File size: 1,923 Bytes
db42250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: rating-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rating-classifier
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- F1: 0.6729
- Loss: 0.8373
- Accuracy: 0.6710
- Precision: 0.6774
- Recall: 0.6710
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | F1 | Validation Loss | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:------:|:---------------:|:--------:|:---------:|:------:|
| 1.0326 | 1.0 | 984 | 0.6354 | 0.8096 | 0.6707 | 0.6383 | 0.6707 |
| 0.6801 | 2.0 | 1968 | 0.6668 | 0.7508 | 0.6888 | 0.6667 | 0.6888 |
| 0.5313 | 3.0 | 2952 | 0.6729 | 0.8373 | 0.6710 | 0.6774 | 0.6710 |
| 0.3895 | 4.0 | 3936 | 0.6678 | 0.9705 | 0.6730 | 0.6649 | 0.6730 |
| 0.2857 | 5.0 | 4920 | 0.6708 | 1.0989 | 0.6745 | 0.6684 | 0.6745 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|