Muennighoff commited on
Commit
46fa37e
·
1 Parent(s): 0fc6405
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
  2. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
  3. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
  4. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
  5. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
  6. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
  7. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_0.json +1 -0
  8. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_1.json +1 -0
  9. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_2.json +1 -0
  10. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_3.json +1 -0
  11. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_4.json +1 -0
  12. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_5.json +1 -0
  13. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_0.json +1 -0
  14. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_1.json +1 -0
  15. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_2.json +1 -0
  16. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_3.json +1 -0
  17. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_4.json +1 -0
  18. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_5.json +1 -0
  19. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_0.json +1 -0
  20. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_1.json +1 -0
  21. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_2.json +1 -0
  22. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_3.json +1 -0
  23. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_4.json +1 -0
  24. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_5.json +1 -0
  25. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_0.json +1 -0
  26. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_1.json +1 -0
  27. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_2.json +1 -0
  28. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_3.json +1 -0
  29. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_4.json +1 -0
  30. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_5.json +1 -0
  31. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_0.json +1 -0
  32. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_1.json +1 -0
  33. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_2.json +1 -0
  34. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_3.json +1 -0
  35. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_4.json +1 -0
  36. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_5.json +1 -0
  37. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_0.json +1 -0
  38. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_1.json +1 -0
  39. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_2.json +1 -0
  40. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_3.json +1 -0
  41. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_4.json +1 -0
  42. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_5.json +1 -0
  43. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_0.json +1 -0
  44. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_1.json +1 -0
  45. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_2.json +1 -0
  46. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_3.json +1 -0
  47. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_4.json +1 -0
  48. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_5.json +1 -0
  49. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
  50. 1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.23276014363797534, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.027213956647757755}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.08329206957965746, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0029525487880762}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.2961935380705996, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005015904101447224}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.10685740459732754, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002096774125636308}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03739848913220273, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0018116310605194581}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.1360683824381807, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0030984401792517177}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.04781866683505665, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012583644338170926}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07862629608873979, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002741933691994294}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.2846193508446285, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004789387436372212}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1013890694424362, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001898727917401308}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07847771085626348, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0027910202408375664}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2790016350835953, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004635447810429494}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.10058755368441963, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019506163363988537}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.5892942005221672, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.038936578527148505}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.12839846471837638, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004077114820667653}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.33349404174523156, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005349712700610643}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.15485266257871344, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0034577452381182256}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.0652715018703935, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027570340412806497}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.17231130872756847, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003767117024523785}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.07829017975611124, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0023613786499382507}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.11775810892588592, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003707343666137587}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.31519085223897286, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004981248113226891}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.14283327459081951, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0030359333678436485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.1195762137162845, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0037819805379905366}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.31538531531825054, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004928012622464893}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.14434547933883188, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0031015340633686926}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.6468884365418679, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.02334009604180538}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1583665996069934, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0047360948022950175}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.33808075470384535, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0051577943601123135}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.17869792359195752, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003974874022226936}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.08341164161924561, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003265727824933123}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.1788079518939578, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0037388967509774927}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.09284992815195231, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002773533363226855}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1421190884591786, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004203489185491633}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.31515081357079616, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004714072862049612}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.16175933365589268, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003440373198985381}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.14562042754789561, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004312967823208686}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3191760385055648, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004774100414928093}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.16519901525457767, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0035392336089928333}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.6692521917086784, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04852741620404408}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.16121176540456839, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004850265656261775}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3434593952895767, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004980597025395638}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.17982278581451144, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003924381062051185}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.08405014076817714, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0032235853588140177}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.18180061405947046, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036895833241177376}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.09365066779488658, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0027216558543662634}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.14522906593996954, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004288070392892998}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.32103066561913546, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004563376378411147}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.16344550564607865, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003394059009804936}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.14866993379087545, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004419522994544312}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3247166346510568, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0046347893612855426}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.16659300999252402, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003487316598781421}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.8685842997913754, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07091517595882837}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.17639787766231033, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005002056475208427}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.36537577985677716, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004934621284521906}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.19870623161619597, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004166307469742161}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09458430895967042, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003407156386966226}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.19589011036387952, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036487095498846326}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.1044908844712469, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0028299403215513723}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.15565039564646857, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00435042518713099}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3375898601281893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004453272645510182}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.17722245637808923, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0035228306296581457}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.16144976068323047, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004535312944464626}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34401622479083216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004534961187