addr);
getsockname(conn->hnd.fd, (struct sockaddr*)&addr, &addrlen);
src_addr.sa_addr.pptp.sin_addr = addr.sin_addr;
memset(&dst_addr, 0, sizeof(dst_addr));
dst_addr.sa_family = AF_PPPOX;
dst_addr.sa_protocol = PX_PROTO_PPTP;
dst_addr.sa_addr.pptp.call_id = htons(msg->call_id);
addrlen = sizeof(addr);
getpeername(conn->hnd.fd, (struct sockaddr*)&addr, &addrlen);
dst_addr.sa_addr.pptp.sin_addr = addr.sin_addr;
pptp_sock = socket(AF_PPPOX, SOCK_STREAM, PX_PROTO_PPTP);
if (pptp_sock < 0) {
log_ppp_error("failed to create PPTP socket (%s)\n", strerror(errno));
return -1;
}
fcntl(pptp_sock, F_SETFD, fcntl(pptp_sock, F_GETFD) | FD_CLOEXEC);
if (bind(pptp_sock, (struct sockaddr*)&src_addr, sizeof(src_addr))) {
log_ppp_error("failed to bind PPTP socket (%s)\n", strerror(errno));
close(pptp_sock);
return -1;
}
addrlen = sizeof(src_addr);
getsockname(pptp_sock, (struct sockaddr*)&src_addr, &addrlen);
if (connect(pptp_sock, (struct sockaddr*)&dst_addr, sizeof(dst_addr))) {
log_ppp_error("failed to connect PPTP socket (%s)\n", strerror(errno));
close(pptp_sock);
return -1;
}
if (send_pptp_out_call_rply(conn, msg, src_addr.sa_addr.pptp.call_id, PPTP_CALL_RES_OK, 0))
return -1;
conn->call_id = src_addr.sa_addr.pptp.call_id;
conn->peer_call_id = msg->call_id;
conn->ppp.fd = pptp_sock;
conn->ppp.ses.chan_name = _strdup(inet_ntoa(dst_addr.sa_addr.pptp.sin_addr));
triton_event_fire(EV_CTRL_STARTED, &conn->ppp.ses);
if (establish_ppp(&conn->ppp)) {
close(pptp_sock);
conn->state = STATE_FIN;
return -1;
}
conn->state = STATE_PPP;
__sync_sub_and_fetch(&stat_starting, 1);
__sync_add_and_fetch(&stat_active, 1);
if (conn->timeout_timer.tpd)
triton_timer_del(&conn->timeout_timer);
if (conf_echo_interval) {
conn->echo_timer.period = conf_echo_interval * 1000;
triton_timer_add(&conn->ctx, &conn->echo_timer, 0);
}
return 0;
} | 367,421 |
0 | static int pptp_write(struct triton_md_handler_t *h)
{
struct pptp_conn_t *conn = container_of(h, typeof(*conn), hnd);
int n;
while (1) {
n = write(h->fd, conn->out_buf+conn->out_pos, conn->out_size-conn->out_pos);
if (n < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
n = 0;
else {
if (errno != EPIPE) {
if (conf_verbose)
log_ppp_info2("pptp: post_msg: %s\n", strerror(errno));
}
disconnect(conn);
return 1;
}
}
conn->out_pos += n;
if (conn->out_pos == conn->out_size) {
conn->out_pos = 0;
conn->out_size = 0;
triton_md_disable_handler(h, MD_MODE_WRITE);
return 0;
}
}
} | static int pptp_write(struct triton_md_handler_t *h)
{
struct pptp_conn_t *conn = container_of(h, typeof(*conn), hnd);
int n;
while (1) {
n = write(h->fd, conn->out_buf+conn->out_pos, conn->out_size-conn->out_pos);
if (n < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
n = 0;
else {
if (errno != EPIPE) {
if (conf_verbose)
log_ppp_info2("pptp: post_msg: %s\n", strerror(errno));
}
disconnect(conn);
return 1;
}
}
conn->out_pos += n;
if (conn->out_pos == conn->out_size) {
conn->out_pos = 0;
conn->out_size = 0;
triton_md_disable_handler(h, MD_MODE_WRITE);
return 0;
}
}
} | 367,422 |
0 | static int pptp_read(struct triton_md_handler_t *h)
{
struct pptp_conn_t *conn=container_of(h,typeof(*conn),hnd);
struct pptp_header *hdr=(struct pptp_header *)conn->in_buf;
int n;
while(1) {
n = read(h->fd, conn->in_buf + conn->in_size, PPTP_CTRL_SIZE_MAX - conn->in_size);
if (n < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
return 0;
log_ppp_error("pptp: read: %s\n",strerror(errno));
goto drop;
}
if (n == 0) {
if (conf_verbose)
log_ppp_info2("pptp: disconnect by peer\n");
goto drop;
}
conn->in_size += n;
if (conn->in_size >= sizeof(*hdr)) {
if (hdr->magic != htonl(PPTP_MAGIC)) {
log_ppp_error("pptp: invalid magic\n");
goto drop;
}
if (ntohs(hdr->length) >= PPTP_CTRL_SIZE_MAX) {
log_ppp_error("pptp: message is too long\n");
goto drop;
}
if (ntohs(hdr->length) > conn->in_size)
continue;
if (ntohs(hdr->length) <= conn->in_size) {
if (ntohs(hdr->length) != PPTP_CTRL_SIZE(ntohs(hdr->ctrl_type))) {
log_ppp_error("pptp: invalid message length\n");
goto drop;
}
if (process_packet(conn))
goto drop;
conn->in_size -= ntohs(hdr->length);
if (conn->in_size)
memmove(conn->in_buf, conn->in_buf + ntohs(hdr->length), conn->in_size);
}
}
}
drop:
disconnect(conn);
return 1;
} | static int pptp_read(struct triton_md_handler_t *h)
{
struct pptp_conn_t *conn=container_of(h,typeof(*conn),hnd);
struct pptp_header *hdr=(struct pptp_header *)conn->in_buf;
int n;
while(1) {
n = read(h->fd, conn->in_buf + conn->in_size, PPTP_CTRL_SIZE_MAX - conn->in_size);
if (n < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
return 0;
log_ppp_error("pptp: read: %s\n",strerror(errno));
goto drop;
}
if (n == 0) {
if (conf_verbose)
log_ppp_info2("pptp: disconnect by peer\n");
goto drop;
}
conn->in_size += n;
if (conn->in_size >= sizeof(*hdr)) {
if (hdr->magic != htonl(PPTP_MAGIC)) {
log_ppp_error("pptp: invalid magic\n");
goto drop;
}
if (ntohs(hdr->length) >= PPTP_CTRL_SIZE_MAX) {
log_ppp_error("pptp: message is too long\n");
goto drop;
}
if (ntohs(hdr->length) > conn->in_size)
continue;
if (ntohs(hdr->length) <= conn->in_size) {
if (ntohs(hdr->length) != PPTP_CTRL_SIZE(ntohs(hdr->ctrl_type))) {
log_ppp_error("pptp: invalid message length\n");
goto drop;
}
if (process_packet(conn))
goto drop;
conn->in_size -= ntohs(hdr->length);
if (conn->in_size)
memmove(conn->in_buf, conn->in_buf + ntohs(hdr->length), conn->in_size);
}
}
}
drop:
disconnect(conn);
return 1;
} | 367,423 |
0 | static int process_packet(struct pptp_conn_t *conn)
{
struct pptp_header *hdr = (struct pptp_header *)conn->in_buf;
switch(ntohs(hdr->ctrl_type))
{
case PPTP_START_CTRL_CONN_RQST:
return pptp_start_ctrl_conn_rqst(conn);
case PPTP_STOP_CTRL_CONN_RQST:
return pptp_stop_ctrl_conn_rqst(conn);
case PPTP_STOP_CTRL_CONN_RPLY:
return pptp_stop_ctrl_conn_rply(conn);
case PPTP_OUT_CALL_RQST:
return pptp_out_call_rqst(conn);
case PPTP_ECHO_RQST:
return pptp_echo_rqst(conn);
case PPTP_ECHO_RPLY:
return pptp_echo_rply(conn);
case PPTP_CALL_CLEAR_RQST:
return pptp_call_clear_rqst(conn);
case PPTP_SET_LINK_INFO:
if (conf_verbose)
log_ppp_info2("recv [PPTP Set-Link-Info]\n");
return 0;
default:
log_ppp_warn("recv [PPTP Unknown (%x)]\n", ntohs(hdr->ctrl_type));
}
return 0;
} | static int process_packet(struct pptp_conn_t *conn)
{
struct pptp_header *hdr = (struct pptp_header *)conn->in_buf;
switch(ntohs(hdr->ctrl_type))
{
case PPTP_START_CTRL_CONN_RQST:
return pptp_start_ctrl_conn_rqst(conn);
case PPTP_STOP_CTRL_CONN_RQST:
return pptp_stop_ctrl_conn_rqst(conn);
case PPTP_STOP_CTRL_CONN_RPLY:
return pptp_stop_ctrl_conn_rply(conn);
case PPTP_OUT_CALL_RQST:
return pptp_out_call_rqst(conn);
case PPTP_ECHO_RQST:
return pptp_echo_rqst(conn);
case PPTP_ECHO_RPLY:
return pptp_echo_rply(conn);
case PPTP_CALL_CLEAR_RQST:
return pptp_call_clear_rqst(conn);
case PPTP_SET_LINK_INFO:
if (conf_verbose)
log_ppp_info2("recv [PPTP Set-Link-Info]\n");
return 0;
default:
log_ppp_warn("recv [PPTP Unknown (%x)]\n", ntohs(hdr->ctrl_type));
}
return 0;
} | 367,424 |
0 | static int send_pptp_out_call_rply(struct pptp_conn_t *conn, struct pptp_out_call_rqst *rqst, int call_id, int res_code, int err_code)
{
struct pptp_out_call_rply msg = {
.header = PPTP_HEADER_CTRL(PPTP_OUT_CALL_RPLY),
.call_id = htons(call_id),
.call_id_peer = rqst->call_id,
.result_code = res_code,
.error_code = err_code,
.cause_code = 0,
.speed = rqst->bps_max,
.recv_size = rqst->recv_size,
.delay = 0,
.channel = 0,
};
if (conf_verbose)
log_ppp_info2("send [PPTP Outgoing-Call-Reply <Call-ID %x> <Peer-Call-ID %x> <Result %i> <Error %i> <Cause %i> <Speed %i> <Window-Size %i> <Delay %i> <Channel %x>]\n", ntohs(msg.call_id), ntohs(msg.call_id_peer), msg.result_code, msg.error_code, ntohs(msg.cause_code), ntohl(msg.speed), ntohs(msg.recv_size), ntohs(msg.delay), ntohl(msg.channel));
return post_msg(conn, &msg, sizeof(msg));
} | static int send_pptp_out_call_rply(struct pptp_conn_t *conn, struct pptp_out_call_rqst *rqst, int call_id, int res_code, int err_code)
{
struct pptp_out_call_rply msg = {
.header = PPTP_HEADER_CTRL(PPTP_OUT_CALL_RPLY),
.call_id = htons(call_id),
.call_id_peer = rqst->call_id,
.result_code = res_code,
.error_code = err_code,
.cause_code = 0,
.speed = rqst->bps_max,
.recv_size = rqst->recv_size,
.delay = 0,
.channel = 0,
};
if (conf_verbose)
log_ppp_info2("send [PPTP Outgoing-Call-Reply <Call-ID %x> <Peer-Call-ID %x> <Result %i> <Error %i> <Cause %i> <Speed %i> <Window-Size %i> <Delay %i> <Channel %x>]\n", ntohs(msg.call_id), ntohs(msg.call_id_peer), msg.result_code, msg.error_code, ntohs(msg.cause_code), ntohl(msg.speed), ntohs(msg.recv_size), ntohs(msg.delay), ntohl(msg.channel));
return post_msg(conn, &msg, sizeof(msg));
} | 367,425 |
0 | static int show_stat_exec(const char *cmd, char * const *fields, int fields_cnt, void *client)
{
cli_send(client, "pptp:\r\n");
cli_sendv(client," starting: %u\r\n", stat_starting);
cli_sendv(client," active: %u\r\n", stat_active);
return CLI_CMD_OK;
} | static int show_stat_exec(const char *cmd, char * const *fields, int fields_cnt, void *client)
{
cli_send(client, "pptp:\r\n");
cli_sendv(client," starting: %u\r\n", stat_starting);
cli_sendv(client," active: %u\r\n", stat_active);
return CLI_CMD_OK;
} | 367,426 |
0 | static int pptp_call_clear_rqst(struct pptp_conn_t *conn)
{
struct pptp_call_clear_rqst *rqst = (struct pptp_call_clear_rqst *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Call-Clear-Request <Call-ID %x>]\n", ntohs(rqst->call_id));
if (conn->echo_timer.tpd)
triton_timer_del(&conn->echo_timer);
if (conn->state == STATE_PPP) {
__sync_sub_and_fetch(&stat_active, 1);
conn->state = STATE_CLOSE;
ap_session_terminate(&conn->ppp.ses, TERM_USER_REQUEST, 1);
}
return send_pptp_call_disconnect_notify(conn, 4);
} | static int pptp_call_clear_rqst(struct pptp_conn_t *conn)
{
struct pptp_call_clear_rqst *rqst = (struct pptp_call_clear_rqst *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Call-Clear-Request <Call-ID %x>]\n", ntohs(rqst->call_id));
if (conn->echo_timer.tpd)
triton_timer_del(&conn->echo_timer);
if (conn->state == STATE_PPP) {
__sync_sub_and_fetch(&stat_active, 1);
conn->state = STATE_CLOSE;
ap_session_terminate(&conn->ppp.ses, TERM_USER_REQUEST, 1);
}
return send_pptp_call_disconnect_notify(conn, 4);
} | 367,427 |
0 | static void ppp_finished(struct ap_session *ses)
{
struct ppp_t *ppp = container_of(ses, typeof(*ppp), ses);
struct pptp_conn_t *conn = container_of(ppp, typeof(*conn), ppp);
if (conn->state != STATE_CLOSE) {
log_ppp_debug("pptp: ppp finished\n");
conn->state = STATE_CLOSE;
__sync_sub_and_fetch(&stat_active, 1);
if (send_pptp_call_disconnect_notify(conn, 3))
triton_context_call(&conn->ctx, (void (*)(void*))disconnect, conn);
else if (send_pptp_stop_ctrl_conn_rqst(conn, 0))
triton_context_call(&conn->ctx, (void (*)(void*))disconnect, conn);
else {
if (conn->timeout_timer.tpd)
triton_timer_mod(&conn->timeout_timer, 0);
else
triton_timer_add(&conn->ctx, &conn->timeout_timer, 0);
}
}
} | static void ppp_finished(struct ap_session *ses)
{
struct ppp_t *ppp = container_of(ses, typeof(*ppp), ses);
struct pptp_conn_t *conn = container_of(ppp, typeof(*conn), ppp);
if (conn->state != STATE_CLOSE) {
log_ppp_debug("pptp: ppp finished\n");
conn->state = STATE_CLOSE;
__sync_sub_and_fetch(&stat_active, 1);
if (send_pptp_call_disconnect_notify(conn, 3))
triton_context_call(&conn->ctx, (void (*)(void*))disconnect, conn);
else if (send_pptp_stop_ctrl_conn_rqst(conn, 0))
triton_context_call(&conn->ctx, (void (*)(void*))disconnect, conn);
else {
if (conn->timeout_timer.tpd)
triton_timer_mod(&conn->timeout_timer, 0);
else
triton_timer_add(&conn->ctx, &conn->timeout_timer, 0);
}
}
} | 367,428 |
0 | static int pptp_start_ctrl_conn_rqst(struct pptp_conn_t *conn)
{
struct pptp_start_ctrl_conn *msg = (struct pptp_start_ctrl_conn *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Start-Ctrl-Conn-Request <Version %i> <Framing %x> <Bearer %x> <Max-Chan %i>]\n", msg->version, ntohl(msg->framing_cap), ntohl(msg->bearer_cap), ntohs(msg->max_channels));
if (conn->state != STATE_IDLE) {
log_ppp_warn("unexpected PPTP_START_CTRL_CONN_RQST\n");
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_EXISTS, 0))
return -1;
return 0;
}
if (msg->version != htons(PPTP_VERSION)) {
