Datasets:

ArXiv:
License:
CEED / merge_dataset.py
zhuwq0's picture
add csv files
0f141f9
# %%
import os
import h5py
import matplotlib.pyplot as plt
from tqdm import tqdm
import pandas as pd
# %%
h5_dirs = ["./quakeflow_nc/waveform_h5", "./quakeflow_sc/waveform_h5"]
h5_out = "waveform.h5"
h5_train = "waveform_train.h5"
h5_test = "waveform_test.h5"
# # %%
# h5_dir = "waveform_h5"
# h5_out = "waveform.h5"
# h5_train = "waveform_train.h5"
# h5_test = "waveform_test.h5"
h5_file_lists = [sorted(os.listdir(h5_dir)) for h5_dir in h5_dirs]
train_file_lists = [x[:-1] for x in h5_file_lists]
test_file_lists = [x[-1:] for x in h5_file_lists]
# train_files = h5_files
# train_files = [x for x in train_files if (x != "2014.h5") and (x not in [])]
# test_files = []
print(f"train files: {train_file_lists}")
print(f"test files: {test_file_lists}")
# %%
# %%
with h5py.File(h5_out, "w") as fp:
# external linked file
for h5_dir, h5_files in zip(h5_dirs, h5_file_lists):
for h5_file in h5_files:
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
if event not in fp:
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
else:
print(f"{event} already exists")
continue
# %%
with h5py.File(h5_train, "w") as fp:
# external linked file
for h5_dir, h5_files in zip(h5_dirs, train_file_lists):
for h5_file in h5_files:
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
if event not in fp:
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
else:
print(f"{event} already exists")
continue
# %%
with h5py.File(h5_test, "w") as fp:
# external linked file
for h5_dir, h5_files in zip(h5_dirs, test_file_lists):
for h5_file in h5_files:
with h5py.File(os.path.join(h5_dir, h5_file), "r") as f:
for event in tqdm(f.keys(), desc=h5_file, total=len(f.keys())):
if event not in fp:
fp[event] = h5py.ExternalLink(os.path.join(h5_dir, h5_file), event)
else:
print(f"{event} already exists")
continue
dirs = ["./quakeflow_nc", "./quakeflow_sc"]
csv_files = ['events.csv', 'events_test.csv', 'events_train.csv', 'picks.csv', 'picks_test.csv', 'picks_train.csv']
for csv_file in csv_files:
dfs = []
for dir in dirs:
df = pd.read_csv(f"{dir}/{csv_file}")
dfs.append(df)
df = pd.concat(dfs)
df.to_csv(csv_file, index=False, na_rep='')