193281}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.18273999849012598, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003678539107666557}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_PALM_prompt_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.9641259536557102, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.053957849953258155}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1873900578475679, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005231433640567016}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3720571768420287, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005070153352136134}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.20640300585415675, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004270272643695255}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.10393174424214065, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0037135153196401574}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.203563503285121, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003949283812618281}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11138574868593584, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002989402055795844}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.16595788391872549, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004583325513384898}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.34324654960644424, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004599646318019409}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1843456108239074, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0036343671332105623}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.17200328247973679, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0047801417968538545}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34926985911277575, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004659471357391314}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.18987415467601929, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0037943345519913492}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.042338535971362244, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0010227810590912377}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.1969683471563885, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004017618965233928}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.06227031845030415, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0013035519854689061}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.006781756684551215, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00042760275579329906}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.04185993044069638, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002323653714615522}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.010828667426335382, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0006339398022044134}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.036563177159315285, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0008321722670304066}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.17767677169829996, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0036972144763697955}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.05428394736511519, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0010686823595943938}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.03833892101440145, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0009404052081360422}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.17671972664337143, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0036561951798736825}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.05608440846847119, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0011774879134898155}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 0.18051931972651505, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.012096569722584093}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.5889107224368034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005833849464699013}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.4413148662793325, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0046184661326694205}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.46033407952056693, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004292079413454586}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.3180715445297219, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005170126787038796}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.2326437780504034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003923213516938848}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.24272981948415714, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0038462951188585467}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.47757310879250475, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005350009883769357}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.3598183306146725, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004161866129354406}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.3719967909157905, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0038589894530360047}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.507748185748945, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005478262912881365}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.37984572996579175, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004218507225890282}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.3945752564601854, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003913525604554264}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 9.262159276668068, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.520905718185538}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.6616029538410735, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005327275619378906}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.530644909229099, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004482259157662238}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.5510939504980457, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004217992139515727}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.3932657289506657, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005292672364223912}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.30850756016552683, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004251956795081783}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.32120830498374703, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004263663429780497}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.5392338412846699, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005227816650234903}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.4317982053021549, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004237595590198557}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.446978973409013, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00410269728758746}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.5748558181949384, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005229100483594841}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.45802590828941875, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004233909433993884}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.4753518007869633, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004052863484374886}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 12.666081082320654, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.3226257692867501}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.6790283528708536, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005081265563626753}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.5346096891636387, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004486020559420221}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.5625765931471947, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004000720165007271}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.4059899748233324, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005182417104236679}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.312609406860705, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004232471261884417}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.3298629230676259, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004157819074106988}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.5537596330701998, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005092445263237827}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.4354140950406468, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004277618432263917}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.45726295091914443, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0040084818984180825}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.5905042542603927, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005057356646411018}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.46192771042451847, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004240122543656162}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.48617963949844256, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0038982035912063714}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 15.330088706062325, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.46944541532027095}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.6757519537270245, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0051460290085796195}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.5403761416835169, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004460015520321614}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.5652995928058452, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0040842092537494434}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.4107516799354384, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0052068220995963015}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.32182501049192574, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004318149041369018}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.33765592816191403, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004265639738731955}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.5530363095803087, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005127889154499727}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.44242706482671806, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004293543323236602}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.46127781716481703, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004087970713074553}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.589623510753882, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005113088745122319}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.46834013990570234, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004244733992225788}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.49023199832514297, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0040000351740852366}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 15.2749358355063, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.616611757436043}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_explicit-graph-description2_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_precision": 0.6814471465446504, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004822233569344532}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_recall": 0.5428651083709691, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004516956741826144}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge1_fmeasure": 0.5719086017850661, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003963032421843831}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_precision": 0.41255422141271125, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005002975371268282}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_recall": 0.32369651451371345, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004280160496253453}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rouge2_fmeasure": 0.3409017931427912, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004167477491869394}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_precision": 0.5569138092341782, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004900551412024224}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_recall": 