log_ppp_warn("PPTP version mismatch: expecting %x, received %" PRIu32 "\n", PPTP_VERSION, msg->version);
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_PROTOCOL, 0))
return -1;
return 0;
}
/*if (!(ntohl(msg->framing_cap) & PPTP_FRAME_SYNC)) {
log_ppp_warn("connection does not supports sync mode\n");
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_GE, 0))
return -1;
return 0;
}*/
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_SUCCESS, 0))
return -1;
if (conn->timeout_timer.tpd)
triton_timer_mod(&conn->timeout_timer, 0);
conn->state = STATE_ESTB;
return 0;
} | static int pptp_start_ctrl_conn_rqst(struct pptp_conn_t *conn)
{
struct pptp_start_ctrl_conn *msg = (struct pptp_start_ctrl_conn *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Start-Ctrl-Conn-Request <Version %i> <Framing %x> <Bearer %x> <Max-Chan %i>]\n", msg->version, ntohl(msg->framing_cap), ntohl(msg->bearer_cap), ntohs(msg->max_channels));
if (conn->state != STATE_IDLE) {
log_ppp_warn("unexpected PPTP_START_CTRL_CONN_RQST\n");
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_EXISTS, 0))
return -1;
return 0;
}
if (msg->version != htons(PPTP_VERSION)) {
log_ppp_warn("PPTP version mismatch: expecting %x, received %" PRIu32 "\n", PPTP_VERSION, msg->version);
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_PROTOCOL, 0))
return -1;
return 0;
}
if (send_pptp_start_ctrl_conn_rply(conn, PPTP_CONN_RES_SUCCESS, 0))
return -1;
if (conn->timeout_timer.tpd)
triton_timer_mod(&conn->timeout_timer, 0);
conn->state = STATE_ESTB;
return 0;
} | 367,429 |
0 | static void pptp_timeout(struct triton_timer_t *t)
{
struct pptp_conn_t *conn = container_of(t, typeof(*conn), timeout_timer);
disconnect(conn);
} | static void pptp_timeout(struct triton_timer_t *t)
{
struct pptp_conn_t *conn = container_of(t, typeof(*conn), timeout_timer);
disconnect(conn);
} | 367,430 |
0 | static int pptp_stop_ctrl_conn_rqst(struct pptp_conn_t *conn)
{
struct pptp_stop_ctrl_conn *msg = (struct pptp_stop_ctrl_conn *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Stop-Ctrl-Conn-Request <Reason %i>]\n", msg->reason_result);
send_pptp_stop_ctrl_conn_rply(conn, PPTP_CONN_STOP_OK, 0);
return -1;
} | static int pptp_stop_ctrl_conn_rqst(struct pptp_conn_t *conn)
{
struct pptp_stop_ctrl_conn *msg = (struct pptp_stop_ctrl_conn *)conn->in_buf;
if (conf_verbose)
log_ppp_info2("recv [PPTP Stop-Ctrl-Conn-Request <Reason %i>]\n", msg->reason_result);
send_pptp_stop_ctrl_conn_rply(conn, PPTP_CONN_STOP_OK, 0);
return -1;
} | 367,433 |
0 | static int pptp_connect(struct triton_md_handler_t *h)
{
struct sockaddr_in addr;
socklen_t size = sizeof(addr);
int sock;
struct pptp_conn_t *conn;
while(1) {
sock = accept(h->fd, (struct sockaddr *)&addr, &size);
if (sock < 0) {
if (errno == EAGAIN)
return 0;
log_error("pptp: accept failed: %s\n", strerror(errno));
continue;
}
if (ap_shutdown) {
close(sock);
continue;
}
if (conf_max_starting && ap_session_stat.starting >= conf_max_starting) {
close(sock);
continue;
}
if (conf_max_sessions && ap_session_stat.active + ap_session_stat.starting >= conf_max_sessions) {
close(sock);
continue;
}
if (triton_module_loaded("connlimit") && connlimit_check(cl_key_from_ipv4(addr.sin_addr.s_addr))) {
close(sock);
continue;
}
log_info2("pptp: new connection from %s\n", inet_ntoa(addr.sin_addr));
if (iprange_client_check(addr.sin_addr.s_addr)) {
log_warn("pptp: IP is out of client-ip-range, droping connection...\n");
close(sock);
continue;
}
if (fcntl(sock, F_SETFL, O_NONBLOCK)) {
log_error("pptp: failed to set nonblocking mode: %s, closing connection...\n", strerror(errno));
close(sock);
continue;
}
conn = mempool_alloc(conn_pool);
memset(conn, 0, sizeof(*conn));
conn->hnd.fd = sock;
conn->hnd.read = pptp_read;
conn->hnd.write = pptp_write;
conn->ctx.close = pptp_close;
conn->ctx.before_switch = pptp_ctx_switch;
conn->in_buf = _malloc(PPTP_CTRL_SIZE_MAX);
conn->out_buf = _malloc(PPTP_CTRL_SIZE_MAX);
conn->timeout_timer.expire = pptp_timeout;
conn->timeout_timer.period = conf_timeout * 1000;
conn->echo_timer.expire = pptp_send_echo;
conn->ctrl.ctx = &conn->ctx;
conn->ctrl.started = ppp_started;
conn->ctrl.finished = ppp_finished;
conn->ctrl.terminate = ppp_terminate;
conn->ctrl.max_mtu = conf_ppp_max_mtu;
conn->ctrl.type = CTRL_TYPE_PPTP;
conn->ctrl.ppp = 1;
conn->ctrl.name = "pptp";
conn->ctrl.ifname = "";
conn->ctrl.mppe = conf_mppe;
conn->ctrl.calling_station_id = _malloc(17);
conn->ctrl.called_station_id = _malloc(17);
u_inet_ntoa(addr.sin_addr.s_addr, conn->ctrl.calling_station_id);
getsockname(sock, &addr, &size);
u_inet_ntoa(addr.sin_addr.s_addr, conn->ctrl.called_station_id);
ppp_init(&conn->ppp);
conn->ppp.ses.ctrl = &conn->ctrl;
if (conf_ip_pool)
conn->ppp.ses.ipv4_pool_name = _strdup(conf_ip_pool);
if (conf_ipv6_pool)
conn->ppp.ses.ipv6_pool_name = _strdup(conf_ipv6_pool);
if (conf_dpv6_pool)
conn->ppp.ses.dpv6_pool_name = _strdup(conf_dpv6_pool);
if (conf_ifname)
conn->ppp.ses.ifname_rename = _strdup(conf_ifname);
triton_context_register(&conn->ctx, &conn->ppp.ses);
triton_md_register_handler(&conn->ctx, &conn->hnd);
triton_md_enable_handler(&conn->hnd,MD_MODE_READ);
triton_timer_add(&conn->ctx, &conn->timeout_timer, 0);
triton_context_wakeup(&conn->ctx);
triton_event_fire(EV_CTRL_STARTING, &conn->ppp.ses);
__sync_add_and_fetch(&stat_starting, 1);
}
return 0;
} | static int pptp_connect(struct triton_md_handler_t *h)
{
struct sockaddr_in addr;
socklen_t size = sizeof(addr);
int sock;
struct pptp_conn_t *conn;
while(1) {
sock = accept(h->fd, (struct sockaddr *)&addr, &size);
if (sock < 0) {
if (errno == EAGAIN)
return 0;
log_error("pptp: accept failed: %s\n", strerror(errno));
continue;
}
if (ap_shutdown) {
close(sock);
continue;
}
if (conf_max_starting && ap_session_stat.starting >= conf_max_starting) {
close(sock);
continue;
}
if (conf_max_sessions && ap_session_stat.active + ap_session_stat.starting >= conf_max_sessions) {
close(sock);
continue;
}
if (triton_module_loaded("connlimit") && connlimit_check(cl_key_from_ipv4(addr.sin_addr.s_addr))) {
close(sock);
continue;
}
log_info2("pptp: new connection from %s\n", inet_ntoa(addr.sin_addr));
if (iprange_client_check(addr.sin_addr.s_addr)) {
log_warn("pptp: IP is out of client-ip-range, droping connection...\n");
close(sock);
continue;
}
if (fcntl(sock, F_SETFL, O_NONBLOCK)) {
log_error("pptp: failed to set nonblocking mode: %s, closing connection...\n", strerror(errno));
close(sock);
continue;
}
conn = mempool_alloc(conn_pool);
memset(conn, 0, sizeof(*conn));
conn->hnd.fd = sock;
conn->hnd.read = pptp_read;
conn->hnd.write = pptp_write;
conn->ctx.close = pptp_close;
conn->ctx.before_switch = pptp_ctx_switch;
conn->in_buf = _malloc(PPTP_CTRL_SIZE_MAX);
conn->out_buf = _malloc(PPTP_CTRL_SIZE_MAX);
conn->timeout_timer.expire = pptp_timeout;
conn->timeout_timer.period = conf_timeout * 1000;
conn->echo_timer.expire = pptp_send_echo;
conn->ctrl.ctx = &conn->ctx;
conn->ctrl.started = ppp_started;
conn->ctrl.finished = ppp_finished;
conn->ctrl.terminate = ppp_terminate;
conn->ctrl.max_mtu = conf_ppp_max_mtu;
conn->ctrl.type = CTRL_TYPE_PPTP;
conn->ctrl.ppp = 1;
conn->ctrl.name = "pptp";
conn->ctrl.ifname = "";
conn->ctrl.mppe = conf_mppe;
conn->ctrl.calling_station_id = _malloc(17);
conn->ctrl.called_station_id = _malloc(17);
u_inet_ntoa(addr.sin_addr.s_addr, conn->ctrl.calling_station_id);
getsockname(sock, &addr, &size);
u_inet_ntoa(addr.sin_addr.s_addr, conn->ctrl.called_station_id);
ppp_init(&conn->ppp);
conn->ppp.ses.ctrl = &conn->ctrl;
if (conf_ip_pool)
conn->ppp.ses.ipv4_pool_name = _strdup(conf_ip_pool);
if (conf_ipv6_pool)
conn->ppp.ses.ipv6_pool_name = _strdup(conf_ipv6_pool);
if (conf_dpv6_pool)
conn->ppp.ses.dpv6_pool_name = _strdup(conf_dpv6_pool);
if (conf_ifname)
conn->ppp.ses.ifname_rename = _strdup(conf_ifname);
triton_context_register(&conn->ctx, &conn->ppp.ses);
triton_md_register_handler(&conn->ctx, &conn->hnd);
triton_md_enable_handler(&conn->hnd,MD_MODE_READ);
triton_timer_add(&conn->ctx, &conn->timeout_timer, 0);
triton_context_wakeup(&conn->ctx);
triton_event_fire(EV_CTRL_STARTING, &conn->ppp.ses);
__sync_add_and_fetch(&stat_starting, 1);
}
return 0;
} | 367,434 |
0 | void __export pptp_get_stat(unsigned int **starting, unsigned int **active)
{
*starting = &stat_starting;
*active = &stat_active;
} | void __export pptp_get_stat(unsigned int **starting, unsigned int **active)
{
*starting = &stat_starting;
*active = &stat_active;
} | 367,435 |
0 | static int pptp_echo_rqst(struct pptp_conn_t *conn)
{
struct pptp_echo_rqst *in_msg = (struct pptp_echo_rqst *)conn->in_buf;
struct pptp_echo_rply out_msg = {
.header = PPTP_HEADER_CTRL(PPTP_ECHO_RPLY),
.identifier = in_msg->identifier,
.result_code = 1,
};
if (conf_verbose) {
log_ppp_debug("recv [PPTP Echo-Request <Identifier %x>]\n", in_msg->identifier);
log_ppp_debug("send [PPTP Echo-Reply <Identifier %x>]\n", out_msg.identifier);
}
if (conn->echo_timer.tpd)
triton_timer_mod(&conn->echo_timer, 0);
return post_msg(conn, &out_msg, sizeof(out_msg));
} | static int pptp_echo_rqst(struct pptp_conn_t *conn)
{
struct pptp_echo_rqst *in_msg = (struct pptp_echo_rqst *)conn->in_buf;
struct pptp_echo_rply out_msg = {
.header = PPTP_HEADER_CTRL(PPTP_ECHO_RPLY),
.identifier = in_msg->identifier,
.result_code = 1,
};
if (conf_verbose) {
log_ppp_debug("recv [PPTP Echo-Request <Identifier %x>]\n", in_msg->identifier);
log_ppp_debug("send [PPTP Echo-Reply <Identifier %x>]\n", out_msg.identifier);
}
if (conn->echo_timer.tpd)
triton_timer_mod(&conn->echo_timer, 0);
return post_msg(conn, &out_msg, sizeof(out_msg));
} | 367,436 |
0 | static void pptp_send_echo(struct triton_timer_t *t)
{
struct pptp_conn_t *conn = container_of(t, typeof(*conn), echo_timer);
struct pptp_echo_rqst msg = {
.header = PPTP_HEADER_CTRL(PPTP_ECHO_RQST),
};
if (++conn->echo_sent == conf_echo_failure) {
log_ppp_warn("pptp: no echo reply\n");
disconnect(conn);
return;
}
msg.identifier = random();
if (conf_verbose)
log_ppp_debug("send [PPTP Echo-Request <Identifier %x>]\n", msg.identifier);
if (post_msg(conn, &msg, sizeof(msg)))
disconnect(conn);
} | static void pptp_send_echo(struct triton_timer_t *t)
{
struct pptp_conn_t *conn = container_of(t, typeof(*conn), echo_timer);
struct pptp_echo_rqst msg = {
.header = PPTP_HEADER_CTRL(PPTP_ECHO_RQST),
};
if (++conn->echo_sent == conf_echo_failure) {
log_ppp_warn("pptp: no echo reply\n");
disconnect(conn);
return;
}
msg.identifier = random();
if (conf_verbose)
log_ppp_debug("send [PPTP Echo-Request <Identifier %x>]\n", msg.identifier);
if (post_msg(conn, &msg, sizeof(msg)))
disconnect(conn);
} | 367,437 |
0 | static int send_pptp_call_disconnect_notify(struct pptp_conn_t *conn, int result)
{
struct pptp_call_clear_ntfy msg = {
.header = PPTP_HEADER_CTRL(PPTP_CALL_CLEAR_NTFY),
.call_id = htons(conn->peer_call_id),
.result_code = result,
.error_code = 0,
.cause_code = 0,
};
if (conf_verbose)
log_ppp_info2("send [PPTP Call-Disconnect-Notify <Call-ID %x> <Result %i> <Error %i> <Cause %i>]\n", ntohs(msg.call_id), msg.result_code, msg.error_code, msg.cause_code);
return post_msg(conn, &msg, sizeof(msg));
} | static int send_pptp_call_disconnect_notify(struct pptp_conn_t *conn, int result)
{
struct pptp_call_clear_ntfy msg = {
.header = PPTP_HEADER_CTRL(PPTP_CALL_CLEAR_NTFY),
.call_id = htons(conn->peer_call_id),
.result_code = result,
.error_code = 0,
.cause_code = 0,
};
if (conf_verbose)
log_ppp_info2("send [PPTP Call-Disconnect-Notify <Call-ID %x> <Result %i> <Error %i> <Cause %i>]\n", ntohs(msg.call_id), msg.result_code, msg.error_code, msg.cause_code);
return post_msg(conn, &msg, sizeof(msg));
} | 367,438 |
0 | static void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */
const BN_ULONG *base, /* [2][20] */
const BN_ULONG *exp[2], /* 2x16 */
const BN_ULONG *m, /* [2][20] */
const BN_ULONG *rr, /* [2][20] */
const BN_ULONG k0[2])
{
# define BITSIZE_MODULUS (1024)
# define EXP_WIN_SIZE (5)
# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
/*
* Number of digits (64-bit words) in redundant representation to handle
* modulus bits
*/
# define RED_DIGITS (20)
# define EXP_DIGITS (16)
# define DAMM ossl_rsaz_amm52x20_x2_256
/*
* Squaring is done using multiplication now. That can be a subject of
* optimization in future.
