Datasets:
Add config.yaml for PVTV2 model
Browse files
pretrained_models/.hydra/config.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_name: predict
|
2 |
+
tags:
|
3 |
+
- dev
|
4 |
+
train: true
|
5 |
+
test: true
|
6 |
+
ckpt_path: null
|
7 |
+
seed: 42
|
8 |
+
float32_matmul_precision: high
|
9 |
+
clean_pred: true
|
10 |
+
data:
|
11 |
+
_target_: src.data.canopy_datamodule.GEODataModule
|
12 |
+
geometry_path: ${paths.data_dir}canopy_height/geometries.geojson
|
13 |
+
imageside: 336
|
14 |
+
imagesize: 224
|
15 |
+
mean:
|
16 |
+
- 124
|
17 |
+
- 124
|
18 |
+
- 124
|
19 |
+
- 124
|
20 |
+
std:
|
21 |
+
- 124
|
22 |
+
- 124
|
23 |
+
- 124
|
24 |
+
- 124
|
25 |
+
mean_type: global
|
26 |
+
iinter: 1
|
27 |
+
batch_size: 64
|
28 |
+
pin_memory: true
|
29 |
+
num_workers: 0
|
30 |
+
sample_multiplier: 1
|
31 |
+
tsize_base: null
|
32 |
+
tsize_enum_sizes:
|
33 |
+
- 1
|
34 |
+
tsize_enum_probs:
|
35 |
+
- 1
|
36 |
+
tsize_range_frac: 0.5
|
37 |
+
tsize_range_sizes:
|
38 |
+
- 0.5
|
39 |
+
- 2
|
40 |
+
trot_prob: 0.5
|
41 |
+
trot_angle: 90
|
42 |
+
min_overlap: 0.2
|
43 |
+
test_overlap: 0.5
|
44 |
+
model:
|
45 |
+
_target_: src.models.regression_module.RegressionModule
|
46 |
+
optimizer:
|
47 |
+
_target_: torch.optim.Adam
|
48 |
+
_partial_: true
|
49 |
+
lr: 0.001
|
50 |
+
weight_decay: 0.0
|
51 |
+
scheduler:
|
52 |
+
_target_: torch.optim.lr_scheduler.ReduceLROnPlateau
|
53 |
+
_partial_: true
|
54 |
+
mode: min
|
55 |
+
factor: 0.5
|
56 |
+
patience: 1
|
57 |
+
threshold: 0.01
|
58 |
+
threshold_mode: rel
|
59 |
+
metric_monitored: val/RMSE
|
60 |
+
warmup_scheduler:
|
61 |
+
_target_: src.models.components.utils.WarmupScheduler
|
62 |
+
_partial_: true
|
63 |
+
min_lr: 1.0e-05
|
64 |
+
max_lr: ${model.optimizer.lr}
|
65 |
+
fract: 0.04
|
66 |
+
net:
|
67 |
+
_target_: src.models.components.timmNet.timmNet
|
68 |
+
img_size: ${data.imagesize}
|
69 |
+
num_channels: 4
|
70 |
+
num_classes: 1
|
71 |
+
backbone: pvt_v2_b3.in1k
|
72 |
+
pretrained: false
|
73 |
+
pretrained_path: datasets/Models/pvt_v2_b3.in1k.bin
|
74 |
+
segmentation_head:
|
75 |
+
_partial_: true
|
76 |
+
_target_: src.models.components.utils.SimpleSegmentationHead
|
77 |
+
decoder_stride: 32
|
78 |
+
save_eval_only: true
|
79 |
+
save_freq: 1000
|
80 |
+
test_overlap: ${data.test_overlap}
|
81 |
+
compile: false
|
82 |
+
num_classes: ${model.net.num_classes}
|
83 |
+
aux_loss_factor: 0.0
|
84 |
+
loss: l1
|
85 |
+
activation: none
|
86 |
+
callbacks:
|
87 |
+
model_checkpoint:
|
88 |
+
_target_: lightning.pytorch.callbacks.ModelCheckpoint
|
89 |
+
dirpath: ${paths.output_dir}/checkpoints
|
90 |
+
filename: epoch_{epoch:03d}
|
91 |
+
monitor: val/RMSE
|
92 |
+
verbose: false
|
93 |
+
save_last: true
|
94 |
+
save_top_k: 1
|
95 |
+
mode: min
|
96 |
+
auto_insert_metric_name: false
|
97 |
+
save_weights_only: false
|
98 |
+
every_n_train_steps: null
|
99 |
+
train_time_interval: null
|
100 |
+
every_n_epochs: null
|
101 |
+
save_on_train_epoch_end: null
|
102 |
+
early_stopping:
|
103 |
+
_target_: lightning.pytorch.callbacks.EarlyStopping
|
104 |
+
monitor: ${callbacks.model_checkpoint.monitor}
|
105 |
+
min_delta: 0.0
|
106 |
+
patience: 3
|
107 |
+
verbose: false
|
108 |
+
mode: min
|
109 |
+
strict: true
|
110 |
+
check_finite: true
|
111 |
+
stopping_threshold: null
|
112 |
+
divergence_threshold: null
|
113 |
+
check_on_train_epoch_end: null
|
114 |
+
model_summary:
|
115 |
+
_target_: lightning.pytorch.callbacks.RichModelSummary
|
116 |
+
max_depth: -1
|
117 |
+
rich_progress_bar:
|
118 |
+
_target_: lightning.pytorch.callbacks.RichProgressBar
|
119 |
+
learning_rate_monitor:
|
120 |
+
_target_: lightning.pytorch.callbacks.LearningRateMonitor
|
121 |
+
logging_interval: step
|
122 |
+
logger: null
|
123 |
+
trainer:
|
124 |
+
_target_: lightning.pytorch.trainer.Trainer
|
125 |
+
default_root_dir: ${paths.output_dir}
|
126 |
+
min_epochs: 10
|
127 |
+
max_epochs: 25
|
128 |
+
accelerator: gpu
|
129 |
+
devices: 1
|
130 |
+
reload_dataloaders_every_n_epochs: 1
|
131 |
+
check_val_every_n_epoch: 1
|
132 |
+
log_every_n_steps: 20
|
133 |
+
deterministic: false
|
134 |
+
paths:
|
135 |
+
root_dir: ${oc.env:PROJECT_ROOT}
|
136 |
+
data_dir: ${paths.root_dir}/datasets/
|
137 |
+
log_dir: ${paths.root_dir}/logs/
|
138 |
+
output_dir: ${hydra:runtime.output_dir}
|
139 |
+
work_dir: ${hydra:runtime.cwd}
|
140 |
+
extras:
|
141 |
+
ignore_warnings: false
|
142 |
+
enforce_tags: true
|
143 |
+
print_config: true
|