0.44336237883326957, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004341797532568589}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeL_fmeasure": 0.46583967606652904, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003996918134754328}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_precision": 0.595016373309223, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004835353127413329}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_recall": 0.471673312642395, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004309814313341708}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "rougeLsum_fmeasure": 0.4966373067549684, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0038896411723511083}, {"task_name": "GEM/web_nlg_en", "prompt_name": "explicit-graph-description2", "bleu": 16.47299237270636, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "afeec167-f75f-4687-a775-1efde7d04780", "prompt_jinja": "{{input | join(\", \")}}. \n\nThe above is a set of subject | predicate | object expressions separated by commas: \nWrite all the information in proper sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.38533631322007095}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 0.3650682861219743, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.02325733186182083}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.03826345408204865, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0010622862270624138}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.25556405536567345, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004439308316762772}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.0631157121989903, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0015332691274487556}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.009566876970341922, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.000555838260717146}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.06458790903210272, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0027811488848840807}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.01569820815961117, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008256102415958047}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.03479143967978624, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0008736375744300822}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.24007795581543215, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004033253086362818}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.05777456410379721, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0012827767867960767}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.03251852909418581, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0009387290434215439}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.22002075144798902, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003968304454329645}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.05364055199172654, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0013552701375844248}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 7.659143239405157, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.5299998615047782}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.5521857749171235, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006078756799911047}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.4264190654915898, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004790645697892768}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.4293544132537484, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0044209853680118585}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.29330732224411843, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005211179939739245}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.2223136572942835, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004031714130433839}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.22322027803825495, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0039017395539913324}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.4528217961210124, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005562013407224577}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.3506157639831649, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004312667878935173}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.3499974322615339, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0039642716255103485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.48004897891291326, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0057006036808015205}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.36847944578797515, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004375991902230884}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.37052089669535904, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004051043371061592}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 12.42343106918039, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.5746859301505771}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.6340124776858914, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005522896890206937}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.48980763849477943, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004705020095971853}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.5084875971884768, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004224177097629327}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.3712281068777811, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005272405034289269}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.2811155657256918, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004309587773409002}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.2915005922444893, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004135408531377178}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.5228242073678695, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0053155299342655254}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.4040849559426835, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004400176180255257}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.4173551060793788, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004048567577093841}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.5561298017984192, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005404893231513709}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.42694979019814544, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004450346418561183}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.44251736130140906, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004057930054287919}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 14.254407525293676, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.24814033419592849}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.65344972795136, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005324026836079824}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.49924681068338306, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004670536056488948}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.5255657687946522, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004127696926881488}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.387496304808114, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0053081789638292085}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.29029228159537934, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00430654052201845}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.3057952443800751, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004194757556928553}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.5372731736134524, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005215405801107653}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.4102926426838354, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004354481679625903}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.4303726778649664, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003990960984617996}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.5726697978040582, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0052830173732805455}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.4336414669257112, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004362075586084929}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.4567600170926633, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003957769498828444}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 14.258501990231931, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.32764998440272053}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.6672279763953577, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005211418201147476}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.4952549169392685, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0046987519227557955}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.5277923224877468, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00411288759066559}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.3998954870403295, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005179227870255643}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.29211480815028856, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004344135114474512}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.3107811316965839, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004148710195865157}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.5532547865260443, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005116777906851436}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.41069870491417376, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004453156956151169}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.4359655315416866, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004015752894948683}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.5876536546276352, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005162429424832081}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.43139184213620546, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004402763250749205}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.4605599730127195, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003947450845080283}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_implicit-graph-description_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "bleu": 13.908757569087154, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.32876650438873684}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_precision": 0.6833266864115486, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005083110705862132}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_recall": 0.4918505568704374, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004819804625444576}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge1_fmeasure": 0.5331696067715684, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0041141950738432425}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_precision": 0.41528789570198527, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005207744807368948}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_recall": 0.29438422524854885, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004421383436734436}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rouge2_fmeasure": 0.3185944653847392, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004210100727962225}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_precision": 0.5708700010483728, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005101210875127408}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_recall": 0.4111184849134962, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004568564297833344}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeL_fmeasure": 0.4445569140272547, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004092360796265344}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_precision": 0.6028134199401143, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00511790935932434}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_recall": 0.43073587164632954, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004547918664314282}, {"task_name": "GEM/web_nlg_en", "prompt_name": "implicit-graph-description", "rougeLsum_fmeasure": 0.4673703324713641, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "38342608-5cd7-4ce7-b2e1-905ecd7f4c80", "prompt_jinja": "{{input | join(\"; \")}}\nThe above is a collection of relations. Write descriptive English that contains this information.