ACCC1380 commited on
Commit
89d0178
·
verified ·
1 Parent(s): d565e9b

Upload lora-scripts/sd-scripts/library/ipex/hijacks.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/library/ipex/hijacks.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from functools import wraps
3
+ from contextlib import nullcontext
4
+ import torch
5
+ import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
6
+ import numpy as np
7
+
8
+ device_supports_fp64 = torch.xpu.has_fp64_dtype()
9
+
10
+ # pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
11
+
12
+ class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
13
+ def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
14
+ if isinstance(device_ids, list) and len(device_ids) > 1:
15
+ print("IPEX backend doesn't support DataParallel on multiple XPU devices")
16
+ return module.to("xpu")
17
+
18
+ def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
19
+ return nullcontext()
20
+
21
+ @property
22
+ def is_cuda(self):
23
+ return self.device.type == 'xpu' or self.device.type == 'cuda'
24
+
25
+ def check_device(device):
26
+ return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
27
+
28
+ def return_xpu(device):
29
+ return f"xpu:{device.split(':')[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
30
+
31
+
32
+ # Autocast
33
+ original_autocast_init = torch.amp.autocast_mode.autocast.__init__
34
+ @wraps(torch.amp.autocast_mode.autocast.__init__)
35
+ def autocast_init(self, device_type, dtype=None, enabled=True, cache_enabled=None):
36
+ if device_type == "cuda":
37
+ return original_autocast_init(self, device_type="xpu", dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
38
+ else:
39
+ return original_autocast_init(self, device_type=device_type, dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
40
+
41
+ # Latent Antialias CPU Offload:
42
+ original_interpolate = torch.nn.functional.interpolate
43
+ @wraps(torch.nn.functional.interpolate)
44
+ def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
45
+ if antialias or align_corners is not None or mode == 'bicubic':
46
+ return_device = tensor.device
47
+ return_dtype = tensor.dtype
48
+ return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
49
+ align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
50
+ else:
51
+ return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
52
+ align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
53
+
54
+
55
+ # Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
56
+ original_from_numpy = torch.from_numpy
57
+ @wraps(torch.from_numpy)
58
+ def from_numpy(ndarray):
59
+ if ndarray.dtype == float:
60
+ return original_from_numpy(ndarray.astype('float32'))
61
+ else:
62
+ return original_from_numpy(ndarray)
63
+
64
+ original_as_tensor = torch.as_tensor
65
+ @wraps(torch.as_tensor)
66
+ def as_tensor(data, dtype=None, device=None):
67
+ if check_device(device):
68
+ device = return_xpu(device)
69
+ if isinstance(data, np.ndarray) and data.dtype == float and not (
70
+ (isinstance(device, torch.device) and device.type == "cpu") or (isinstance(device, str) and "cpu" in device)):
71
+ return original_as_tensor(data, dtype=torch.float32, device=device)
72
+ else:
73
+ return original_as_tensor(data, dtype=dtype, device=device)
74
+
75
+
76
+ if device_supports_fp64 and os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is None:
77
+ original_torch_bmm = torch.bmm
78
+ original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
79
+ else:
80
+ # 32 bit attention workarounds for Alchemist:
81
+ try:
82
+ from .attention import torch_bmm_32_bit as original_torch_bmm
83
+ from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention
84
+ except Exception: # pylint: disable=broad-exception-caught
85
+ original_torch_bmm = torch.bmm
86
+ original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
87
+
88
+
89
+ # Data Type Errors:
90
+ @wraps(torch.bmm)
91
+ def torch_bmm(input, mat2, *, out=None):
92
+ if input.dtype != mat2.dtype:
93
+ mat2 = mat2.to(input.dtype)
94
+ return original_torch_bmm(input, mat2, out=out)
95
+
96
+ @wraps(torch.nn.functional.scaled_dot_product_attention)
97
+ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
98
+ if query.dtype != key.dtype:
99
+ key = key.to(dtype=query.dtype)
100
+ if query.dtype != value.dtype:
101
+ value = value.to(dtype=query.dtype)
102
+ if attn_mask is not None and query.dtype != attn_mask.dtype:
103
+ attn_mask = attn_mask.to(dtype=query.dtype)
104