*/
# define DAMS(r,a,m,k0) \
ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
/* Allocate stack for red(undant) result Y and multiplier X */
ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
/* Allocate expanded exponent */
ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
/* Pre-computed table of base powers */
ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
int idx;
memset(red_Y, 0, sizeof(red_Y));
memset(red_table, 0, sizeof(red_table));
memset(red_X, 0, sizeof(red_X));
/*
* Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
* table[0] = mont(x^0) = mont(1)
* table[1] = mont(x^1) = mont(x)
*/
red_X[0][0] = 1;
red_X[1][0] = 1;
DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
DAMM(red_table[1][0], base, rr, m, k0);
for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
}
/* Copy and expand exponents */
memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
expz[0][EXP_DIGITS] = 0;
memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
expz[1][EXP_DIGITS] = 0;
/* Exponentiation */
{
const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
BN_ULONG table_idx_mask = EXP_WIN_MASK;
int exp_bit_no = BITSIZE_MODULUS - rem;
int exp_chunk_no = exp_bit_no / 64;
int exp_chunk_shift = exp_bit_no % 64;
BN_ULONG red_table_idx_0, red_table_idx_1;
/*
* If rem == 0, then
* exp_bit_no = modulus_bitsize - exp_win_size
* However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
* which is { 4, 1, 3 } respectively.
*
* If this assertion ever fails the fix above is easy.
*/
OPENSSL_assert(rem != 0);
/* Process 1-st exp window - just init result */
red_table_idx_0 = expz[0][exp_chunk_no];
red_table_idx_1 = expz[1][exp_chunk_no];
/*
* The function operates with fixed moduli sizes divisible by 64,
* thus table index here is always in supported range [0, EXP_WIN_SIZE).
*/
red_table_idx_0 >>= exp_chunk_shift;
red_table_idx_1 >>= exp_chunk_shift;
ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
(int)red_table_idx_0, 0);
ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
(int)red_table_idx_1, 1);
/* Process other exp windows */
for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
/* Extract pre-computed multiplier from the table */
{
BN_ULONG T;
exp_chunk_no = exp_bit_no / 64;
exp_chunk_shift = exp_bit_no % 64;
{
red_table_idx_0 = expz[0][exp_chunk_no];
T = expz[0][exp_chunk_no + 1];
red_table_idx_0 >>= exp_chunk_shift;
/*
* Get additional bits from then next quadword
* when 64-bit boundaries are crossed.
*/
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
T <<= (64 - exp_chunk_shift);
red_table_idx_0 ^= T;
}
red_table_idx_0 &= table_idx_mask;
ossl_extract_multiplier_2x20_win5(red_X[0],
(const BN_ULONG*)red_table,
(int)red_table_idx_0, 0);
}
{
red_table_idx_1 = expz[1][exp_chunk_no];
T = expz[1][exp_chunk_no + 1];
red_table_idx_1 >>= exp_chunk_shift;
/*
* Get additional bits from then next quadword
* when 64-bit boundaries are crossed.
*/
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
T <<= (64 - exp_chunk_shift);
red_table_idx_1 ^= T;
}
red_table_idx_1 &= table_idx_mask;
ossl_extract_multiplier_2x20_win5(red_X[1],
(const BN_ULONG*)red_table,
(int)red_table_idx_1, 1);
}
}
/* Series of squaring */
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
}
}
/*
*
* NB: After the last AMM of exponentiation in Montgomery domain, the result
* may be 1025-bit, but the conversion out of Montgomery domain performs an
* AMM(x,1) which guarantees that the final result is less than |m|, so no
* conditional subtraction is needed here. See "Efficient Software
* Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
*/
/* Convert result back in regular 2^52 domain */
memset(red_X, 0, sizeof(red_X));
red_X[0][0] = 1;
red_X[1][0] = 1;
DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
/* Clear exponents */
OPENSSL_cleanse(expz, sizeof(expz));
OPENSSL_cleanse(red_Y, sizeof(red_Y));
# undef DAMS
# undef DAMM
# undef EXP_DIGITS
# undef RED_DIGITS
# undef EXP_WIN_MASK
# undef EXP_WIN_SIZE
# undef BITSIZE_MODULUS
} | static void RSAZ_exp52x20_x2_256(BN_ULONG *out,
const BN_ULONG *base,
const BN_ULONG *exp[2],
const BN_ULONG *m,
const BN_ULONG *rr,
const BN_ULONG k0[2])
{
# define BITSIZE_MODULUS (1024)
# define EXP_WIN_SIZE (5)
# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
# define RED_DIGITS (20)
# define EXP_DIGITS (16)
# define DAMM ossl_rsaz_amm52x20_x2_256
# define DAMS(r,a,m,k0) \
ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
int idx;
memset(red_Y, 0, sizeof(red_Y));
memset(red_table, 0, sizeof(red_table));
memset(red_X, 0, sizeof(red_X));
red_X[0][0] = 1;
red_X[1][0] = 1;
DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
DAMM(red_table[1][0], base, rr, m, k0);
for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
}
memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
expz[0][EXP_DIGITS] = 0;
memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
expz[1][EXP_DIGITS] = 0;
{
const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
BN_ULONG table_idx_mask = EXP_WIN_MASK;
int exp_bit_no = BITSIZE_MODULUS - rem;
int exp_chunk_no = exp_bit_no / 64;
int exp_chunk_shift = exp_bit_no % 64;
BN_ULONG red_table_idx_0, red_table_idx_1;
OPENSSL_assert(rem != 0);
red_table_idx_0 = expz[0][exp_chunk_no];
red_table_idx_1 = expz[1][exp_chunk_no];
red_table_idx_0 >>= exp_chunk_shift;
red_table_idx_1 >>= exp_chunk_shift;
ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
(int)red_table_idx_0, 0);
ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
(int)red_table_idx_1, 1);
for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
{
BN_ULONG T;
exp_chunk_no = exp_bit_no / 64;
exp_chunk_shift = exp_bit_no % 64;
{
red_table_idx_0 = expz[0][exp_chunk_no];
T = expz[0][exp_chunk_no + 1];
red_table_idx_0 >>= exp_chunk_shift;
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
T <<= (64 - exp_chunk_shift);
red_table_idx_0 ^= T;
}
red_table_idx_0 &= table_idx_mask;
ossl_extract_multiplier_2x20_win5(red_X[0],
(const BN_ULONG*)red_table,
(int)red_table_idx_0, 0);
}
{
red_table_idx_1 = expz[1][exp_chunk_no];
T = expz[1][exp_chunk_no + 1];
red_table_idx_1 >>= exp_chunk_shift;
if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
T <<= (64 - exp_chunk_shift);
red_table_idx_1 ^= T;
}
red_table_idx_1 &= table_idx_mask;
ossl_extract_multiplier_2x20_win5(red_X[1],
(const BN_ULONG*)red_table,
(int)red_table_idx_1, 1);
}
}
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
}
}
memset(red_X, 0, sizeof(red_X));
red_X[0][0] = 1;
red_X[1][0] = 1;
DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
OPENSSL_cleanse(expz, sizeof(expz));
OPENSSL_cleanse(red_Y, sizeof(red_Y));
# undef DAMS
# undef DAMM
# undef EXP_DIGITS
# undef RED_DIGITS
# undef EXP_WIN_MASK
# undef EXP_WIN_SIZE
# undef BITSIZE_MODULUS
} | 367,439 |
0 | int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
const BN_ULONG *base1,
const BN_ULONG *exp1,
const BN_ULONG *m1,
const BN_ULONG *rr1,
BN_ULONG k0_1,
BN_ULONG *res2,
const BN_ULONG *base2,
const BN_ULONG *exp2,
const BN_ULONG *m2,
const BN_ULONG *rr2,
BN_ULONG k0_2,
int factor_size)
{
int ret = 0;
/*
* Number of word-size (BN_ULONG) digits to store exponent in redundant
* representation.
*/
int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
BN_ULONG *base1_red, *m1_red, *rr1_red;
BN_ULONG *base2_red, *m2_red, *rr2_red;
BN_ULONG *coeff_red;
BN_ULONG *storage = NULL;
BN_ULONG *storage_aligned = NULL;
BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
/* AMM = Almost Montgomery Multiplication */
AMM52 amm = NULL;
/* Dual (2-exps in parallel) exponentiation */
EXP52_x2 exp_x2 = NULL;
const BN_ULONG *exp[2] = {0};
BN_ULONG k0[2] = {0};
/* Only 1024-bit factor size is supported now */
switch (factor_size) {
case 1024:
amm = ossl_rsaz_amm52x20_x1_256;
exp_x2 = RSAZ_exp52x20_x2_256;
break;
default:
goto err;
}
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
if (storage == NULL)
goto err;
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
/* Memory layout for red(undant) representations */
base1_red = storage_aligned;
base2_red = storage_aligned + 1 * exp_digits;
m1_red = storage_aligned + 2 * exp_digits;
m2_red = storage_aligned + 3 * exp_digits;
rr1_red = storage_aligned + 4 * exp_digits;
rr2_red = storage_aligned + 5 * exp_digits;
coeff_red = storage_aligned + 6 * exp_digits;
/* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
to_words52(base1_red, exp_digits, base1, factor_size);
to_words52(base2_red, exp_digits, base2, factor_size);
to_words52(m1_red, exp_digits, m1, factor_size);
to_words52(m2_red, exp_digits, m2, factor_size);
to_words52(rr1_red, exp_digits, rr1, factor_size);
to_words52(rr2_red, exp_digits, rr2, factor_size);
/*
* Compute target domain Montgomery converters RR' for each modulus
* based on precomputed original domain's RR.