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004028831772366533}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.07967769485373491, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019219928372495802}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.3230265059090012, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.006322278866509278}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.10807797572059871, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0024032628220254657}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.022226318942795267, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008256131850640269}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.12679966386396885, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003965829309192189}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.03457435339892291, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001176657948979704}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.06987848874937438, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015857816060198863}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.2963708700357826, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.005911690915361438}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.09503150974916413, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0019665187694605075}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.07028049266235041, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0017067041374044614}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.28515032166024684, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.005635992222617335}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.09453005557586804, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002083544566544026}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 0.46494512656934783, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.03819157888408055}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.291351805053076, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006140192175363028}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.5709372677607734, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005164502836458598}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.299382062170029, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00450134992518979}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.14381932103900943, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004038467460919144}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.2810893489069478, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004244706091937592}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.14433238157623582, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0031716447381923522}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.23280287745987885, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00525959890040249}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.4663498078618883, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0048779409457779185}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.23656602318040035, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0037415718677876776}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.2526876656501754, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005495912458188681}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.49737648377708693, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004717531858351772}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.25804418533145473, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003952170925593337}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 2.3024562108045457, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0872550789037105}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.5662672970922166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.006456243361846914}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.5543751047196036, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004711733250136819}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.49954577814539614, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004980918494227244}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.32311058614589466, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005409940331753277}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.3128350753894234, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004511889644133036}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.2819898337843391, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004490894522568593}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.45867734958265055, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005861433735936997}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.4534392541177864, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004506868317958478}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.4039090193507998, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004571851489986153}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.4893013591072649, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0060051437707575065}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.47892128020743485, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004489889254652782}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.42985608451191887, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004641851880361146}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 7.115618072455021, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13813796662918104}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.6447170825941528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005266236846763854}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.551195760537694, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004564389314453786}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.5556915716380271, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0041411248909920045}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.3765690021746064, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0051118636026587306}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.3182666355822881, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00434952857966603}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.3207206976090753, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0042473712333239416}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.5201722312861858, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005097190183653485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.4448919167046628, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0042942102254351685}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.44688116590974597, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004006813520693243}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.5571570322465527, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005120522671097066}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.47376558799199214, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0042493381202167195}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.4776177559575772, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003947076579391697}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 13.299744800660942, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.6980291277397204}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.656144725484423, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005157099864928225}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.547512270812482, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004620299805718344}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.5598807274112206, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004161211189190801}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.3824037291266232, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004992308422315833}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.31626315982178954, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00436326247287688}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.3226456733211484, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004200108066516551}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.5226406743215913, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004986242035224898}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.4376986564811438, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004383111709027449}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.44473387513070023, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004023720923068619}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.5625007348448963, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005021924525448082}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.4676668440147952, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004355771526930782}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.4774518167986805, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003994190370377772}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 13.882254613956901, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.5048471045866952}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_non-explicit-description_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_precision": 0.6800389846183624, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004911006620019032}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_recall": 0.5386341726497375, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004577813148719412}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge1_fmeasure": 0.5664563772353448, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0040200076837925616}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_precision": 0.4022604332438638, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005021057737741812}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_recall": 0.3140215413687311, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004319613243813336}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rouge2_fmeasure": 0.3302807703839914, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004189143477980615}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_precision": 0.5505051099740607, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004932432977095795}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_recall": 0.4361462722435883, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0043296611816962495}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeL_fmeasure": 0.45719828986837957, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003999572690721166}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_precision": 0.5882474519453976, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004932346075284776}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_recall": 0.46334398837877744, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004315684320101136}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "rougeLsum_fmeasure": 0.4873095852658588, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00394307695169939}, {"task_name": "GEM/web_nlg_en", "prompt_name": "non-explicit-description", "bleu": 15.184615190341193, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "9415bd8a-685f-4fa4-803a-f09bd47d4603", "prompt_jinja": "I am taking this tabular data, where each row is separated by a \"|\" and expresses a relation between an object and a predicate : {{input | join(\", \")}}. \n\nNow, I will produce a description of the tabular data using English