from datasets import load_dataset | |
dataset_name = "2nji/makebelieve-480" | |
# Load the dataset | |
dataset = load_dataset('json', data_files='./generation/processed/main.jsonl') | |
# Shuffle the dataset and slice it | |
dataset = dataset['train'].shuffle(seed=42).select(range(480)) | |
# Define a function to transform the data | |
def transform_conversation(example): | |
conversation_text = example['text'] | |
segments = conversation_text.split('###') | |
reformatted_segments = [] | |
# Iterate over pairs of segments | |
for i in range(1, len(segments) - 1, 2): | |
human_text = segments[i].strip().replace('Human:', '').strip() | |
# Check if there is a corresponding assistant segment before processing | |
if i + 1 < len(segments): | |
assistant_text = segments[i+1].strip().replace('Assistant:', '').strip() | |
# Apply the new template | |
reformatted_segments.append(f'<s>[INST] {human_text} [/INST] {assistant_text} </s>') | |
else: | |
# Handle the case where there is no corresponding assistant segment | |
reformatted_segments.append(f'<s>[INST] {human_text} [/INST] </s>') | |
return {'text': ''.join(reformatted_segments)} | |
# Apply the transformation | |
transformed_dataset = dataset.map(transform_conversation) | |
# Upload the dataset to the Hub | |
# Don't forget to replace the token with your own | |
transformed_dataset.push_to_hub(dataset_name, token="...") | |