*
* RR -> RR' transformation steps:
* (1) coeff = 2^k
* (2) t = AMM(RR,RR) = RR^2 / R' mod m
* (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
* where
* k = 4 * (52 * digits52 - modlen)
* R = 2^(64 * ceil(modlen/64)) mod m
* RR = R^2 mod M
* R' = 2^(52 * ceil(modlen/52)) mod m
*
* modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
*/
memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
/* (1) in reduced domain representation */
set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
exp[0] = exp1;
exp[1] = exp2;
k0[0] = k0_1;
k0[1] = k0_2;
exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
/* Convert rr_i back to regular radix */
from_words52(res1, factor_size, rr1_red);
from_words52(res2, factor_size, rr2_red);
/* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
factor_size /= sizeof(BN_ULONG) * 8;
bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
ret = 1;
err:
if (storage != NULL) {
OPENSSL_cleanse(storage, storage_len_bytes);
OPENSSL_free(storage);
}
return ret;
} | int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
const BN_ULONG *base1,
const BN_ULONG *exp1,
const BN_ULONG *m1,
const BN_ULONG *rr1,
BN_ULONG k0_1,
BN_ULONG *res2,
const BN_ULONG *base2,
const BN_ULONG *exp2,
const BN_ULONG *m2,
const BN_ULONG *rr2,
BN_ULONG k0_2,
int factor_size)
{
int ret = 0;
int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
BN_ULONG *base1_red, *m1_red, *rr1_red;
BN_ULONG *base2_red, *m2_red, *rr2_red;
BN_ULONG *coeff_red;
BN_ULONG *storage = NULL;
BN_ULONG *storage_aligned = NULL;
BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
AMM52 amm = NULL;
EXP52_x2 exp_x2 = NULL;
const BN_ULONG *exp[2] = {0};
BN_ULONG k0[2] = {0};
switch (factor_size) {
case 1024:
amm = ossl_rsaz_amm52x20_x1_256;
exp_x2 = RSAZ_exp52x20_x2_256;
break;
default:
goto err;
}
storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
if (storage == NULL)
goto err;
storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
base1_red = storage_aligned;
base2_red = storage_aligned + 1 * exp_digits;
m1_red = storage_aligned + 2 * exp_digits;
m2_red = storage_aligned + 3 * exp_digits;
rr1_red = storage_aligned + 4 * exp_digits;
rr2_red = storage_aligned + 5 * exp_digits;
coeff_red = storage_aligned + 6 * exp_digits;
to_words52(base1_red, exp_digits, base1, factor_size);
to_words52(base2_red, exp_digits, base2, factor_size);
to_words52(m1_red, exp_digits, m1, factor_size);
to_words52(m2_red, exp_digits, m2, factor_size);
to_words52(rr1_red, exp_digits, rr1, factor_size);
to_words52(rr2_red, exp_digits, rr2, factor_size);
memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1);
amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1);
amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2);
amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2);
exp[0] = exp1;
exp[1] = exp2;
k0[0] = k0_1;
k0[1] = k0_2;
exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
from_words52(res1, factor_size, rr1_red);
from_words52(res2, factor_size, rr2_red);
factor_size /= sizeof(BN_ULONG) * 8;
bn_reduce_once_in_place(res1, 0, m1, storage, factor_size);
bn_reduce_once_in_place(res2, 0, m2, storage, factor_size);
ret = 1;
err:
if (storage != NULL) {
OPENSSL_cleanse(storage, storage_len_bytes);
OPENSSL_free(storage);
}
return ret;
} | 367,440 |
0 | static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
{
int i;
int out_len = BITS2WORD64_SIZE(out_bitsize);
assert(out != NULL);
assert(in != NULL);
for (i = 0; i < out_len; i++)
out[i] = 0;
{
uint8_t *out_str = (uint8_t *)out;
for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
(*(uint64_t *)out_str) = in[0];
out_str += 6;
(*(uint64_t *)out_str) ^= in[1] << 4;
out_str += 7;
}
if (out_bitsize > DIGIT_SIZE) {
put_digit52(out_str, 7, in[0]);
out_str += 6;
out_bitsize -= DIGIT_SIZE;
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
(in[1] << 4 | in[0] >> 48));
} else if (out_bitsize) {
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
}
}
} | static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
{
int i;
int out_len = BITS2WORD64_SIZE(out_bitsize);
assert(out != NULL);
assert(in != NULL);
for (i = 0; i < out_len; i++)
out[i] = 0;
{
uint8_t *out_str = (uint8_t *)out;
for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
(*(uint64_t *)out_str) = in[0];
out_str += 6;
(*(uint64_t *)out_str) ^= in[1] << 4;
out_str += 7;
}
if (out_bitsize > DIGIT_SIZE) {
put_digit52(out_str, 7, in[0]);
out_str += 6;
out_bitsize -= DIGIT_SIZE;
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
(in[1] << 4 | in[0] >> 48));
} else if (out_bitsize) {
put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
}
}
} | 367,441 |
0 | static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
{
uint64_t digit = 0;
assert(in != NULL);
for (; in_len > 0; in_len--) {
digit <<= 8;
digit += (uint64_t)(in[in_len - 1]);
}
return digit;
} | static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
{
uint64_t digit = 0;
assert(in != NULL);
for (; in_len > 0; in_len--) {
digit <<= 8;
digit += (uint64_t)(in[in_len - 1]);
}
return digit;
} | 367,442 |
0 | void Dispatcher::onEvent(cl_event event, cl_int status, Device & d) {
if (status != CL_COMPLETE) {
std::cout << "Dispatcher::onEvent - Got bad status: " << status << std::endl;
}
else if (d.m_eventFinished != NULL) {
initContinue(d);
} else {
++d.m_round;
handleResult(d);
bool bDispatch = true;
{
std::lock_guard<std::mutex> lock(m_mutex);
d.m_speed.sample(m_size);
printSpeed();
if( m_quit ) {
bDispatch = false;
if(--m_countRunning == 0) {
clSetUserEventStatus(m_eventFinished, CL_COMPLETE);
}
}
}
if (bDispatch) {
dispatch(d);
}
}
} | void Dispatcher::onEvent(cl_event event, cl_int status, Device & d) {
if (status != CL_COMPLETE) {
std::cout << "Dispatcher::onEvent - Got bad status: " << status << std::endl;
}
else if (d.m_eventFinished != NULL) {
initContinue(d);
} else {
++d.m_round;
handleResult(d);
bool bDispatch = true;
{
std::lock_guard<std::mutex> lock(m_mutex);
d.m_speed.sample(m_size);
printSpeed();
if( m_quit ) {
bDispatch = false;
if(--m_countRunning == 0) {
clSetUserEventStatus(m_eventFinished, CL_COMPLETE);
}
}
}
if (bDispatch) {
dispatch(d);
}
}
} | 367,445 |
0 | void Dispatcher::initBegin(Device & d) {
// Set mode data
for (auto i = 0; i < 20; ++i) {
d.m_memData1[i] = m_mode.data1[i];
d.m_memData2[i] = m_mode.data2[i];
}
// Write precompute table and mode data
d.m_memPrecomp.write(true);
d.m_memData1.write(true);
d.m_memData2.write(true);
// Kernel arguments - profanity_begin
d.m_memPrecomp.setKernelArg(d.m_kernelInit, 0);
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInit, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelInit, 2);
d.m_memResult.setKernelArg(d.m_kernelInit, 3);
CLMemory<cl_ulong4>::setKernelArg(d.m_kernelInit, 4, d.m_clSeed);
// Kernel arguments - profanity_inverse
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInverse, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelInverse, 1);
// Kernel arguments - profanity_iterate
d.m_memPointsDeltaX.setKernelArg(d.m_kernelIterate, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelIterate, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelIterate, 2);
// Kernel arguments - profanity_transform_*
if(d.m_kernelTransform) {
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelTransform, 0);
}
// Kernel arguments - profanity_score_*
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelScore, 0);
d.m_memResult.setKernelArg(d.m_kernelScore, 1);
d.m_memData1.setKernelArg(d.m_kernelScore, 2);
d.m_memData2.setKernelArg(d.m_kernelScore, 3);
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax); // Updated in handleResult()
// Seed device
initContinue(d);
} | void Dispatcher::initBegin(Device & d) {
for (auto i = 0; i < 20; ++i) {
d.m_memData1[i] = m_mode.data1[i];
d.m_memData2[i] = m_mode.data2[i];
}
d.m_memPrecomp.write(true);
d.m_memData1.write(true);
d.m_memData2.write(true);
d.m_memPrecomp.setKernelArg(d.m_kernelInit, 0);
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInit, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelInit, 2);
d.m_memResult.setKernelArg(d.m_kernelInit, 3);
CLMemory<cl_ulong4>::setKernelArg(d.m_kernelInit, 4, d.m_clSeed);
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInverse, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelInverse, 1);
d.m_memPointsDeltaX.setKernelArg(d.m_kernelIterate, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelIterate, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelIterate, 2);
if(d.m_kernelTransform) {
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelTransform, 0);
}
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelScore, 0);
d.m_memResult.setKernelArg(d.m_kernelScore, 1);
d.m_memData1.setKernelArg(d.m_kernelScore, 2);
d.m_memData2.setKernelArg(d.m_kernelScore, 3);
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax);
initContinue(d);
} | 367,446 |
0 | void Dispatcher::addDevice(cl_device_id clDeviceId, const size_t worksizeLocal, const size_t index) {
Device * pDevice = new Device(*this, m_clContext, m_clProgram, clDeviceId, worksizeLocal, m_size, index, m_mode);
m_vDevices.push_back(pDevice);
} | void Dispatcher::addDevice(cl_device_id clDeviceId, const size_t worksizeLocal, const size_t index) {
Device * pDevice = new Device(*this, m_clContext, m_clProgram, clDeviceId, worksizeLocal, m_size, index, m_mode);
m_vDevices.push_back(pDevice);
} | 367,448 |
0 | bool printResult(const cl_int err) {
std::cout << ((err != CL_SUCCESS) ? toString(err) : "OK") << std::endl;
return err != CL_SUCCESS;
} | bool printResult(const cl_int err) {
std::cout << ((err != CL_SUCCESS) ? toString(err) : "OK") << std::endl;
return err != CL_SUCCESS;
} | 367,450 |
0 | void Dispatcher::run() {
m_eventFinished = clCreateUserEvent(m_clContext, NULL);
timeStart = std::chrono::steady_clock::now();
init();
const auto timeInitialization = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
std::cout << "Initialization time: " << timeInitialization << " seconds" << std::endl;
m_quit = false;
m_countRunning = m_vDevices.size();
std::cout << "Running..." << std::endl;
std::cout << " Always verify that a private key generated by this program corresponds to the" << std::endl;
std::cout << " public key printed by importing it to a wallet of your choice. This program" << std::endl;
std::cout << " like any software might contain bugs and it does by design cut corners to" << std::endl;
std::cout << " improve overall performance." << std::endl;
std::cout << std::endl;
for (auto it = m_vDevices.begin(); it != m_vDevices.end(); ++it) {
dispatch(*(*it));
}
clWaitForEvents(1, &m_eventFinished);
clReleaseEvent(m_eventFinished);
m_eventFinished = NULL;
} | void Dispatcher::run() {
m_eventFinished = clCreateUserEvent(m_clContext, NULL);
timeStart = std::chrono::steady_clock::now();
init();
const auto timeInitialization = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
std::cout << "Initialization time: " << timeInitialization << " seconds" << std::endl;
m_quit = false;
m_countRunning = m_vDevices.size();
std::cout << "Running..." << std::endl;
std::cout << " Always verify that a private key generated by this program corresponds to the" << std::endl;
std::cout << " public key printed by importing it to a wallet of your choice. This program" << std::endl;
std::cout << " like any software might contain bugs and it does by design cut corners to" << std::endl;
std::cout << " improve overall performance." << std::endl;
std::cout << std::endl;
for (auto it = m_vDevices.begin(); it != m_vDevices.end(); ++it) {
dispatch(*(*it));
}
clWaitForEvents(1, &m_eventFinished);
clReleaseEvent(m_eventFinished);
m_eventFinished = NULL;
} | 367,453 |
0 | std::vector<std::string> getBinaries(cl_program & clProgram) {
std::vector<std::string> vReturn;
auto vSizes = clGetWrapperVector<size_t>(clGetProgramInfo, clProgram, CL_PROGRAM_BINARY_SIZES);
if (!vSizes.empty()) {
unsigned char * * pBuffers = new unsigned char *[vSizes.size()];
for (size_t i = 0; i < vSizes.size(); ++i) {
pBuffers[i] = new unsigned char[vSizes[i]];
}
clGetProgramInfo(clProgram, CL_PROGRAM_BINARIES, vSizes.size() * sizeof(unsigned char *), pBuffers, NULL);
for (size_t i = 0; i < vSizes.size(); ++i) {
std::string strData(reinterpret_cast<char *>(pBuffers[i]), vSizes[i]);
vReturn.push_back(strData);
delete[] pBuffers[i];
}
delete[] pBuffers;
}
return vReturn;
} | std::vector<std::string> getBinaries(cl_program & clProgram) {
std::vector<std::string> vReturn;
auto vSizes = clGetWrapperVector<size_t>(clGetProgramInfo, clProgram, CL_PROGRAM_BINARY_SIZES);
if (!vSizes.empty()) {
unsigned char * * pBuffers = new unsigned char *[vSizes.size()];
for (size_t i = 0; i < vSizes.size(); ++i) {
pBuffers[i] = new unsigned char[vSizes[i]];
}
clGetProgramInfo(clProgram, CL_PROGRAM_BINARIES, vSizes.size() * sizeof(unsigned char *), pBuffers, NULL);
for (size_t i = 0; i < vSizes.size(); ++i) {
std::string strData(reinterpret_cast<char *>(pBuffers[i]), vSizes[i]);
vReturn.push_back(strData);
delete[] pBuffers[i];
}
delete[] pBuffers;
}
return vReturn;
} | 367,455 |
0 | std::string clGetWrapperString(U function, V param, W param2) {
size_t len;
function(param, param2, 0, NULL, &len);
char * const szString = new char[len];
function(param, param2, len, szString, NULL);
std::string r(szString);
delete[] szString;
return r;
} | std::string clGetWrapperString(U function, V param, W param2) {
size_t len;
function(param, param2, 0, NULL, &len);
char * const szString = new char[len];
function(param, param2, len, szString, NULL);
std::string r(szString);
delete[] szString;
return r;
} | 367,458 |
0 | void Dispatcher::printSpeed() {
++m_countPrint;
if( m_countPrint > m_vDevices.size() ) {
std::string strGPUs;
double speedTotal = 0;
unsigned int i = 0;
for (auto & e : m_vDevices) {
const auto curSpeed = e->m_speed.getSpeed();
speedTotal += curSpeed;
strGPUs += " GPU" + toString(e->m_index) + ": " + formatSpeed(curSpeed);
++i;
}
const std::string strVT100ClearLine = "\33[2K\r";
std::cerr << strVT100ClearLine << "Total: " << formatSpeed(speedTotal) << " -" << strGPUs << '\r' << std::flush;
m_countPrint = 0;
}
} | void Dispatcher::printSpeed() {
++m_countPrint;
if( m_countPrint > m_vDevices.size() ) {
std::string strGPUs;
double speedTotal = 0;
unsigned int i = 0;
for (auto & e : m_vDevices) {
const auto curSpeed = e->m_speed.getSpeed();
speedTotal += curSpeed;
strGPUs += " GPU" + toString(e->m_index) + ": " + formatSpeed(curSpeed);
++i;
}
const std::string strVT100ClearLine = "\33[2K\r";
std::cerr << strVT100ClearLine << "Total: " << formatSpeed(speedTotal) << " -" << strGPUs << '\r' << std::flush;
m_countPrint = 0;
}
} | 367,459 |
0 | std::string readFile(const char * const szFilename)
{
std::ifstream in(szFilename, std::ios::in | std::ios::binary);
std::ostringstream contents;
contents << in.rdbuf();
return contents.str();
} | std::string readFile(const char * const szFilename)
{
std::ifstream in(szFilename, std::ios::in | std::ios::binary);
std::ostringstream contents;
contents << in.rdbuf();
return contents.str();
} | 367,460 |
0 | std::string getDeviceCacheFilename(cl_device_id & d, const size_t & inverseSize) {
const auto uniqueId = getUniqueDeviceIdentifier(d);
return "cache-opencl." + toString(inverseSize) + "." + toString(uniqueId);
} | std::string getDeviceCacheFilename(cl_device_id & d, const size_t & inverseSize) {
const auto uniqueId = getUniqueDeviceIdentifier(d);
return "cache-opencl." + toString(inverseSize) + "." + toString(uniqueId);
} | 367,461 |
0 | unsigned int getUniqueDeviceIdentifier(const cl_device_id & deviceId) {
#if defined(CL_DEVICE_TOPOLOGY_AMD)
auto topology = clGetWrapper<cl_device_topology_amd>(clGetDeviceInfo, deviceId, CL_DEVICE_TOPOLOGY_AMD);
if (topology.raw.type == CL_DEVICE_TOPOLOGY_TYPE_PCIE_AMD) {
return (topology.pcie.bus << 16) + (topology.pcie.device << 8) + topology.pcie.function;
}
#endif
cl_int bus_id = clGetWrapper<cl_int>(clGetDeviceInfo, deviceId, CL_DEVICE_PCI_BUS_ID_NV);
cl_int slot_id = clGetWrapper<cl_int>(clGetDeviceInfo, deviceId, CL_DEVICE_PCI_SLOT_ID_NV);
return (bus_id << 16) + slot_id;
} | unsigned int getUniqueDeviceIdentifier(const cl_device_id & deviceId) {
#if defined(CL_DEVICE_TOPOLOGY_AMD)
auto topology = clGetWrapper<cl_device_topology_amd>(clGetDeviceInfo, deviceId, CL_DEVICE_TOPOLOGY_AMD);
if (topology.raw.type == CL_DEVICE_TOPOLOGY_TYPE_PCIE_AMD) {
return (topology.pcie.bus << 16) + (topology.pcie.device << 8) + topology.pcie.function;
}
#endif
cl_int bus_id = clGetWrapper<cl_int>(clGetDeviceInfo, deviceId, CL_DEVICE_PCI_BUS_ID_NV);
cl_int slot_id = clGetWrapper<cl_int>(clGetDeviceInfo, deviceId, CL_DEVICE_PCI_SLOT_ID_NV);
return (bus_id << 16) + slot_id;
} | 367,462 |
0 | void Dispatcher::dispatch(Device & d) {
cl_event event;
d.m_memResult.read(false, &event);
#ifdef PROFANITY_DEBUG
cl_event eventInverse;
cl_event eventIterate;
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize, &eventInverse);
enqueueKernelDevice(d, d.m_kernelIterate, m_size, &eventIterate);
#else
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize);
enqueueKernelDevice(d, d.m_kernelIterate, m_size);
#endif
if (d.m_kernelTransform) {
enqueueKernelDevice(d, d.m_kernelTransform, m_size);
}
enqueueKernelDevice(d, d.m_kernelScore, m_size);
clFlush(d.m_clQueue);
#ifdef PROFANITY_DEBUG
// We're actually not allowed to call clFinish here because this function is ultimately asynchronously called by OpenCL.