sentences. {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.34063392212049565}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.04187547877503429, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0009163723429644564}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.3170720416459767, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004857207827232352}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.07085784520270841, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0013865106366952977}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.009480141064621108, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00041030701033462416}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.08045563193415141, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003053211361337495}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.016222672713223626, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0006619819981759851}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.03666202285356347, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0006719459189875242}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.2870931526703638, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00398332654150175}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.06235111204488398, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0010250443809962503}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.03577200980901773, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0007896889045924009}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.278860269417776, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004454133222887354}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.060769821790441936, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0012101121511860083}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 0.30935119342105655, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.023650026492069546}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.5518518829050036, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005616580697800497}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.5230277987697263, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004809681050305806}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.4930106423157779, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004452060168521025}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.2966574724324776, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0047023905641511085}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.281468280862033, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004242017212324071}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.2623262946258467, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003937237743568201}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.44468100760118956, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005076720593156244}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.4250013853676179, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004383783437153521}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.39652200080231564, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003985531257996536}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.47412703485887836, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005191506850682717}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.44961416556683287, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0044139086153608415}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.42207557840243054, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004063175381354758}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 8.554790474851758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.22247673735250964}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.612206231258146, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005475231077154284}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.5478856899502691, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004535707574972941}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.5397108098714025, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00435271997297448}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.34852794700198564, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005036222856050492}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.3086668003843705, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004265525087199074}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.30364583474216683, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004190891929495213}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.49079596502178396, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.005114121883384846}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.44145508980011033, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004194793920391253}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.43183411221117857, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004042863126179588}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.5255805413361944, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005181695475660052}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.47049358747827935, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.00424254910075073}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.46182819880891884, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004068682697540436}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 11.09044701178961, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.26803447967448746}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.6494770481606906, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005019748436648813}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.5547618518153187, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0044933916012697426}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.5659443984117403, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004040008964226452}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.3755828464686782, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005004003209737237}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.31775341795902423, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004332071474942542}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.3236723139445512, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00423494378936838}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.5197794439293674, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004989958152917151}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.444331216271382, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004237771158278635}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.45189228321151736, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004008003424719293}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.5582500039345328, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0049661109314656825}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.4747731157918416, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004216912758195482}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.4844237137426005, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003940558972165247}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 14.283757437458146, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.4971871196294358}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.6658620301412471, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004792229644542626}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.5426436069886671, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004515624522848628}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.5657859151647382, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003944113618042763}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.38356808728444663, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004913458939995102}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.3106302454332984, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0043025770539926915}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.3229780554039435, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004154960149417829}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.5287482974703757, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0047625500415765356}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.4315903219337693, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004244938233167489}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.4480459180379735, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003890456621329967}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.567622393741902, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004733814842418682}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.4599601942510237, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004242201477196086}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.4796027299574764, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003832502677353288}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 15.053984156172634, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.25259796164824805}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-web_nlg_en_very-explicit-description_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_precision": 0.6872112027179202, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004664295840368613}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_recall": 0.5361950473813976, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004546282043683227}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge1_fmeasure": 0.5717804516074976, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003918194959090317}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_precision": 0.4031707056180702, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.005048968860963561}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_recall": 0.310950798781151, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004362632486553641}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rouge2_fmeasure": 0.33100711217631723, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.004234560303257796}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_precision": 0.5510100553369883, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004842404257982829}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_recall": 0.42855256738933445, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0042533500680080084}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeL_fmeasure": 0.4564058315041765, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0039402607503447725}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_precision": 0.5914676741748034, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004777484388620725}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_recall": 0.4590737322948216, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004265076173989277}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "rougeLsum_fmeasure": 0.4893810714270192, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0038592397195062952}, {"task_name": "GEM/web_nlg_en", "prompt_name": "very-explicit-description", "bleu": 14.956739491382349, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "426b682e-e801-4e8d-9ac3-5b676c9d3da2", "prompt_jinja": "A semantic triple is the atomic data entity in the Resource Description Framework (RDF) data model. As its name indicates, a triple is a set of three entities that codifies a statement about semantic data in the form of subject\u2013predicate\u2013object expressions. (e.g., \"Bob | is | 35\", or \"Bob | knows | John\"). \n\nA graph can be formed from a set of these triples. An example is {{input | join(\", \")}}. \n\nWrite grammatical text expressing all the relations succinctly and fluently.