|
|
|
import os |
|
|
|
import h5py |
|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
import pandas as pd |
|
|
|
|
|
|
|
h5_dirs = ["./quakeflow_nc/waveform_h5", "./quakeflow_sc/waveform_h5"] |
|
h5_out = "waveform.h5" |
|
h5_train = "waveform_train.h5" |
|
h5_test = "waveform_test.h5" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h5_file_lists = [sorted(os.listdir(h5_dir)) for h5_dir in h5_dirs] |
|
train_file_lists = [x[:-1] for x in h5_file_lists] |
|
test_file_lists = [x[-1:] for x in h5_file_lists] |
|
|
|
|
|
|
|
print(f"train files: {train_file_lists}") |
|
print(f"test files: {test_file_lists}") |
|
|
|
|
|
|
|
with h5py.File(h5_out, "w") as fp: |
|
|
|
for h5_dir, h5_files in zip(h5_dirs, h5_file_lists): |
|
for h5_file in h5_files: |
|
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f: |
|
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())): |
|
if event not in fp: |
|
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event) |
|
else: |
|
print(f"{event} already exists") |
|
continue |
|
|
|
|
|
with h5py.File(h5_train, "w") as fp: |
|
|
|
for h5_dir, h5_files in zip(h5_dirs, train_file_lists): |
|
for h5_file in h5_files: |
|
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f: |
|
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())): |
|
if event not in fp: |
|
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event) |
|
else: |
|
print(f"{event} already exists") |
|
continue |
|
|
|
|
|
with h5py.File(h5_test, "w") as fp: |
|
|
|
for h5_dir, h5_files in zip(h5_dirs, test_file_lists): |
|
for h5_file in h5_files: |
|
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f: |
|
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())): |
|
if event not in fp: |
|
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event) |
|
else: |
|
print(f"{event} already exists") |
|
continue |
|
|
|
dirs = ["./quakeflow_nc", "./quakeflow_sc"] |
|
csv_files = ['events.csv', 'events_test.csv', 'events_train.csv', 'picks.csv', 'picks_test.csv', 'picks_train.csv'] |
|
|
|
for csv_file in csv_files: |
|
dfs = [] |
|
for dir in dirs: |
|
df = pd.read_csv(f"{dir}/{csv_file}") |
|
dfs.append(df) |
|
df = pd.concat(dfs) |
|
df.to_csv(csv_file, index=False, na_rep='') |
|
|
|
|