// However, this happens to work on my computer and it's not really intended for release, just something to aid me in
// optimizations.
clFinish(d.m_clQueue);
std::cout << "Timing: profanity_inverse = " << getKernelExecutionTimeMicros(eventInverse) << "us, profanity_iterate = " << getKernelExecutionTimeMicros(eventIterate) << "us" << std::endl;
#endif
const auto res = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback", res);
} | void Dispatcher::dispatch(Device & d) {
cl_event event;
d.m_memResult.read(false, &event);
#ifdef PROFANITY_DEBUG
cl_event eventInverse;
cl_event eventIterate;
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize, &eventInverse);
enqueueKernelDevice(d, d.m_kernelIterate, m_size, &eventIterate);
#else
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize);
enqueueKernelDevice(d, d.m_kernelIterate, m_size);
#endif
if (d.m_kernelTransform) {
enqueueKernelDevice(d, d.m_kernelTransform, m_size);
}
enqueueKernelDevice(d, d.m_kernelScore, m_size);
clFlush(d.m_clQueue);
#ifdef PROFANITY_DEBUG
clFinish(d.m_clQueue);
std::cout << "Timing: profanity_inverse = " << getKernelExecutionTimeMicros(eventInverse) << "us, profanity_iterate = " << getKernelExecutionTimeMicros(eventIterate) << "us" << std::endl;
#endif
const auto res = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback", res);
} | 367,463 |
0 | Dispatcher::OpenCLException::OpenCLException(const std::string s, const cl_int res) :
std::runtime_error( s + " (res = " + toString(res) + ")"),
m_res(res)
{
} | Dispatcher::OpenCLException::OpenCLException(const std::string s, const cl_int res) :
std::runtime_error( s + " (res = " + toString(res) + ")"),
m_res(res)
{
} | 367,464 |
0 | std::vector<T> clGetWrapperVector(U function, V param, W param2) {
size_t len;
function(param, param2, 0, NULL, &len);
len /= sizeof(T);
std::vector<T> v;
if (len > 0) {
T * pArray = new T[len];
function(param, param2, len * sizeof(T), pArray, NULL);
for (size_t i = 0; i < len; ++i) {
v.push_back(pArray[i]);
}
delete[] pArray;
}
return v;
} | std::vector<T> clGetWrapperVector(U function, V param, W param2) {
size_t len;
function(param, param2, 0, NULL, &len);
len /= sizeof(T);
std::vector<T> v;
if (len > 0) {
T * pArray = new T[len];
function(param, param2, len * sizeof(T), pArray, NULL);
for (size_t i = 0; i < len; ++i) {
v.push_back(pArray[i]);
}
delete[] pArray;
}
return v;
} | 367,465 |
0 | void Dispatcher::initContinue(Device & d) {
size_t sizeLeft = m_size - d.m_sizeInitialized;
const size_t sizeInitLimit = m_size / 20;
// Print progress
const size_t percentDone = m_sizeInitDone * 100 / m_sizeInitTotal;
std::cout << " " << percentDone << "%\r" << std::flush;
if (sizeLeft) {
cl_event event;
const size_t sizeRun = std::min(sizeInitLimit, std::min(sizeLeft, m_worksizeMax));
const auto resEnqueue = clEnqueueNDRangeKernel(d.m_clQueue, d.m_kernelInit, 1, &d.m_sizeInitialized, &sizeRun, NULL, 0, NULL, &event);
OpenCLException::throwIfError("kernel queueing failed during initilization", resEnqueue);
// See: https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clSetEventCallback.html
// If an application needs to wait for completion of a routine from the above list in a callback, please use the non-blocking form of the function, and
// assign a completion callback to it to do the remainder of your work. Note that when a callback (or other code) enqueues commands to a command-queue,
// the commands are not required to begin execution until the queue is flushed. In standard usage, blocking enqueue calls serve this role by implicitly
// flushing the queue. Since blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a command queue should either call
// clFlush on the queue before returning or arrange for clFlush to be called later on another thread.
clFlush(d.m_clQueue);
std::lock_guard<std::mutex> lock(m_mutex);
d.m_sizeInitialized += sizeRun;
m_sizeInitDone += sizeRun;
const auto resCallback = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback during initialization", resCallback);
} else {
// Printing one whole string at once helps in avoiding garbled output when executed in parallell
const std::string strOutput = " GPU" + toString(d.m_index) + " initialized";
std::cout << strOutput << std::endl;
clSetUserEventStatus(d.m_eventFinished, CL_COMPLETE);
}
} | void Dispatcher::initContinue(Device & d) {
size_t sizeLeft = m_size - d.m_sizeInitialized;
const size_t sizeInitLimit = m_size / 20;
const size_t percentDone = m_sizeInitDone * 100 / m_sizeInitTotal;
std::cout << " " << percentDone << "%\r" << std::flush;
if (sizeLeft) {
cl_event event;
const size_t sizeRun = std::min(sizeInitLimit, std::min(sizeLeft, m_worksizeMax));
const auto resEnqueue = clEnqueueNDRangeKernel(d.m_clQueue, d.m_kernelInit, 1, &d.m_sizeInitialized, &sizeRun, NULL, 0, NULL, &event);
OpenCLException::throwIfError("kernel queueing failed during initilization", resEnqueue);
clFlush(d.m_clQueue);
std::lock_guard<std::mutex> lock(m_mutex);
d.m_sizeInitialized += sizeRun;
m_sizeInitDone += sizeRun;
const auto resCallback = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback during initialization", resCallback);
} else {
const std::string strOutput = " GPU" + toString(d.m_index) + " initialized";
std::cout << strOutput << std::endl;
clSetUserEventStatus(d.m_eventFinished, CL_COMPLETE);
}
} | 367,466 |
0 | std::vector<cl_device_id> getAllDevices(cl_device_type deviceType = CL_DEVICE_TYPE_GPU)
{
std::vector<cl_device_id> vDevices;
cl_uint platformIdCount = 0;
clGetPlatformIDs (0, NULL, &platformIdCount);
std::vector<cl_platform_id> platformIds (platformIdCount);
clGetPlatformIDs (platformIdCount, platformIds.data (), NULL);
for( auto it = platformIds.cbegin(); it != platformIds.cend(); ++it ) {
cl_uint countDevice;
clGetDeviceIDs(*it, deviceType, 0, NULL, &countDevice);
std::vector<cl_device_id> deviceIds(countDevice);
clGetDeviceIDs(*it, deviceType, countDevice, deviceIds.data(), &countDevice);
std::copy( deviceIds.begin(), deviceIds.end(), std::back_inserter(vDevices) );
}
return vDevices;
} | std::vector<cl_device_id> getAllDevices(cl_device_type deviceType = CL_DEVICE_TYPE_GPU)
{
std::vector<cl_device_id> vDevices;
cl_uint platformIdCount = 0;
clGetPlatformIDs (0, NULL, &platformIdCount);
std::vector<cl_platform_id> platformIds (platformIdCount);
clGetPlatformIDs (platformIdCount, platformIds.data (), NULL);
for( auto it = platformIds.cbegin(); it != platformIds.cend(); ++it ) {
cl_uint countDevice;
clGetDeviceIDs(*it, deviceType, 0, NULL, &countDevice);
std::vector<cl_device_id> deviceIds(countDevice);
clGetDeviceIDs(*it, deviceType, countDevice, deviceIds.data(), &countDevice);
std::copy( deviceIds.begin(), deviceIds.end(), std::back_inserter(vDevices) );
}
return vDevices;
} | 367,467 |
0 | static void printResult(cl_ulong4 seed, cl_ulong round, result r, cl_uchar score, const std::chrono::time_point<std::chrono::steady_clock> & timeStart, const Mode & mode) {
// Time delta
const auto seconds = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
// Format private key
cl_ulong carry = 0;
cl_ulong4 seedRes;
seedRes.s[0] = seed.s[0] + round; carry = seedRes.s[0] < round;
seedRes.s[1] = seed.s[1] + carry; carry = !seedRes.s[1];
seedRes.s[2] = seed.s[2] + carry; carry = !seedRes.s[2];
seedRes.s[3] = seed.s[3] + carry + r.foundId;
std::ostringstream ss;
ss << std::hex << std::setfill('0');
ss << std::setw(16) << seedRes.s[3] << std::setw(16) << seedRes.s[2] << std::setw(16) << seedRes.s[1] << std::setw(16) << seedRes.s[0];
const std::string strPrivate = ss.str();
// Format public key
const std::string strPublic = toHex(r.foundHash, 20);
// Print
const std::string strVT100ClearLine = "\33[2K\r";
std::cout << strVT100ClearLine << " Time: " << std::setw(5) << seconds << "s Score: " << std::setw(2) << (int) score << " Private: 0x" << strPrivate << ' ';
std::cout << mode.transformName();
std::cout << ": 0x" << strPublic << std::endl;
} | static void printResult(cl_ulong4 seed, cl_ulong round, result r, cl_uchar score, const std::chrono::time_point<std::chrono::steady_clock> & timeStart, const Mode & mode) {
const auto seconds = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
cl_ulong carry = 0;
cl_ulong4 seedRes;
seedRes.s[0] = seed.s[0] + round; carry = seedRes.s[0] < round;
seedRes.s[1] = seed.s[1] + carry; carry = !seedRes.s[1];
seedRes.s[2] = seed.s[2] + carry; carry = !seedRes.s[2];
seedRes.s[3] = seed.s[3] + carry + r.foundId;
std::ostringstream ss;
ss << std::hex << std::setfill('0');
ss << std::setw(16) << seedRes.s[3] << std::setw(16) << seedRes.s[2] << std::setw(16) << seedRes.s[1] << std::setw(16) << seedRes.s[0];
const std::string strPrivate = ss.str();
const std::string strPublic = toHex(r.foundHash, 20);
const std::string strVT100ClearLine = "\33[2K\r";
std::cout << strVT100ClearLine << " Time: " << std::setw(5) << seconds << "s Score: " << std::setw(2) << (int) score << " Private: 0x" << strPrivate << ' ';
std::cout << mode.transformName();
std::cout << ": 0x" << strPublic << std::endl;
} | 367,468 |
0 | void Dispatcher::init() {
std::cout << "Initializing devices..." << std::endl;
std::cout << " This should take less than a minute. The number of objects initialized on each" << std::endl;
std::cout << " device is equal to inverse-size * inverse-multiple. To lower" << std::endl;
std::cout << " initialization time (and memory footprint) I suggest lowering the" << std::endl;
std::cout << " inverse-multiple first. You can do this via the -I switch. Do note that" << std::endl;
std::cout << " this might negatively impact your performance." << std::endl;
std::cout << std::endl;
const auto deviceCount = m_vDevices.size();
m_sizeInitTotal = m_size * deviceCount;
m_sizeInitDone = 0;
cl_event * const pInitEvents = new cl_event[deviceCount];
for (size_t i = 0; i < deviceCount; ++i) {
pInitEvents[i] = clCreateUserEvent(m_clContext, NULL);
m_vDevices[i]->m_eventFinished = pInitEvents[i];
initBegin(*m_vDevices[i]);
}
clWaitForEvents(deviceCount, pInitEvents);
for (size_t i = 0; i < deviceCount; ++i) {
m_vDevices[i]->m_eventFinished = NULL;
clReleaseEvent(pInitEvents[i]);
}
delete[] pInitEvents;
std::cout << std::endl;
} | void Dispatcher::init() {
std::cout << "Initializing devices..." << std::endl;
std::cout << " This should take less than a minute. The number of objects initialized on each" << std::endl;
std::cout << " device is equal to inverse-size * inverse-multiple. To lower" << std::endl;
std::cout << " initialization time (and memory footprint) I suggest lowering the" << std::endl;
std::cout << " inverse-multiple first. You can do this via the -I switch. Do note that" << std::endl;
std::cout << " this might negatively impact your performance." << std::endl;
std::cout << std::endl;
const auto deviceCount = m_vDevices.size();
m_sizeInitTotal = m_size * deviceCount;
m_sizeInitDone = 0;
cl_event * const pInitEvents = new cl_event[deviceCount];
for (size_t i = 0; i < deviceCount; ++i) {
pInitEvents[i] = clCreateUserEvent(m_clContext, NULL);
m_vDevices[i]->m_eventFinished = pInitEvents[i];
initBegin(*m_vDevices[i]);
}
clWaitForEvents(deviceCount, pInitEvents);
for (size_t i = 0; i < deviceCount; ++i) {
m_vDevices[i]->m_eventFinished = NULL;
clReleaseEvent(pInitEvents[i]);
}
delete[] pInitEvents;
std::cout << std::endl;
} | 367,469 |
0 | cl_command_queue Dispatcher::Device::createQueue(cl_context & clContext, cl_device_id & clDeviceId) {
// nVidia CUDA Toolkit 10.1 only supports OpenCL 1.2 so we revert back to older functions for compatability
#ifdef PROFANITY_DEBUG
cl_command_queue_properties p = CL_QUEUE_PROFILING_ENABLE;
#else
cl_command_queue_properties p = NULL;
#endif
#ifdef CL_VERSION_2_0
const cl_command_queue ret = clCreateCommandQueueWithProperties(clContext, clDeviceId, &p, NULL);
#else
const cl_command_queue ret = clCreateCommandQueue(clContext, clDeviceId, p, NULL);