\n{% for i in references %}\n ||| {{ i }} \n{% endfor %}\n\n", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.22970399092298055}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.17024216869992145, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00200740646029102}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.29404652133186965, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0027650469476162894}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.1998503670354352, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0019126499849330004}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.03606346197908055, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008279211865125872}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.06494288326784241, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015748440484219671}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.04257271645606625, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.000914864897994505}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.12189544735341995, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00132694655678802}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.21863058070052022, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0021155921377617637}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.14462632932698752, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0012562660121154404}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.1581252841885899, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001862808129422618}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.2740882715508682, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0025883283252620755}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.18574436135798877, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00176788402791426}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.903426215913334, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07494910158847107}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.17215690822946839, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002423360055588524}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.25279382434676867, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030057565061503548}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.18162660202308825, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002024319968940298}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.036234489411821974, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0011044655981418629}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.05374325209252164, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015626366882590048}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.03736324927363612, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009602216236314998}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.12780779673152307, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0018188718741926919}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.19050368192015427, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002293626738954759}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.13437733270615468, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001396118569766554}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.15996860584677333, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0022658147995581993}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.23511390141113322, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028055503426869066}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.1686238818356986, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0018735022351349466}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.8616642572103903, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07366849269717131}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.1889275047266829, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0030056320828690955}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.22972693558112078, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002893143719012825}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.17638983419101634, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002066237788494183}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.042287356820228265, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0014802283979884505}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.04828364800668327, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0013890156261375988}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.03684672037413959, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009755994937911359}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.1444197694622855, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0023681745390588646}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.17644729442375107, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0021777889032533913}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.1336181106031531, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001463792832498368}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.17624223110580098, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0028207475499124244}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.21440484189041456, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026989655908673106}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.16436355863063595, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019210692284570199}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 1.9137171988271267, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0680645560854532}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.18149810086806445, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0034650929570217114}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.19133856868164248, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0031364075085673314}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.1525648849926944, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002278712762807156}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.04421163938293393, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001715165722641484}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.04350067120600793, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0014412713514468597}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.03431001261939659, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001012988582654159}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.1412596780043423, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0028051547445455158}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.14833892063742712, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024135051937591735}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.11699086869774368, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001674045165778159}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.16921633169112157, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003271088786416004}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.17807823245979884, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002923135702976767}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.1418561140972237, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002117661953274141}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 2.210358893089258, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.094056485269093}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.06674759551908685, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0027924964268486894}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.06404115597923431, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002511879629035008}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.05147985102459924, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018789018790528068}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.018236544412614603, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0014124975203462654}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.016248171584874634, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010807484737518848}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.012355487305481958, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.000715315331540232}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.054159197651769, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0023569153183179577}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.050879640196013744, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00199917711345023}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.04062251886115819, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014584533075938217}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.06276096785174588, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00265707352382972}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.05981561752362191, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002359110429476756}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.048030865289974266, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0017552509538806766}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 0.19538444606890729, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0209178371145933}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_article_summary_en_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_precision": 0.013072298221647492, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0015226183993298217}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_recall": 0.010044421733218251, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0010848509452525002}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge1_fmeasure": 0.008202983046642024, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.000846813845677731}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_precision": 0.0031194144525997663, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0005910052196074648}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_recall": 0.0026273808717152945, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0004725484913649143}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rouge2_fmeasure": 0.0021256612570231797, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0003182238785805366}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_precision": 0.01102976477027393, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0013633407099837365}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_recall": 0.007978962773460491, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0008696036413370026}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeL_fmeasure": 0.0064785946461493405, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0006674220437384113}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_precision": 0.012416532486483832, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001474821631408157}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_recall": 0.009352897547871839, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0010224367471706115}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "rougeLsum_fmeasure": 0.007605863198276212, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0007870498686772562}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "article_summary_en", "bleu": 4.784902977203687e-11, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "2038df7b-5420-4a33-87ec-09715419deef", "prompt_jinja": "Article in English: {{source}}\n\nSummary in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 1.7415842535062406e-09}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.11996916434323242, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001885802794985215}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.16773357532360775, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002415455516924912}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.12842427669983975, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017737576376619507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.019010632946861637, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006569724417506285}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.02777523166427511, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010653117205533733}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.020466976976105604, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0006773684213682236}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.09863064695973357, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0014398894261312347}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.14095973991456914, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.001996036401513794}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.10634459442347859, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00136439555593617}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.11125940573064257, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001737872928724185}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.15651079662668135, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0022603541071297673}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.11933067715669467, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016391222521060197}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 