+ return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)
105
+
106
+ # A1111 FP16
107
+ original_functional_group_norm = torch.nn.functional.group_norm
108
+ @wraps(torch.nn.functional.group_norm)
109
+ def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05):
110
+ if weight is not None and input.dtype != weight.data.dtype:
111
+ input = input.to(dtype=weight.data.dtype)
112
+ if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
113
+ bias.data = bias.data.to(dtype=weight.data.dtype)
114
+ return original_functional_group_norm(input, num_groups, weight=weight, bias=bias, eps=eps)
115
+
116
+ # A1111 BF16
117
+ original_functional_layer_norm = torch.nn.functional.layer_norm
118
+ @wraps(torch.nn.functional.layer_norm)
119
+ def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05):
120
+ if weight is not None and input.dtype != weight.data.dtype:
121
+ input = input.to(dtype=weight.data.dtype)
122
+ if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
123
+ bias.data = bias.data.to(dtype=weight.data.dtype)
124
+ return original_functional_layer_norm(input, normalized_shape, weight=weight, bias=bias, eps=eps)
125
+
126
+ # Training
127
+ original_functional_linear = torch.nn.functional.linear
128
+ @wraps(torch.nn.functional.linear)
129
+ def functional_linear(input, weight, bias=None):
130
+ if input.dtype != weight.data.dtype:
131
+ input = input.to(dtype=weight.data.dtype)
132
+ if bias is not None and bias.data.dtype != weight.data.dtype:
133
+ bias.data = bias.data.to(dtype=weight.data.dtype)
134
+ return original_functional_linear(input, weight, bias=bias)
135
+
136
+ original_functional_conv2d = torch.nn.functional.conv2d
137
+ @wraps(torch.nn.functional.conv2d)
138
+ def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
139
+ if input.dtype != weight.data.dtype:
140
+ input = input.to(dtype=weight.data.dtype)
141
+ if bias is not None and bias.data.dtype != weight.data.dtype:
142
+ bias.data = bias.data.to(dtype=weight.data.dtype)
143
+ return original_functional_conv2d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
144
+
145
+ # A1111 Embedding BF16
146
+ original_torch_cat = torch.cat
147
+ @wraps(torch.cat)
148
+ def torch_cat(tensor, *args, **kwargs):
149
+ if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
150
+ return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
151
+ else:
152
+ return original_torch_cat(tensor, *args, **kwargs)
153
+
154
+ # SwinIR BF16:
155
+ original_functional_pad = torch.nn.functional.pad
156
+ @wraps(torch.nn.functional.pad)
157
+ def functional_pad(input, pad, mode='constant', value=None):
158
+ if mode == 'reflect' and input.dtype == torch.bfloat16:
159
+ return original_functional_pad(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16)
160
+ else:
161
+ return original_functional_pad(input, pad, mode=mode, value=value)
162
+
163
+
164
+ original_torch_tensor = torch.tensor
165
+ @wraps(torch.tensor)
166
+ def torch_tensor(data, *args, dtype=None, device=None, **kwargs):
167
+ if check_device(device):
168
+ device = return_xpu(device)
169
+ if not device_supports_fp64:
170
+ if (isinstance(device, torch.device) and device.type == "xpu") or (isinstance(device, str) and "xpu" in device):
171
+ if dtype == torch.float64:
172
+ dtype = torch.float32
173
+ elif dtype is None and (hasattr(data, "dtype") and (data.dtype == torch.float64 or data.dtype == float)):
174
+ dtype = torch.float32
175
+ return original_torch_tensor(data, *args, dtype=dtype, device=device, **kwargs)
176
+
177
+ original_Tensor_to = torch.Tensor.to
178
+ @wraps(torch.Tensor.to)
179
+ def Tensor_to(self, device=None, *args, **kwargs):
180
+ if check_device(device):
181
+ return original_Tensor_to(self, return_xpu(device), *args, **kwargs)
182
+ else:
183
+ return original_Tensor_to(self, device, *args, **kwargs)
184
+
185
+ original_Tensor_cuda = torch.Tensor.cuda
186
+ @wraps(torch.Tensor.cuda)
187
+ def Tensor_cuda(self, device=None, *args, **kwargs):
188
+ if check_device(device):
189
+ return original_Tensor_cuda(self, return_xpu(device), *args, **kwargs)
190
+ else:
191
+ return original_Tensor_cuda(self, device, *args, **kwargs)
192
+
193
+ original_Tensor_pin_memory = torch.Tensor.pin_memory
194
+ @wraps(torch.Tensor.pin_memory)
195
+ def Tensor_pin_memory(self, device=None, *args, **kwargs):
196
+ if device is None:
197
+ device = "xpu"
198
+ if check_device(device):
199
+ return original_Tensor_pin_memory(self, return_xpu(device), *args, **kwargs)
200
+ else:
201