#endif
return ret == NULL ? throw std::runtime_error("failed to create command queue") : ret;
} | cl_command_queue Dispatcher::Device::createQueue(cl_context & clContext, cl_device_id & clDeviceId) {
#ifdef PROFANITY_DEBUG
cl_command_queue_properties p = CL_QUEUE_PROFILING_ENABLE;
#else
cl_command_queue_properties p = NULL;
#endif
#ifdef CL_VERSION_2_0
const cl_command_queue ret = clCreateCommandQueueWithProperties(clContext, clDeviceId, &p, NULL);
#else
const cl_command_queue ret = clCreateCommandQueue(clContext, clDeviceId, p, NULL);
#endif
return ret == NULL ? throw std::runtime_error("failed to create command queue") : ret;
} | 367,470 |
0 | void Dispatcher::handleResult(Device & d) {
for (auto i = PROFANITY_MAX_SCORE; i > m_clScoreMax; --i) {
result & r = d.m_memResult[i];
if (r.found > 0 && i >= d.m_clScoreMax) {
d.m_clScoreMax = i;
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax);
std::lock_guard<std::mutex> lock(m_mutex);
if (i >= m_clScoreMax) {
m_clScoreMax = i;
if (m_clScoreQuit && i >= m_clScoreQuit) {
m_quit = true;
}
printResult(d.m_clSeed, d.m_round, r, i, timeStart, m_mode);
}
break;
}
}
} | void Dispatcher::handleResult(Device & d) {
for (auto i = PROFANITY_MAX_SCORE; i > m_clScoreMax; --i) {
result & r = d.m_memResult[i];
if (r.found > 0 && i >= d.m_clScoreMax) {
d.m_clScoreMax = i;
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax);
std::lock_guard<std::mutex> lock(m_mutex);
if (i >= m_clScoreMax) {
m_clScoreMax = i;
if (m_clScoreQuit && i >= m_clScoreQuit) {
m_quit = true;
}
printResult(d.m_clSeed, d.m_round, r, i, timeStart, m_mode);
}
break;
}
}
} | 367,471 |
0 | template <typename T> bool printResult(const T & t, const cl_int & err) {
std::cout << ((t == NULL) ? toString(err) : "OK") << std::endl;
return t == NULL;
} | template <typename T> bool printResult(const T & t, const cl_int & err) {
std::cout << ((t == NULL) ? toString(err) : "OK") << std::endl;
return t == NULL;
} | 367,472 |
0 | void CL_CALLBACK Dispatcher::staticCallback(cl_event event, cl_int event_command_exec_status, void * user_data) {
Device * const pDevice = static_cast<Device *>(user_data);
pDevice->m_parent.onEvent(event, event_command_exec_status, *pDevice);
clReleaseEvent(event);
} | void CL_CALLBACK Dispatcher::staticCallback(cl_event event, cl_int event_command_exec_status, void * user_data) {
Device * const pDevice = static_cast<Device *>(user_data);
pDevice->m_parent.onEvent(event, event_command_exec_status, *pDevice);
clReleaseEvent(event);
} | 367,473 |
0 | int main(int argc, char * * argv) {
// THIS LINE WILL LEAD TO A COMPILE ERROR. THIS TOOL SHOULD NOT BE USED, SEE README.
try {
ArgParser argp(argc, argv);
bool bHelp = false;
bool bModeBenchmark = false;
bool bModeZeros = false;
bool bModeLetters = false;
bool bModeNumbers = false;
std::string strModeLeading;
std::string strModeMatching;
bool bModeLeadingRange = false;
bool bModeRange = false;
bool bModeMirror = false;
bool bModeDoubles = false;
int rangeMin = 0;
int rangeMax = 0;
std::vector<size_t> vDeviceSkipIndex;
size_t worksizeLocal = 64;
size_t worksizeMax = 0; // Will be automatically determined later if not overriden by user
bool bNoCache = false;
size_t inverseSize = 255;
size_t inverseMultiple = 16384;
bool bMineContract = false;
argp.addSwitch('h', "help", bHelp);
argp.addSwitch('0', "benchmark", bModeBenchmark);
argp.addSwitch('1', "zeros", bModeZeros);
argp.addSwitch('2', "letters", bModeLetters);
argp.addSwitch('3', "numbers", bModeNumbers);
argp.addSwitch('4', "leading", strModeLeading);
argp.addSwitch('5', "matching", strModeMatching);
argp.addSwitch('6', "leading-range", bModeLeadingRange);
argp.addSwitch('7', "range", bModeRange);
argp.addSwitch('8', "mirror", bModeMirror);
argp.addSwitch('9', "leading-doubles", bModeDoubles);
argp.addSwitch('m', "min", rangeMin);
argp.addSwitch('M', "max", rangeMax);
argp.addMultiSwitch('s', "skip", vDeviceSkipIndex);
argp.addSwitch('w', "work", worksizeLocal);
argp.addSwitch('W', "work-max", worksizeMax);
argp.addSwitch('n', "no-cache", bNoCache);
argp.addSwitch('i', "inverse-size", inverseSize);
argp.addSwitch('I', "inverse-multiple", inverseMultiple);
argp.addSwitch('c', "contract", bMineContract);
if (!argp.parse()) {
std::cout << "error: bad arguments, try again :<" << std::endl;
return 1;
}
if (bHelp) {
std::cout << g_strHelp << std::endl;
return 0;
}
Mode mode = Mode::benchmark();
if (bModeBenchmark) {
mode = Mode::benchmark();
} else if (bModeZeros) {
mode = Mode::zeros();
} else if (bModeLetters) {
mode = Mode::letters();
} else if (bModeNumbers) {
mode = Mode::numbers();
} else if (!strModeLeading.empty()) {
mode = Mode::leading(strModeLeading.front());
} else if (!strModeMatching.empty()) {
mode = Mode::matching(strModeMatching);
} else if (bModeLeadingRange) {
mode = Mode::leadingRange(rangeMin, rangeMax);
} else if (bModeRange) {
mode = Mode::range(rangeMin, rangeMax);
} else if(bModeMirror) {
mode = Mode::mirror();
} else if (bModeDoubles) {
mode = Mode::doubles();
} else {
std::cout << g_strHelp << std::endl;
return 0;
}
std::cout << "Mode: " << mode.name << std::endl;
if (bMineContract) {
mode.target = CONTRACT;
} else {
mode.target = ADDRESS;
}
std::cout << "Target: " << mode.transformName() << std:: endl;
std::vector<cl_device_id> vFoundDevices = getAllDevices();
std::vector<cl_device_id> vDevices;
std::map<cl_device_id, size_t> mDeviceIndex;
std::vector<std::string> vDeviceBinary;
std::vector<size_t> vDeviceBinarySize;
cl_int errorCode;
bool bUsedCache = false;
std::cout << "Devices:" << std::endl;
for (size_t i = 0; i < vFoundDevices.size(); ++i) {
// Ignore devices in skip index
if (std::find(vDeviceSkipIndex.begin(), vDeviceSkipIndex.end(), i) != vDeviceSkipIndex.end()) {
continue;
}
cl_device_id & deviceId = vFoundDevices[i];
const auto strName = clGetWrapperString(clGetDeviceInfo, deviceId, CL_DEVICE_NAME);
const auto computeUnits = clGetWrapper<cl_uint>(clGetDeviceInfo, deviceId, CL_DEVICE_MAX_COMPUTE_UNITS);
const auto globalMemSize = clGetWrapper<cl_ulong>(clGetDeviceInfo, deviceId, CL_DEVICE_GLOBAL_MEM_SIZE);
bool precompiled = false;
// Check if there's a prebuilt binary for this device and load it
if(!bNoCache) {
std::ifstream fileIn(getDeviceCacheFilename(deviceId, inverseSize), std::ios::binary);
if (fileIn.is_open()) {
vDeviceBinary.push_back(std::string((std::istreambuf_iterator<char>(fileIn)), std::istreambuf_iterator<char>()));
vDeviceBinarySize.push_back(vDeviceBinary.back().size());
precompiled = true;
}
}
std::cout << " GPU" << i << ": " << strName << ", " << globalMemSize << " bytes available, " << computeUnits << " compute units (precompiled = " << (precompiled ? "yes" : "no") << ")" << std::endl;
vDevices.push_back(vFoundDevices[i]);
mDeviceIndex[vFoundDevices[i]] = i;
}
if (vDevices.empty()) {
return 1;
}
std::cout << std::endl;
std::cout << "Initializing OpenCL..." << std::endl;
std::cout << " Creating context..." << std::flush;
auto clContext = clCreateContext( NULL, vDevices.size(), vDevices.data(), NULL, NULL, &errorCode);
if (printResult(clContext, errorCode)) {
return 1;
}
cl_program clProgram;
if (vDeviceBinary.size() == vDevices.size()) {
// Create program from binaries
bUsedCache = true;
std::cout << " Loading kernel from binary..." << std::flush;
const unsigned char * * pKernels = new const unsigned char *[vDevices.size()];
for (size_t i = 0; i < vDeviceBinary.size(); ++i) {
pKernels[i] = reinterpret_cast<const unsigned char *>(vDeviceBinary[i].data());
}
cl_int * pStatus = new cl_int[vDevices.size()];
clProgram = clCreateProgramWithBinary(clContext, vDevices.size(), vDevices.data(), vDeviceBinarySize.data(), pKernels, pStatus, &errorCode);
if(printResult(clProgram, errorCode)) {
return 1;
}
} else {
// Create a program from the kernel source
std::cout << " Compiling kernel..." << std::flush;
const std::string strKeccak = readFile("keccak.cl");
const std::string strVanity = readFile("profanity.cl");
const char * szKernels[] = { strKeccak.c_str(), strVanity.c_str() };
clProgram = clCreateProgramWithSource(clContext, sizeof(szKernels) / sizeof(char *), szKernels, NULL, &errorCode);
if (printResult(clProgram, errorCode)) {
return 1;
}
}
// Build the program
std::cout << " Building program..." << std::flush;
const std::string strBuildOptions = "-D PROFANITY_INVERSE_SIZE=" + toString(inverseSize) + " -D PROFANITY_MAX_SCORE=" + toString(PROFANITY_MAX_SCORE);
if (printResult(clBuildProgram(clProgram, vDevices.size(), vDevices.data(), strBuildOptions.c_str(), NULL, NULL))) {
#ifdef PROFANITY_DEBUG
std::cout << std::endl;
std::cout << "build log:" << std::endl;
size_t sizeLog;
clGetProgramBuildInfo(clProgram, vDevices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &sizeLog);
char * const szLog = new char[sizeLog];
clGetProgramBuildInfo(clProgram, vDevices[0], CL_PROGRAM_BUILD_LOG, sizeLog, szLog, NULL);
std::cout << szLog << std::endl;
delete[] szLog;
#endif
return 1;
}
// Save binary to improve future start times
if( !bUsedCache && !bNoCache ) {
std::cout << " Saving program..." << std::flush;
auto binaries = getBinaries(clProgram);
for (size_t i = 0; i < binaries.size(); ++i) {
std::ofstream fileOut(getDeviceCacheFilename(vDevices[i], inverseSize), std::ios::binary);
fileOut.write(binaries[i].data(), binaries[i].size());
}
std::cout << "OK" << std::endl;
}
std::cout << std::endl;
Dispatcher d(clContext, clProgram, mode, worksizeMax == 0 ? inverseSize * inverseMultiple : worksizeMax, inverseSize, inverseMultiple, 0);
for (auto & i : vDevices) {
d.addDevice(i, worksizeLocal, mDeviceIndex[i]);
}
d.run();
clReleaseContext(clContext);
return 0;
} catch (std::runtime_error & e) {
std::cout << "std::runtime_error - " << e.what() << std::endl;
} catch (...) {
std::cout << "unknown exception occured" << std::endl;
}
return 1;
} | int main(int argc, char * * argv) {
try {
ArgParser argp(argc, argv);
bool bHelp = false;
bool bModeBenchmark = false;
bool bModeZeros = false;
bool bModeLetters = false;
bool bModeNumbers = false;
std::string strModeLeading;
std::string strModeMatching;
bool bModeLeadingRange = false;
bool bModeRange = false;
bool bModeMirror = false;
bool bModeDoubles = false;
int rangeMin = 0;
int rangeMax = 0;
std::vector<size_t> vDeviceSkipIndex;
size_t worksizeLocal = 64;
size_t worksizeMax = 0;
bool bNoCache = false;
size_t inverseSize = 255;
size_t inverseMultiple = 16384;
bool bMineContract = false;
argp.addSwitch('h', "help", bHelp);
argp.addSwitch('0', "benchmark", bModeBenchmark);
argp.addSwitch('1', "zeros", bModeZeros);
argp.addSwitch('2', "letters", bModeLetters);
argp.addSwitch('3', "numbers", bModeNumbers);
argp.addSwitch('4', "leading", strModeLeading);
argp.addSwitch('5', "matching", strModeMatching);
argp.addSwitch('6', "leading-range", bModeLeadingRange);
argp.addSwitch('7', "range", bModeRange);
argp.addSwitch('8', "mirror", bModeMirror);
argp.addSwitch('9', "leading-doubles", bModeDoubles);
argp.addSwitch('m', "min", rangeMin);
argp.addSwitch('M', "max", rangeMax);
argp.addMultiSwitch('s', "skip", vDeviceSkipIndex);
argp.addSwitch('w', "work", worksizeLocal);
argp.addSwitch('W', "work-max", worksizeMax);
argp.addSwitch('n', "no-cache", bNoCache);
argp.addSwitch('i', "inverse-size", inverseSize);
argp.addSwitch('I', "inverse-multiple", inverseMultiple);
argp.addSwitch('c', "contract", bMineContract);
if (!argp.parse()) {
std::cout << "error: bad arguments, try again :<" << std::endl;
return 1;
}
if (bHelp) {
std::cout << g_strHelp << std::endl;
return 0;
}
Mode mode = Mode::benchmark();
if (bModeBenchmark) {
mode = Mode::benchmark();
} else if (bModeZeros) {
mode = Mode::zeros();
} else if (bModeLetters) {
mode = Mode::letters();
} else if (bModeNumbers) {
mode = Mode::numbers();
} else if (!strModeLeading.empty()) {
mode = Mode::leading(strModeLeading.front());
} else if (!strModeMatching.empty()) {
mode = Mode::matching(strModeMatching);