1.0134979623919733, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05716504964259919}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.14414099414771195, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0025759544110976573}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.14795433389920112, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002364080101866258}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.12280962592483267, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001684993566048526}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.022139092981971212, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0013502472167821506}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.020898266161778083, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010690730422176532}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.016587506713738036, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0007589271931781514}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.11405096080567625, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002147086697021113}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.11547420135704306, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0018180667411137918}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.09528029685815582, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001236775189612363}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.1377112533651361, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0024584253449615}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.14109959374738018, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002225569541551872}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.11716247479369014, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0015863771745382577}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 1.369065227857669, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10616653147722509}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.23333268538292043, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00403578981095507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.18951032025135103, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002957447462091067}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.16567321460012202, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022123447446987087}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.06132830241857861, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0023276182282705163}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.0430008215543267, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0013732281071735398}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.03792181556416583, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010782836179220091}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.1862011799531388, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0034971536077218865}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.14560978237908795, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002264251271019907}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.12748696842755014, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016713493226992004}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.22103508696478463, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003902346499772223}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.1778140341947011, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027704516235202625}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.15568945104822396, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020737731920680525}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 2.4432751774192605, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09823616728498147}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.22819604329047433, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004351292025693517}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.16046355863566028, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030469911164850453}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.14601489480941632, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002342191258655108}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.06640935320465638, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0026386918250414274}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.03981115455773984, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0013378371343587493}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.03680952056917715, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001121249688373513}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.1848306827545911, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0037632953616956667}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.12397766629359702, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0023286219099360635}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.11359201010194221, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017968907696502663}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.21567157573543713, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004164253450774772}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.15050355213214445, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002848818118914765}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.1372174296671149, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0021992141967973364}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 1.929004608969165, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.054405318515758465}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.07993033127494627, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003317232202104136}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.05176122501665571, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0021998732096830437}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.048796718150612095, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.001875652709302998}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.023620707049131166, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0017570177582629317}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.013260054235434752, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0008898905045286343}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.012447626378961274, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.000766544287207807}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.06649248917204816, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0028742651052492173}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.04103150652782039, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.001732155083320263}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.038966788285978236, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014897920101239488}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.07558719986999064, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031814027321660165}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.04813818697069431, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002046470345634477}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.045534601537067614, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0017527381983090552}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 0.045270245550006714, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.01275599676099838}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_rephrase_en_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_precision": 0.01203663757389644, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0013742456741355324}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_recall": 0.007154689679652446, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0008615248526199076}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge1_fmeasure": 0.007037268178071477, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0007749441665817072}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_precision": 0.0035675636179561395, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006689126116840603}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_recall": 0.0017051527867016413, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00027439102133515215}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rouge2_fmeasure": 0.0018245728931704738, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00028826888164040613}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_precision": 0.010313890500303066, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001232091412815194}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_recall": 0.005678810767086694, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0006704228971258434}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeL_fmeasure": 0.005690629766524772, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0006242423172811101}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_precision": 0.011546862139346836, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0013332437191307693}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_recall": 0.006764609063788085, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.000813402535156316}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "rougeLsum_fmeasure": 0.006661579796421042, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0007312616355744497}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "rephrase_en", "bleu": 4.046595255013901e-18, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "753f0a46-aeff-4cd2-932c-8548897cebe5", "prompt_jinja": "{{source}}\n\nHow would you rephrase that briefly in English? ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 3.793139829039738e-15}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.07439242282679437, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002022506229419053}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.09745180125278802, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0024207821310368825}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.07650155223702758, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018753328281015229}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.012569664209807785, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0006368848703254451}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.01688561164838085, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0008581463544280725}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.01297994411472192, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0006112607826991722}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.06214124172998331, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0016502308821390317}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.08275486938160946, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002014542936472337}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.06406528457435309, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015003369586797399}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.06877893920921407, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0018791066929154207}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.09048525462662936, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002263492366204389}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.07073042061391407, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0017362590972222593}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.5718390295923524, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06504705643414664}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.16307110752821072, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002764445689787578}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.15998840050081795, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002463505853896467}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.13507696647293826, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0017556171188589209}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.027366659818601168, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0014994070722741516}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.024273580472846983, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0010647987716906962}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.0198063641519451, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008023050055277247}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.12904074984523148, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002319048993426504}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.12397505032838402, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0018696472607374038}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.10434010851005143, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0012735841673868205}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.15535611591058698, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0026355289580093583}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.15196461473016368, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0023109349712061695}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.12829901910714642, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001637646320514789}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 