+ return original_Tensor_pin_memory(self, device, *args, **kwargs)
202
+
203
+ original_UntypedStorage_init = torch.UntypedStorage.__init__
204
+ @wraps(torch.UntypedStorage.__init__)
205
+ def UntypedStorage_init(*args, device=None, **kwargs):
206
+ if check_device(device):
207
+ return original_UntypedStorage_init(*args, device=return_xpu(device), **kwargs)
208
+ else:
209
+ return original_UntypedStorage_init(*args, device=device, **kwargs)
210
+
211
+ original_UntypedStorage_cuda = torch.UntypedStorage.cuda
212
+ @wraps(torch.UntypedStorage.cuda)
213
+ def UntypedStorage_cuda(self, device=None, *args, **kwargs):
214
+ if check_device(device):
215
+ return original_UntypedStorage_cuda(self, return_xpu(device), *args, **kwargs)
216
+ else:
217
+ return original_UntypedStorage_cuda(self, device, *args, **kwargs)
218
+
219
+ original_torch_empty = torch.empty
220
+ @wraps(torch.empty)
221
+ def torch_empty(*args, device=None, **kwargs):
222
+ if check_device(device):
223
+ return original_torch_empty(*args, device=return_xpu(device), **kwargs)
224
+ else:
225
+ return original_torch_empty(*args, device=device, **kwargs)
226
+
227
+ original_torch_randn = torch.randn
228
+ @wraps(torch.randn)
229
+ def torch_randn(*args, device=None, dtype=None, **kwargs):
230
+ if dtype == bytes:
231
+ dtype = None
232
+ if check_device(device):
233
+ return original_torch_randn(*args, device=return_xpu(device), **kwargs)
234
+ else:
235
+ return original_torch_randn(*args, device=device, **kwargs)
236
+
237
+ original_torch_ones = torch.ones
238
+ @wraps(torch.ones)
239
+ def torch_ones(*args, device=None, **kwargs):
240
+ if check_device(device):
241
+ return original_torch_ones(*args, device=return_xpu(device), **kwargs)
242
+ else:
243
+ return original_torch_ones(*args, device=device, **kwargs)
244
+
245
+ original_torch_zeros = torch.zeros
246
+ @wraps(torch.zeros)
247
+ def torch_zeros(*args, device=None, **kwargs):
248
+ if check_device(device):
249
+ return original_torch_zeros(*args, device=return_xpu(device), **kwargs)
250
+ else:
251
+ return original_torch_zeros(*args, device=device, **kwargs)
252
+
253
+ original_torch_linspace = torch.linspace
254
+ @wraps(torch.linspace)
255
+ def torch_linspace(*args, device=None, **kwargs):
256
+ if check_device(device):
257
+ return original_torch_linspace(*args, device=return_xpu(device), **kwargs)
258
+ else:
259
+ return original_torch_linspace(*args, device=device, **kwargs)
260
+
261
+ original_torch_Generator = torch.Generator
262
+ @wraps(torch.Generator)
263
+ def torch_Generator(device=None):
264
+ if check_device(device):
265
+ return original_torch_Generator(return_xpu(device))
266
+ else:
267
+ return original_torch_Generator(device)
268
+
269
+ original_torch_load = torch.load
270
+ @wraps(torch.load)
271
+ def torch_load(f, map_location=None, *args, **kwargs):
272
+ if map_location is None:
273
+ map_location = "xpu"
274
+ if check_device(map_location):
275
+ return original_torch_load(f, *args, map_location=return_xpu(map_location), **kwargs)
276
+ else:
277
+ return original_torch_load(f, *args, map_location=map_location, **kwargs)
278
+
279
+
280
+ # Hijack Functions:
281
+ def ipex_hijacks():
282
+ torch.tensor = torch_tensor
283
+ torch.Tensor.to = Tensor_to
284
+ torch.Tensor.cuda = Tensor_cuda
285
+ torch.Tensor.pin_memory = Tensor_pin_memory
286
+ torch.UntypedStorage.__init__ = UntypedStorage_init
287
+ torch.UntypedStorage.cuda = UntypedStorage_cuda
288
+ torch.empty = torch_empty
289
+ torch.randn = torch_randn
290
+ torch.ones = torch_ones
291
+ torch.zeros = torch_zeros
292
+ torch.linspace = torch_linspace
293
+ torch.Generator = torch_Generator
294
+ torch.load = torch_load
295
+
296
+ torch.backends.cuda.sdp_kernel = return_null_context
297
+ torch.nn.DataParallel = DummyDataParallel
298
+ torch.UntypedStorage.is_cuda = is_cuda
299
+ torch.amp.autocast_mode.autocast.__init__ = autocast_init
300
+
301
+ torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
302
+ torch.nn.functional.group_norm = functional_group_norm
303
+ torch.nn.functional.layer_norm = functional_layer_norm
304
+ torch.nn.functional.linear = functional_linear
305
+ torch.nn.functional.conv2d = functional_conv2d
306
+ torch.nn.functional.interpolate = interpolate
307
+ torch.nn.functional.pad = functional_pad
308
+
309
+ torch.bmm = torch_bmm
310
+ torch.cat = torch_cat
311
+ if not device_supports_fp64:
312
+ torch.from_numpy = from_numpy
313
+ torch.as_tensor = as_tensor