|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{vivos:2016, |
|
Address = {Ho Chi Minh, Vietnam} |
|
title = {VIVOS: 15 hours of recording speech prepared for Vietnamese Automatic Speech Recognition}, |
|
author={Prof. Vu Hai Quan}, |
|
year={2016} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for |
|
Vietnamese Automatic Speech Recognition task. |
|
The corpus was prepared by AILAB, a computer science lab of VNUHCM - University of Science, with Prof. Vu Hai Quan is the head of. |
|
We publish this corpus in hope to attract more scientists to solve Vietnamese speech recognition problems. |
|
""" |
|
|
|
_HOMEPAGE = "https://ailab.hcmus.edu.vn/vivos" |
|
|
|
_LICENSE = "cc-by-sa-4.0" |
|
|
|
_DATA_URL = "https://ailab.hcmus.edu.vn/assets/vivos.tar.gz" |
|
|
|
|
|
class VivosDataset(datasets.GeneratorBasedBuilder): |
|
"""VIVOS is a free Vietnamese speech corpus consisting of 15 hours of recording speech prepared for |
|
Vietnamese Automatic Speech Recognition task.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
dl_path = dl_manager.download_and_extract(_DATA_URL) |
|
data_dir = os.path.join(dl_path, "vivos") |
|
train_dir = os.path.join(data_dir, "train") |
|
test_dir = os.path.join(data_dir, "test") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(train_dir, "prompts.txt"), |
|
"path_to_clips": os.path.join(train_dir, "waves"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(test_dir, "prompts.txt"), |
|
"path_to_clips": os.path.join(test_dir, "waves"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
filepath, |
|
path_to_clips, |
|
): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = row.strip().split(" ", 1) |
|
speaker_id = data[0].split("_")[0] |
|
yield id_, { |
|
"speaker_id": speaker_id, |
|
"path": os.path.join(path_to_clips, speaker_id, data[0] + ".wav"), |
|
"sentence": data[1], |
|
} |
|
|