1.5111690847515322, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06766637550701253}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.24244918823009043, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003919740439305366}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.2048649726610623, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002852569877196944}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.17677146613890166, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002074270153634366}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.06415120956445744, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002441656460406202}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.045513584997441466, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0014010082014135376}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.03945239133655871, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001071045492295692}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.1922902649204651, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0033670197263756677}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.15817917680805854, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0021991131007102573}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.13587637913064124, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015231517233684798}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.22883728196704514, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00376981302042838}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.19257198722237195, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0026928144517326474}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.16594667364129784, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019401907534657553}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 2.6701857242903344, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09831592850815718}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.2237186133067409, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004196145007654916}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.1696633179580634, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0031356816121181495}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.15126404713907254, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002349550100333975}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.06314346023227917, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002427586297853972}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.04304543107059796, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0014523402535959128}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.03741035729750266, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010765629837385777}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.17940424562572752, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00356548744553704}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.13151425103709108, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00244820673833895}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.11710366498454679, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017687968267675036}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.21160566286837912, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004027106008839613}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.15918681221234995, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0029513191885092087}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.14204349432044364, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022084955712750216}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 2.1348950356150262, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1215489151261415}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.07390579549650395, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031798569002763253}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.04943957256131028, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002178933472551966}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.04592062160290318, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018012361444754766}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.022452423803085323, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0017930841020669759}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.013236793217934202, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0009931398698955283}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.01147459471440059, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0007052137237663365}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.06210213338375846, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002798812586034917}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.03970472113438606, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0017595567739531381}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.036947346401898, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0014361794197428302}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.06988429610712608, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030462180627526692}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.04622375254401783, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0020416919474309683}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.04298374716716083, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016867337462646245}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 0.031536730633226644, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.00685793705542366}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_summarize_above_en_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_precision": 0.011072772104953915, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0013152370139120067}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_recall": 0.007060933522156522, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0008962222711760586}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge1_fmeasure": 0.006771554023927862, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0007628932408014776}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_precision": 0.0028252868059946714, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0005821460640727389}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_recall": 0.0019935503914674216, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0004475408641273005}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rouge2_fmeasure": 0.0016861662170031503, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00028934695650070086}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_precision": 0.009412008869557184, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011731010714316943}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_recall": 0.005725892181585981, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.000743854320150782}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeL_fmeasure": 0.005503742085380415, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0006256368185782234}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_precision": 0.010691205658104955, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0012862186033039272}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_recall": 0.006668336217125819, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0008509650653115388}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "rougeLsum_fmeasure": 0.0064265843974963795, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0007252536610180232}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "summarize_above_en", "bleu": 3.7985805463070743e-20, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "088288f3-7516-4cf7-9406-0e082053bf54", "prompt_jinja": "{{source}}\n\n===\n\nWrite a summary of the text above in English : ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 7.261274071722961e-18}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_tldr_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.1834704863566484, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0023606912327484024}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.27304629779870704, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029246324343161142}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.20248083277836285, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002142966680529025}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.04345470574797674, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010634814017215347}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06573485971631471, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0016516653812038613}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.047811262367210824, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010907012920964893}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.14322888781310092, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0016903957816316825}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.21956341099777593, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002355803838819221}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.15966617161175117, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015503640228776646}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.16921871334643407, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00219744450682398}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2525334812491754, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027439316411229622}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18682081441893902, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00199367913999881}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.7018322996587996, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06975023154429394}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
1b566b66b/1b566b66bpile/eval/agg.lm1-1b5-66b_GEM-wiki_lingua_en_tldr_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.2599607601871003, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003695396345112575}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.2297035320203029, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029529958401321612}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.2006944717460623, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021558800157216195}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.07138758780406955, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0023235316566707132}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.05674602910138286, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015194168429758014}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.050057382162910474, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012352424981711874}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.20037772526096728, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0031409315285185506}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.17225199167075747, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002258564439935702}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.1505752019760045, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001628918974350346}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.2440225955791838, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003535319664934446}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.2147239987146075, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002766545918133141}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18764699471705473, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020234709612630907}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.2038606443067392, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.13689636679831363}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-1b5-66b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}