} else if (bModeLeadingRange) {
mode = Mode::leadingRange(rangeMin, rangeMax);
} else if (bModeRange) {
mode = Mode::range(rangeMin, rangeMax);
} else if(bModeMirror) {
mode = Mode::mirror();
} else if (bModeDoubles) {
mode = Mode::doubles();
} else {
std::cout << g_strHelp << std::endl;
return 0;
}
std::cout << "Mode: " << mode.name << std::endl;
if (bMineContract) {
mode.target = CONTRACT;
} else {
mode.target = ADDRESS;
}
std::cout << "Target: " << mode.transformName() << std:: endl;
std::vector<cl_device_id> vFoundDevices = getAllDevices();
std::vector<cl_device_id> vDevices;
std::map<cl_device_id, size_t> mDeviceIndex;
std::vector<std::string> vDeviceBinary;
std::vector<size_t> vDeviceBinarySize;
cl_int errorCode;
bool bUsedCache = false;
std::cout << "Devices:" << std::endl;
for (size_t i = 0; i < vFoundDevices.size(); ++i) {
if (std::find(vDeviceSkipIndex.begin(), vDeviceSkipIndex.end(), i) != vDeviceSkipIndex.end()) {
continue;
}
cl_device_id & deviceId = vFoundDevices[i];
const auto strName = clGetWrapperString(clGetDeviceInfo, deviceId, CL_DEVICE_NAME);
const auto computeUnits = clGetWrapper<cl_uint>(clGetDeviceInfo, deviceId, CL_DEVICE_MAX_COMPUTE_UNITS);
const auto globalMemSize = clGetWrapper<cl_ulong>(clGetDeviceInfo, deviceId, CL_DEVICE_GLOBAL_MEM_SIZE);
bool precompiled = false;
if(!bNoCache) {
std::ifstream fileIn(getDeviceCacheFilename(deviceId, inverseSize), std::ios::binary);
if (fileIn.is_open()) {
vDeviceBinary.push_back(std::string((std::istreambuf_iterator<char>(fileIn)), std::istreambuf_iterator<char>()));
vDeviceBinarySize.push_back(vDeviceBinary.back().size());
precompiled = true;
}
}
std::cout << " GPU" << i << ": " << strName << ", " << globalMemSize << " bytes available, " << computeUnits << " compute units (precompiled = " << (precompiled ? "yes" : "no") << ")" << std::endl;
vDevices.push_back(vFoundDevices[i]);
mDeviceIndex[vFoundDevices[i]] = i;
}
if (vDevices.empty()) {
return 1;
}
std::cout << std::endl;
std::cout << "Initializing OpenCL..." << std::endl;
std::cout << " Creating context..." << std::flush;
auto clContext = clCreateContext( NULL, vDevices.size(), vDevices.data(), NULL, NULL, &errorCode);
if (printResult(clContext, errorCode)) {
return 1;
}
cl_program clProgram;
if (vDeviceBinary.size() == vDevices.size()) {
bUsedCache = true;
std::cout << " Loading kernel from binary..." << std::flush;
const unsigned char * * pKernels = new const unsigned char *[vDevices.size()];
for (size_t i = 0; i < vDeviceBinary.size(); ++i) {
pKernels[i] = reinterpret_cast<const unsigned char *>(vDeviceBinary[i].data());
}
cl_int * pStatus = new cl_int[vDevices.size()];
clProgram = clCreateProgramWithBinary(clContext, vDevices.size(), vDevices.data(), vDeviceBinarySize.data(), pKernels, pStatus, &errorCode);
if(printResult(clProgram, errorCode)) {
return 1;
}
} else {
std::cout << " Compiling kernel..." << std::flush;
const std::string strKeccak = readFile("keccak.cl");
const std::string strVanity = readFile("profanity.cl");
const char * szKernels[] = { strKeccak.c_str(), strVanity.c_str() };
clProgram = clCreateProgramWithSource(clContext, sizeof(szKernels) / sizeof(char *), szKernels, NULL, &errorCode);
if (printResult(clProgram, errorCode)) {
return 1;
}
}
std::cout << " Building program..." << std::flush;
const std::string strBuildOptions = "-D PROFANITY_INVERSE_SIZE=" + toString(inverseSize) + " -D PROFANITY_MAX_SCORE=" + toString(PROFANITY_MAX_SCORE);
if (printResult(clBuildProgram(clProgram, vDevices.size(), vDevices.data(), strBuildOptions.c_str(), NULL, NULL))) {
#ifdef PROFANITY_DEBUG
std::cout << std::endl;
std::cout << "build log:" << std::endl;
size_t sizeLog;
clGetProgramBuildInfo(clProgram, vDevices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &sizeLog);
char * const szLog = new char[sizeLog];
clGetProgramBuildInfo(clProgram, vDevices[0], CL_PROGRAM_BUILD_LOG, sizeLog, szLog, NULL);
std::cout << szLog << std::endl;
delete[] szLog;
#endif
return 1;
}
if( !bUsedCache && !bNoCache ) {
std::cout << " Saving program..." << std::flush;
auto binaries = getBinaries(clProgram);
for (size_t i = 0; i < binaries.size(); ++i) {
std::ofstream fileOut(getDeviceCacheFilename(vDevices[i], inverseSize), std::ios::binary);
fileOut.write(binaries[i].data(), binaries[i].size());
}
std::cout << "OK" << std::endl;
}
std::cout << std::endl;
Dispatcher d(clContext, clProgram, mode, worksizeMax == 0 ? inverseSize * inverseMultiple : worksizeMax, inverseSize, inverseMultiple, 0);
for (auto & i : vDevices) {
d.addDevice(i, worksizeLocal, mDeviceIndex[i]);
}
d.run();
clReleaseContext(clContext);
return 0;
} catch (std::runtime_error & e) {
std::cout << "std::runtime_error - " << e.what() << std::endl;
} catch (...) {
std::cout << "unknown exception occured" << std::endl;
}
return 1;
} | 367,474 |
0 | Dispatcher::Device::Device(Dispatcher & parent, cl_context & clContext, cl_program & clProgram, cl_device_id clDeviceId, const size_t worksizeLocal, const size_t size, const size_t index, const Mode & mode) :
m_parent(parent),
m_index(index),
m_clDeviceId(clDeviceId),
m_worksizeLocal(worksizeLocal),
m_clScoreMax(0),
m_clQueue(createQueue(clContext, clDeviceId) ),
m_kernelInit( createKernel(clProgram, "profanity_init") ),
m_kernelInverse(createKernel(clProgram, "profanity_inverse")),
m_kernelIterate(createKernel(clProgram, "profanity_iterate")),
m_kernelTransform( mode.transformKernel() == "" ? NULL : createKernel(clProgram, mode.transformKernel())),
m_kernelScore(createKernel(clProgram, mode.kernel)),
m_memPrecomp(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, sizeof(g_precomp), g_precomp),
m_memPointsDeltaX(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memInversedNegativeDoubleGy(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memPrevLambda(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memResult(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_READ_ONLY, PROFANITY_MAX_SCORE + 1),
m_memData1(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_memData2(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_clSeed(createSeed()),
m_round(0),
m_speed(PROFANITY_SPEEDSAMPLES),
m_sizeInitialized(0),
m_eventFinished(NULL)
{
} | Dispatcher::Device::Device(Dispatcher & parent, cl_context & clContext, cl_program & clProgram, cl_device_id clDeviceId, const size_t worksizeLocal, const size_t size, const size_t index, const Mode & mode) :
m_parent(parent),
m_index(index),
m_clDeviceId(clDeviceId),
m_worksizeLocal(worksizeLocal),
m_clScoreMax(0),
m_clQueue(createQueue(clContext, clDeviceId) ),
m_kernelInit( createKernel(clProgram, "profanity_init") ),
m_kernelInverse(createKernel(clProgram, "profanity_inverse")),
m_kernelIterate(createKernel(clProgram, "profanity_iterate")),
m_kernelTransform( mode.transformKernel() == "" ? NULL : createKernel(clProgram, mode.transformKernel())),
m_kernelScore(createKernel(clProgram, mode.kernel)),
m_memPrecomp(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, sizeof(g_precomp), g_precomp),
m_memPointsDeltaX(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memInversedNegativeDoubleGy(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memPrevLambda(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memResult(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_READ_ONLY, PROFANITY_MAX_SCORE + 1),
m_memData1(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_memData2(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_clSeed(createSeed()),
m_round(0),
m_speed(PROFANITY_SPEEDSAMPLES),
m_sizeInitialized(0),
m_eventFinished(NULL)
{
} | 367,475 |
0 | Dispatcher::~Dispatcher() {
} | Dispatcher::~Dispatcher() {
} | 367,476 |
0 | void Dispatcher::enqueueKernel(cl_command_queue & clQueue, cl_kernel & clKernel, size_t worksizeGlobal, const size_t worksizeLocal, cl_event * pEvent = NULL) {
const size_t worksizeMax = m_worksizeMax;
size_t worksizeOffset = 0;
while (worksizeGlobal) {
const size_t worksizeRun = std::min(worksizeGlobal, worksizeMax);
const size_t * const pWorksizeLocal = (worksizeLocal == 0 ? NULL : &worksizeLocal);
const auto res = clEnqueueNDRangeKernel(clQueue, clKernel, 1, &worksizeOffset, &worksizeRun, pWorksizeLocal, 0, NULL, pEvent);
OpenCLException::throwIfError("kernel queueing failed", res);
worksizeGlobal -= worksizeRun;
worksizeOffset += worksizeRun;
}
} | void Dispatcher::enqueueKernel(cl_command_queue & clQueue, cl_kernel & clKernel, size_t worksizeGlobal, const size_t worksizeLocal, cl_event * pEvent = NULL) {
const size_t worksizeMax = m_worksizeMax;
size_t worksizeOffset = 0;
while (worksizeGlobal) {
const size_t worksizeRun = std::min(worksizeGlobal, worksizeMax);
const size_t * const pWorksizeLocal = (worksizeLocal == 0 ? NULL : &worksizeLocal);
const auto res = clEnqueueNDRangeKernel(clQueue, clKernel, 1, &worksizeOffset, &worksizeRun, pWorksizeLocal, 0, NULL, pEvent);
OpenCLException::throwIfError("kernel queueing failed", res);
worksizeGlobal -= worksizeRun;
worksizeOffset += worksizeRun;
}
} | 367,477 |
0 | static std::string toHex(const uint8_t * const s, const size_t len) {
std::string b("0123456789abcdef");
std::string r;
for (size_t i = 0; i < len; ++i) {
const unsigned char h = s[i] / 16;
const unsigned char l = s[i] % 16;
r = r + b.substr(h, 1) + b.substr(l, 1);
}
return r;
} | static std::string toHex(const uint8_t * const s, const size_t len) {
std::string b("0123456789abcdef");
std::string r;
for (size_t i = 0; i < len; ++i) {
const unsigned char h = s[i] / 16;
const unsigned char l = s[i] % 16;
r = r + b.substr(h, 1) + b.substr(l, 1);
}
return r;
} | 367,478 |
0 | void Dispatcher::OpenCLException::OpenCLException::throwIfError(const std::string s, const cl_int res) {
if (res != CL_SUCCESS) {
throw OpenCLException(s, res);
}
} | void Dispatcher::OpenCLException::OpenCLException::throwIfError(const std::string s, const cl_int res) {
if (res != CL_SUCCESS) {
throw OpenCLException(s, res);
}
} | 367,480 |
0 | process(register int code, unsigned char** fill)
{
int incode;
static unsigned char firstchar;
if (code == clear) {
codesize = datasize + 1;
codemask = (1 << codesize) - 1;
avail = clear + 2;
oldcode = -1;
return 1;
}
if (oldcode == -1) {
if (code >= clear) {
fprintf(stderr, "bad input: code=%d is larger than clear=%d\n",code, clear);
return 0;
}
*(*fill)++ = suffix[code];
firstchar = oldcode = code;
return 1;
}
if (code > avail) {
fprintf(stderr, "code %d too large for %d\n", code, avail);
return 0;
}
incode = code;
if (code == avail) { /* the first code is always < avail */
*stackp++ = firstchar;
code = oldcode;
}
while (code > clear) {
*stackp++ = suffix[code];
code = prefix[code];
}
*stackp++ = firstchar = suffix[code];
prefix[avail] = oldcode;
suffix[avail] = firstchar;
avail++;
if (((avail & codemask) == 0) && (avail < 4096)) {
codesize++;
codemask += avail;
}
oldcode = incode;
do {
*(*fill)++ = *--stackp;
} while (stackp > stack);
return 1;
} | process(register int code, unsigned char** fill)
{
int incode;
static unsigned char firstchar;
if (code == clear) {
codesize = datasize + 1;
codemask = (1 << codesize) - 1;
avail = clear + 2;
oldcode = -1;
return 1;
}
if (oldcode == -1) {
if (code >= clear) {
fprintf(stderr, "bad input: code=%d is larger than clear=%d\n",code, clear);
return 0;
}
*(*fill)++ = suffix[code];
firstchar = oldcode = code;
return 1;
}
if (code > avail) {
fprintf(stderr, "code %d too large for %d\n", code, avail);
return 0;
}
incode = code;
if (code == avail) {
*stackp++ = firstchar;
code = oldcode;
}
while (code > clear) {
*stackp++ = suffix[code];
code = prefix[code];
}
*stackp++ = firstchar = suffix[code];
prefix[avail] = oldcode;
suffix[avail] = firstchar;
avail++;
if (((avail & codemask) == 0) && (avail < 4096)) {
codesize++;
codemask += avail;
}
oldcode = incode;
do {
*(*fill)++ = *--stackp;
} while (stackp > stack);
return 1;
} | 367,482 |
0 | readraster(void)
