Upload convert4json_ScanQA.ipynb
Browse files- convert4json_ScanQA.ipynb +89 -0
convert4json_ScanQA.ipynb
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"This file is to convert ScanQA to LLaVA-3D dataset format. Ref: https://github.com/ZCMax/LLaVA-3D/issues/5"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 2,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"# load json and show\n",
|
17 |
+
"import json\n",
|
18 |
+
"import os\n",
|
19 |
+
"\n",
|
20 |
+
"data = json.load(open('ScanQA_v1.0_train.json'))\n",
|
21 |
+
"# print(json.dumps(data, indent=4))\n",
|
22 |
+
"\n",
|
23 |
+
"# {\"answers\": [\"brown cabinet with tv sitting in it\"], \n",
|
24 |
+
"# \"object_ids\": [8], \n",
|
25 |
+
"# \"object_names\": [\"cabinet\"], \n",
|
26 |
+
"# \"question\": \"What is in the right corner of room by curtains?\", \n",
|
27 |
+
"# \"question_id\": \"train-scene0000-0\", \n",
|
28 |
+
"# \"scene_id\": \"scene0000_00\"},\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"import json\n",
|
38 |
+
"\n",
|
39 |
+
"# Read the input JSON file\n",
|
40 |
+
"with open('ScanQA_v1.0_train.json', 'r') as f:\n",
|
41 |
+
" data = json.load(f)\n",
|
42 |
+
"\n",
|
43 |
+
"output = []\n",
|
44 |
+
"\n",
|
45 |
+
"for entry in data:\n",
|
46 |
+
" conversation = {\n",
|
47 |
+
" \"id\": entry['object_ids'][0],\n",
|
48 |
+
" \"video\": f\"scannet/{entry['scene_id']}\",\n",
|
49 |
+
" \"conversations\": [\n",
|
50 |
+
" {\n",
|
51 |
+
" \"from\": \"human\",\n",
|
52 |
+
" \"value\": f\"<video>\\n{entry['question']}\"\n",
|
53 |
+
" },\n",
|
54 |
+
" {\n",
|
55 |
+
" \"from\": \"gpt\",\n",
|
56 |
+
" \"value\": entry['answers'][0].capitalize() + '.'\n",
|
57 |
+
" }\n",
|
58 |
+
" ]\n",
|
59 |
+
" }\n",
|
60 |
+
" output.append(conversation)\n",
|
61 |
+
"\n",
|
62 |
+
"# Write the output to a JSON file\n",
|
63 |
+
"with open('LLaVA_canQA_v1.0_train.json', 'w') as f:\n",
|
64 |
+
" json.dump(output, f, indent=4)"
|
65 |
+
]
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"metadata": {
|
69 |
+
"kernelspec": {
|
70 |
+
"display_name": "Python 3",
|
71 |
+
"language": "python",
|
72 |
+
"name": "python3"
|
73 |
+
},
|
74 |
+
"language_info": {
|
75 |
+
"codemirror_mode": {
|
76 |
+
"name": "ipython",
|
77 |
+
"version": 3
|
78 |
+
},
|
79 |
+
"file_extension": ".py",
|
80 |
+
"mimetype": "text/x-python",
|
81 |
+
"name": "python",
|
82 |
+
"nbconvert_exporter": "python",
|
83 |
+
"pygments_lexer": "ipython3",
|
84 |
+
"version": "3.9.5"
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"nbformat": 4,
|
88 |
+
"nbformat_minor": 2
|
89 |
+
}
|