Add new SentenceTransformer model with an onnx backend
Browse filesHello!
*This pull request has been automatically generated from the [`push_to_hub`](https://sbert.net/docs/package_reference/sentence_transformer/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub) method from the Sentence Transformers library.*
## Full Model Architecture:
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: ORTModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Tip:
Consider testing this pull request before merging by loading the model from this PR with the `revision` argument:
```python
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"databio/sbert-encode-cellines-tuned",
revision=f"refs/pr/{pr_number}",
backend="onnx",
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
```
- README.md +1 -1
- config.json +2 -2
- config_sentence_transformers.json +1 -1
- onnx/model.onnx +3 -0
@@ -106,7 +106,7 @@ Then you can load this model and run inference.
|
|
106 |
from sentence_transformers import SentenceTransformer
|
107 |
|
108 |
# Download from the 🤗 Hub
|
109 |
-
model = SentenceTransformer("
|
110 |
# Run inference
|
111 |
sentences = [
|
112 |
'GM12873',
|
|
|
106 |
from sentence_transformers import SentenceTransformer
|
107 |
|
108 |
# Download from the 🤗 Hub
|
109 |
+
model = SentenceTransformer("databio/sbert-encode-cellines-tuned")
|
110 |
# Run inference
|
111 |
sentences = [
|
112 |
'GM12873',
|
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -19,7 +19,7 @@
|
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "databio/sbert-encode-cellines-tuned",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.46.3",
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
"vocab_size": 30522
|
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.3.1",
|
4 |
-
"transformers": "4.
|
5 |
"pytorch": "2.5.1+cu124"
|
6 |
},
|
7 |
"prompts": {},
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.3",
|
5 |
"pytorch": "2.5.1+cu124"
|
6 |
},
|
7 |
"prompts": {},
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f2dac9604bbad0d2e3171cef63a8aa91da26bbd823dd9a8829ff2fa9265108
|
3 |
+
size 90405214
|