{
unsigned char *fill = raster;
unsigned char buf[255];
register int bits=0;
register unsigned long datum=0;
register unsigned char *ch;
register int count, code;
int status = 1;
datasize = getc(infile);
if (datasize > 12)
return 0;
clear = 1 << datasize;
eoi = clear + 1;
avail = clear + 2;
oldcode = -1;
codesize = datasize + 1;
codemask = (1 << codesize) - 1;
for (code = 0; code < clear; code++) {
prefix[code] = 0;
suffix[code] = code;
}
stackp = stack;
for (count = getc(infile); count > 0; count = getc(infile)) {
fread(buf,1,count,infile);
for (ch=buf; count-- > 0; ch++) {
datum += (unsigned long) *ch << bits;
bits += 8;
while (bits >= codesize) {
code = datum & codemask;
datum >>= codesize;
bits -= codesize;
if (code == eoi) { /* This kludge put in */
goto exitloop; /* because some GIF files*/
} /* aren't standard */
if (!process(code, &fill)) {
status = 0;
goto exitloop;
}
}
}
if (fill >= raster + width*height) {
fprintf(stderr, "raster full before eoi code\n");
break;
}
}
exitloop:
if (fill != raster + width*height) {
fprintf(stderr, "warning: wrong rastersize: %ld bytes\n",
(long) (fill-raster));
fprintf(stderr, " instead of %ld bytes\n",
(long) width*height);
}
return status;
} | readraster(void)
{
unsigned char *fill = raster;
unsigned char buf[255];
register int bits=0;
register unsigned long datum=0;
register unsigned char *ch;
register int count, code;
int status = 1;
datasize = getc(infile);
if (datasize > 12)
return 0;
clear = 1 << datasize;
eoi = clear + 1;
avail = clear + 2;
oldcode = -1;
codesize = datasize + 1;
codemask = (1 << codesize) - 1;
for (code = 0; code < clear; code++) {
prefix[code] = 0;
suffix[code] = code;
}
stackp = stack;
for (count = getc(infile); count > 0; count = getc(infile)) {
fread(buf,1,count,infile);
for (ch=buf; count-- > 0; ch++) {
datum += (unsigned long) *ch << bits;
bits += 8;
while (bits >= codesize) {
code = datum & codemask;
datum >>= codesize;
bits -= codesize;
if (code == eoi) {
goto exitloop;
}
if (!process(code, &fill)) {
status = 0;
goto exitloop;
}
}
}
if (fill >= raster + width*height) {
fprintf(stderr, "raster full before eoi code\n");
break;
}
}
exitloop:
if (fill != raster + width*height) {
fprintf(stderr, "warning: wrong rastersize: %ld bytes\n",
(long) (fill-raster));
fprintf(stderr, " instead of %ld bytes\n",
(long) width*height);
}
return status;
} | 367,483 |
0 | readscreen(void)
{
unsigned char buf[7];
fread(buf,1,7,infile);
global = buf[4] & 0x80;
if (global) {
globalbits = (buf[4] & 0x07) + 1;
fread(globalmap,3,((size_t)1)<<globalbits,infile);
}
} | readscreen(void)
{
unsigned char buf[7];
fread(buf,1,7,infile);
global = buf[4] & 0x80;
if (global) {
globalbits = (buf[4] & 0x07) + 1;
fread(globalmap,3,((size_t)1)<<globalbits,infile);
}
} | 367,484 |
0 | initcolors(unsigned char colormap[COLSIZE][3], int ncolors)
{
register int i;
for (i = 0; i < ncolors; i++) {
red[i] = gamtab[colormap[i][0]];
green[i] = gamtab[colormap[i][1]];
blue[i] = gamtab[colormap[i][2]];
}
} | initcolors(unsigned char colormap[COLSIZE][3], int ncolors)
{
register int i;
for (i = 0; i < ncolors; i++) {
red[i] = gamtab[colormap[i][0]];
green[i] = gamtab[colormap[i][1]];
blue[i] = gamtab[colormap[i][2]];
}
} | 367,485 |
0 | processCompressOptions(char* opt)
{
if (streq(opt, "none"))
compression = COMPRESSION_NONE;
else if (streq(opt, "packbits"))
compression = COMPRESSION_PACKBITS;
else if (strneq(opt, "lzw", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_LZW;
} else if (strneq(opt, "zip", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_DEFLATE;
} else
return (0);
return (1);
} | processCompressOptions(char* opt)
{
if (streq(opt, "none"))
compression = COMPRESSION_NONE;
else if (streq(opt, "packbits"))
compression = COMPRESSION_PACKBITS;
else if (strneq(opt, "lzw", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_LZW;
} else if (strneq(opt, "zip", 3)) {
char* cp = strchr(opt, ':');
if (cp)
predictor = atoi(cp+1);
compression = COMPRESSION_DEFLATE;
} else
return (0);
return (1);
} | 367,486 |
0 | readextension(void)
{
int count;
char buf[255];
(void) getc(infile);
while ((count = getc(infile)))
fread(buf, 1, count, infile);
} | readextension(void)
{
int count;
char buf[255];
(void) getc(infile);
while ((count = getc(infile)))
fread(buf, 1, count, infile);
} | 367,488 |
0 | rasterize(int interleaved, char* mode)
{
register unsigned long row;
unsigned char *newras;
unsigned char *ras;
TIFF *tif;
tstrip_t strip;
tsize_t stripsize;
if ((newras = (unsigned char*) _TIFFmalloc(width*height+EXTRAFUDGE)) == NULL) {
fprintf(stderr, "not enough memory for image\n");
return;
}
#define DRAWSEGMENT(offset, step) { \
for (row = offset; row < height; row += step) { \
_TIFFmemcpy(newras + row*width, ras, width);\
ras += width; \
} \
}
ras = raster;
if (interleaved) {
DRAWSEGMENT(0, 8);
DRAWSEGMENT(4, 8);
DRAWSEGMENT(2, 4);
DRAWSEGMENT(1, 2);
} else
DRAWSEGMENT(0, 1);
#undef DRAWSEGMENT
tif = TIFFOpen(imagename, mode);
if (!tif) {
TIFFError(imagename,"Can not open output image");
exit(-1);
}
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, (uint32) width);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, (uint32) height);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_PALETTE);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP,
rowsperstrip = TIFFDefaultStripSize(tif, rowsperstrip));
TIFFSetField(tif, TIFFTAG_COMPRESSION, compression);
switch (compression) {
case COMPRESSION_LZW:
case COMPRESSION_DEFLATE:
if (predictor != 0)
TIFFSetField(tif, TIFFTAG_PREDICTOR, predictor);
break;
}
TIFFSetField(tif, TIFFTAG_COLORMAP, red, green, blue);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
strip = 0;
stripsize = TIFFStripSize(tif);
for (row=0; row<height; row += rowsperstrip) {
if (rowsperstrip > height-row) {
rowsperstrip = height-row;
stripsize = TIFFVStripSize(tif, rowsperstrip);
}
if (TIFFWriteEncodedStrip(tif, strip, newras+row*width, stripsize) < 0)
break;
strip++;
}
TIFFClose(tif);
_TIFFfree(newras);
} | rasterize(int interleaved, char* mode)
{
register unsigned long row;
unsigned char *newras;
unsigned char *ras;
TIFF *tif;
tstrip_t strip;
tsize_t stripsize;
if ((newras = (unsigned char*) _TIFFmalloc(width*height+EXTRAFUDGE)) == NULL) {
fprintf(stderr, "not enough memory for image\n");
return;
}
#define DRAWSEGMENT(offset, step) { \
for (row = offset; row < height; row += step) { \
_TIFFmemcpy(newras + row*width, ras, width);\
ras += width; \
} \
}
ras = raster;
if (interleaved) {
DRAWSEGMENT(0, 8);
DRAWSEGMENT(4, 8);
DRAWSEGMENT(2, 4);
DRAWSEGMENT(1, 2);
} else
DRAWSEGMENT(0, 1);
#undef DRAWSEGMENT
tif = TIFFOpen(imagename, mode);
if (!tif) {
TIFFError(imagename,"Can not open output image");
exit(-1);
}
TIFFSetField(tif, TIFFTAG_IMAGEWIDTH, (uint32) width);
TIFFSetField(tif, TIFFTAG_IMAGELENGTH, (uint32) height);
TIFFSetField(tif, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_PALETTE);
TIFFSetField(tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tif, TIFFTAG_ROWSPERSTRIP,
rowsperstrip = TIFFDefaultStripSize(tif, rowsperstrip));
TIFFSetField(tif, TIFFTAG_COMPRESSION, compression);
switch (compression) {
case COMPRESSION_LZW:
case COMPRESSION_DEFLATE:
if (predictor != 0)
TIFFSetField(tif, TIFFTAG_PREDICTOR, predictor);
break;
}
TIFFSetField(tif, TIFFTAG_COLORMAP, red, green, blue);
TIFFSetField(tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
strip = 0;
stripsize = TIFFStripSize(tif);
for (row=0; row<height; row += rowsperstrip) {
if (rowsperstrip > height-row) {
rowsperstrip = height-row;
stripsize = TIFFVStripSize(tif, rowsperstrip);
}
if (TIFFWriteEncodedStrip(tif, strip, newras+row*width, stripsize) < 0)
break;
strip++;
}
TIFFClose(tif);
_TIFFfree(newras);
} | 367,489 |
0 | main(int argc, char* argv[])
{
extern int optind;
extern char *optarg;
int c, status;
while ((c = getopt(argc, argv, "c:r:")) != -1)
switch (c) {
case 'c': /* compression scheme */
if (!processCompressOptions(optarg))
usage();
break;
case 'r': /* rows/strip */
rowsperstrip = atoi(optarg);
break;
case '?':
usage();
/*NOTREACHED*/
}
if (argc - optind != 2)
usage();
makegamtab(GIFGAMMA);
filename = argv[optind];
imagename = argv[optind+1];
if ((infile = fopen(imagename, "rb")) != NULL) {
int c;
fclose(infile);
printf("overwrite %s? ", imagename); fflush(stdout);
c = getc(stdin);
if (c != 'y' && c != 'Y')
return (1);
}
if ((infile = fopen(filename, "rb")) == NULL) {
perror(filename);
return (1);
}
status = convert();
fclose(infile);
return (status);
} | main(int argc, char* argv[])
{
extern int optind;
extern char *optarg;
int c, status;
while ((c = getopt(argc, argv, "c:r:")) != -1)
switch (c) {
case 'c':
if (!processCompressOptions(optarg))
usage();
break;
case 'r':
rowsperstrip = atoi(optarg);
break;
case '?':
usage();
}
if (argc - optind != 2)
usage();
makegamtab(GIFGAMMA);
filename = argv[optind];
imagename = argv[optind+1];
if ((infile = fopen(imagename, "rb")) != NULL) {
int c;
fclose(infile);
printf("overwrite %s? ", imagename); fflush(stdout);
c = getc(stdin);
if (c != 'y' && c != 'Y')
return (1);
}
if ((infile = fopen(filename, "rb")) == NULL) {
perror(filename);
return (1);
}
status = convert();
fclose(infile);
return (status);
} | 367,490 |
0 | checksignature(void)
{
char buf[6];
fread(buf,1,6,infile);
if (strncmp(buf,"GIF",3)) {
fprintf(stderr, "file is not a GIF file\n");
return 0;
}
if (strncmp(&buf[3],"87a",3)) {
fprintf(stderr, "unknown GIF version number\n");
return 0;
}
return 1;
} | checksignature(void)
{
char buf[6];
fread(buf,1,6,infile);
if (strncmp(buf,"GIF",3)) {
fprintf(stderr, "file is not a GIF file\n");
return 0;
}
if (strncmp(&buf[3],"87a",3)) {
fprintf(stderr, "unknown GIF version number\n");
return 0;
}
return 1;
} | 367,491 |
0 | readgifimage(char* mode)
{
unsigned char buf[9];
int local, interleaved;
unsigned char localmap[256][3];
int localbits;
int status;
if (fread(buf, 1, 9, infile) == 0) {
perror(filename);
return (0);
}
width = buf[4] + (buf[5] << 8);
height = buf[6] + (buf[7] << 8);
local = buf[8] & 0x80;
interleaved = buf[8] & 0x40;
if (local == 0 && global == 0) {
fprintf(stderr, "no colormap present for image\n");
return (0);
}
if ((raster = (unsigned char*) _TIFFmalloc(width*height+EXTRAFUDGE)) == NULL) {
fprintf(stderr, "not enough memory for image\n");
return (0);
}
if (local) {
localbits = (buf[8] & 0x7) + 1;
fprintf(stderr, " local colors: %d\n", 1<<localbits);
fread(localmap, 3, ((size_t)1)<<localbits, infile);
initcolors(localmap, 1<<localbits);
} else if (global) {
initcolors(globalmap, 1<<globalbits);
}
if ((status = readraster()))
rasterize(interleaved, mode);
_TIFFfree(raster);
return status;
} | readgifimage(char* mode)
{
unsigned char buf[9];
int local, interleaved;
unsigned char localmap[256][3];
int localbits;
int status;
if (fread(buf, 1, 9, infile) == 0) {
perror(filename);
return (0);
}
width = buf[4] + (buf[5] << 8);
height = buf[6] + (buf[7] << 8);
local = buf[8] & 0x80;
interleaved = buf[8] & 0x40;
if (local == 0 && global == 0) {
fprintf(stderr, "no colormap present for image\n");
return (0);
}
if ((raster = (unsigned char*) _TIFFmalloc(width*height+EXTRAFUDGE)) == NULL) {
fprintf(stderr, "not enough memory for image\n");
return (0);
}
if (local) {
localbits = (buf[8] & 0x7) + 1;
fprintf(stderr, " local colors: %d\n", 1<<localbits);
fread(localmap, 3, ((size_t)1)<<localbits, infile);
initcolors(localmap, 1<<localbits);
} else if (global) {
initcolors(globalmap, 1<<globalbits);
}
if ((status = readraster()))
rasterize(interleaved, mode);
_TIFFfree(raster);
return status;
} | 367,492 |
0 | inline void set_stmt_row_injection() {
DBUG_ENTER("set_stmt_row_injection");
binlog_stmt_flags|= (1U << BINLOG_STMT_TYPE_ROW_INJECTION);
DBUG_VOID_RETURN;
} | inline void set_stmt_row_injection() {
DBUG_ENTER("set_stmt_row_injection");
binlog_stmt_flags|= (1U << BINLOG_STMT_TYPE_ROW_INJECTION);
DBUG_VOID_RETURN;
} | 367,493 |